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DAbstract

We consider a challenging clustering task: the clustering of multi-word terms without document co-occurrence infor-
mation in order to form coherent groups of topics. For this task, we developed a methodology taking as input multi-word
terms and lexico-syntactic relations between them. Our clustering algorithm, named CPCL is implemented in the Term-
Watch system. We compared CPCL to other existing clustering algorithms, namely hierarchical and partitioning (k-means,
k-medoids). This out-of-context clustering task led us to adapt multi-word term representation for statistical methods and
also to refine an existing cluster evaluation metric, the editing distance in order to evaluate the methods. Evaluation was
carried out on a list of multi-word terms from the genomic field which comes with a hand built taxonomy. Results showed
that while k-means and k-medoids obtained good scores on the editing distance, they were very sensitive to term length.
CPCL on the other hand obtained a better cluster homogeneity score and was less sensitive to term length. Also, CPCL
showed good adaptability for handling very large and sparse matrices.
� 2006 Published by Elsevier Ltd.
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U
N

C
O1. Introduction

We developed a fast and efficient text mining system that builds clusters of noun phrases (multi-word terms)
without need of document co-occurrence information. This is useful for mapping out research topics at the
micro-level. Because we do not consider the within document co-occurrence, our approach can be conceived
as an out-of-context clustering except if we consider the intraterm context, i.e., words appearing in the same
terms can be said to share a similar context. Terms are clustered depending on the presence and number of
shared linguistic relations. For instance, a link will be established between the two terms humoral immune

response and humoral Bhx immune response since one is lexically included in the other. Likewise clustering algo-
rithm is linked to computer algorithm by a modifier substitution. This lexico-syntactic approach is suitable for
clustering multi-word text units which rarely re-occur as is in the texts. Such multi-word terms (MWTs) often
0306-4573/$ - see front matter � 2006 Published by Elsevier Ltd.
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result in very large and sparse matrices or graphs1 that are difficult to handle by the existing approaches to
clustering which rely on high frequency information. The resulting system, called TermWatch (Ibekwe-San
Juan, 1998a; Sanjuan, Dowdall, Ibekwe-Sanjuan, & Rinaldi, 2005) can be applied to several tasks like domain
topic mapping, text mining, query refinement or question–answering (Q–A).

Some attempts have been made to cluster document contents in the bibliometrics, scientometrics and infor-
metrics fields. Some authors have considered the clustering of keywords, classification codes or subject head-
ings assigned to documents by indexers (Braam et al., 1991; Callon, Courtial, & Laville, 1991; Zitt &
Bassecoulard, 1994). Although these information units depict the thematic contents of documents, they are
external to the documents themselves and do not allow for a fine-grained analysis of the current topics
addressed in the full texts. In studies where the document contents were considered, only lone words were
extracted through statistical analysis. The majority of clustering methods used in the information retrieval
field (Cutting, Karger, Pedersen, & Tukey, 1992; Eisen, Spellman, Brown, & Botstein, 1998; Karypis, Han,
& Kumar, 1994) are also based on the vector-space representation model of documents (bag-of-words
approach). To reduce the dimensions of the vector space, words with a discriminating power are selected based
on term weighting indices like the Inverse Document Frequency (IDF), Mutual Information (MI) or the cosinus
measure. This also results in the drastic elimination of more than half of the initial data from the analysis. Our
text mining approach treats highly frequent and low frequent terms equally. This is important for applications
like science and technology watch where the focus is on novel information often characterised by low fre-
quency units (weak signals). Price and Thelwall (2005) have demonstrated the usefulness of low frequency
words for scientific Web intelligence (SWI). They showed that removing low frequency words reduced cluster
coherence and separation, i.e., clusters were less dissimilar.

Glenisson, Glänzel, Janssens, and Moor (2005) proposed combining full text analysis with bibliometric
analysis in order to cluster the research themes of 85 scientific papers. Text contents were represented as vec-
tors of lone words. Stemming was performed on the words and bigrams were detected, i.e. sequences of two
adjacent words that occurred frequently. It is a well-known fact that stemming brutally removes the semantics
of derived or inflected words. For instance, ‘‘stationary, station, stationed’’ are all reduced to station. Also,
bigrams may not always correspond to valid domain terms. The authors weighted the bigrams using the Dun-
ning likelihood ratio test (Dunning, 1993). This led to selecting the 500 topmost bigrams for analysis and dis-
carding the rest. One of the interesting findings of this study is that clustering items from full texts rather than
keywords or terms from the reference section leads to a more fine-grained and accurate mapping of research
topics. This finding is in line with our text mining approach.

Polanco, Grivel, and Royauté (1995) developed the Stanalyst informetrics platform. Stanalyst comprises a
linguistic component which identifies variants of MWTs used to augment their occurrences. The MWTs are
then clustered based on document co-occurrence information. To the best of our knowledge, no informetric
method has considered clustering phrases based on linguistic relations. The TermWatch approach is based on
the hypothesis that clustering multiword terms (MWTs) through lexico-syntactic and semantic relations can
yield meaningful clusters for various applications. In view of this, we developed a methodology that can han-
dle very large and sparse matrices in real time. For instance, in the current experiment, the input list of terms is
31,398, none which is eliminated prior to the matrix reduction phase.

The clustering algorithm implemented in TermWatch is named CPCL (Classification by Preferential Clus-
tered Link). This algorithm was first published in (Ibekwe-SanJuan, 1998a) but owing to its fundamental dif-
ferences with existing approaches, setting up an adequate comparison framework with other methods has been
a bottleneck issue. In this paper, we focus on the evaluation with other clustering algorithms (variants of par-
titioning and hierarchical algorithms). Evaluation is carried out on a test corpus (the GENIA project) which
comes with an answer key (gold standard). This will ensure that the results