Tagging for Health Information Organisation and Retrieval

Margaret E. I. Kipp
Faculty of Information and Media Studies
University of Western Ontario
margaret.kipp@gmail.com

NASKO 2007, Toronto, Ontario
Background

• My research examines:
 – how people organise things on the web
 – how this compares to traditional library classification techniques

• Specific points of interest:
 – structures and the creation of structures in classification systems
 – relationship between personal information management and classification
Social Bookmarking and Tagging

• Social Bookmarking:
 – site for sharing bookmarks, articles, etc.
 – association of tags with links
 – tags and articles joined into networks of related terms
 – users encouraged to share links and tags

• Tagging:
 – associating a term with a link or article
 – labelling or classifying for personal use
Tagging and Classification

- mob indexing
- emergent folksonomies
- tag clouds
- grouping by task, by subject, by affective reaction...

- expert indexing
- planned tree structure of knowledge
- hierarchical
- grouping by subject areas
Previous Studies

• Study 1: Del.icio.us
 • study Del.icio.us tag usage on highly tagged sites
 • examination of convergence of tag usage
 • co-occurrence analysis for co-used tags

• Study 2: CiteULike
 • study CiteULike tag usage compared to author keywords and subject headings
 • examine types of tags and more traditional index terms
Common Findings

- Study 3: Del.icio.us, CiteULike, Connotea
- use of affective tags (e.g. cool, fun) and time and task related tags (e.g. @toread, todo) in both studies
- > 16% of tags in Del.icio.us study
- average of 1-3 tags per article in original study not directly subject related
- categories: time and task, affective, geographic, methodology, emergent vocabulary, other (no-tag)
Motivations

- Builds on study 2 of CiteULike
- Kipp (2006): users do use words from thesaurus as tags, but often use similar or related terms from other fields
- Examine use of indexing terms by users and indexers
- Do they appear to provide a similar context?
Organisational Structures

- this study examines the organisational structures emerging in the web 2.0 world
- structures include:
 - tag clouds
 - related tag clusters
 - tag frequency charts
- created structures:
 - co-word graphs of tags
Health Information

- Material:
 - informational pamphlets
 - Health Canada Guides
 - medical journals
 - scientific journals

- Audience:
 - users, patients, families
 - health professionals
 - scientists and researchers in health related fields
Health Information 2

- many user groups; many differing priorities
- some co-word graphs in del.icio.us showed clusters of what might be user groups

Cotag graph www.bellybytes.com
Research Questions

- To what extent do term usage patterns of user tags, author keywords and intermediary descriptors suggest a similar (or differing) context between users and indexers?

- How do tags assigned to health and biology related articles reveal clues to the information context of the taggers?
Data Collection

- three medicine or biology journals:
 - JAMA, Proteins, and J. of Molecular Biology
 - 1 professional journal, 2 academic journals
 - indexed in Pubmed
- 1280 unique articles retrieved from Citeulike
 - 1802 posts (articles may be tagged by multiple users)
- associated Medical Subject Headings (MeSH) collected via Pubmed
Data Analysis

• Informetric analysis using SQL (see Wolfram 2005)
 – standard informetric measures: frequency of occurrence of unique tags

• Thesaural analysis (see Voorbij 1998, Kipp 2006)
 – comparison of terms using Pubmed thesaurus (range from SAME, SYN, NT, BT, RT, related and Not related)
Users and Articles

• Users:
 – 314 unique users, 1802 posts
 – most prolific user had posted 94 posts (median 2)

• Articles:
 – as many as 14 taggers per article (median 3)
User Vocabulary Length

- measure of how many unique tags each user used
- highest number of unique tags used: 18 (min. 1, median 2)
- highest number of unique tags used by a single user: 66 (min. 1, median 4)
- generally connection between high user vocabulary and heavy posting (> 25 articles)
User Vocabulary Length 2

<table>
<thead>
<tr>
<th>User</th>
<th>Total</th>
<th>Max/Article</th>
<th>Min/Article</th>
<th>Median/Article</th>
<th>Articles Posted</th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>66</td>
<td>13</td>
<td>2</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1143</td>
<td>62</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>94</td>
</tr>
<tr>
<td>1005</td>
<td>60</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>3357</td>
<td>54</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>1698</td>
<td>50</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>34</td>
</tr>
</tbody>
</table>
Tags and Descriptors

• Tags:
 – 1449 unique tags (total 4289)
 – average 2 tags (max. 29, min. 1)
 – previous studies show users use 1-3 tags

• Descriptors:
 – 2746 unique descriptors (total 14507)
 – average 10 descriptors per article (max. 40, min. 2)
Popular Tags

- popular tags: protein_structure (140), no-tag (134), and protein (114)

- By Journal:
 - docking (Proteins, 85)
 - no-tag (JAMA, 20)
 - protein_structure (J Mol Biol, 52)

- users tagging articles from JAMA do not always assign a tag and may simply be bookmarking their articles
Top 10

Top 10 Tags

Top 10 Descriptors
Popular Descriptors

- more heavily reused than tags; tags more likely to be unique
- popular descriptors: 'Models, Molecular', Protein Conformation, and Humans
- By journal:
 - 'Models, Molecular' (Proteins, 252)
 - 'Models, Molecular' (J. Mol. Biol., 385)
 - Humans (JAMA, 137)
Popular Tags by Journal

- no-tag was popular for all journals
- Proteins and Journal of Molecular Biology tags were all related to more basic biological structures:
 - protein_structure, protein, docking, rna
- JAMA tags tended to be more general:
 - cardiology, family-studies, mghlcspub, review
Popular Descriptors by Journal

• Proteins and Journal of Molecular Biology descriptors were related to biological structures:
 – Models, Molecular; Protein Conformation; Amino Acids; Sequence; Proteins

• JAMA descriptors were highly methodology and user group oriented:
 – Humans; Female; Male; Middle Aged
Differences between Journals

- maximum number of keywords (tag or descriptor) per article
 - tags:
 - 29 (Proteins)
 - 20 (JAMA)
 - 19 (Journal of Molecular Biology)
 - descriptors:
 - 40 (JAMA)
 - 36 (Journal of Molecular Biology)
 - 30 (Proteins)
Differences 2

- 6 of 10 articles with highest number of descriptors are JAMA articles
- only 1 of the 10 highest tagged articles is a JAMA article
- users posting JAMA articles tend to use fewer tags, but...
- the more users who post, the higher the number of unique tags per article...
Term Usage

• comparison of tag lists and descriptor lists:
 – many user terms were found to be related to the descriptors but not part of the formal thesaurus
 – may be due to faceting of terms in tags
 – may be due to differing terminology or different view of article emphasis
Title: Optimal diets for prevention of coronary heart disease

• Tags:
 - user1: chd, diet, fat, food, health, heartdisease, lipid, review
 - user2: coronary, diet, disease, heart

• Descriptors:
 - Coronary Arteriosclerosis, Diet, Dietary Carbohydrates, Dietary Fats, Dietary Fiber, Folic Acid, Humans, Life Style, Lipoproteins
Discussion

• results from the previous study (Kipp 2006) using a smaller data set from library science are relevant to other fields and to larger data sets

• users use terminology which is rare or completely absent from descriptor lists (e.g. time and task tags)

• user terms often not part of formal thesaurus
Discussion 2

• Academic versus Professional tagging:
 – distinct difference in tag use between academic journals and professional journal in this study
 – professional tags weighted towards methodology terms, specifically participant groups
 – same phenomenon visible in descriptor usage
Discussions 3

- not everything has to be universal (vertical files, local information)
- user groups may find localised information more useful
- less important to achieve harmony
- more important to achieve access and possible exchange of ideas between user groups
Thank you/Merci!

Questions?

NASKO 2007, Toronto, Ontario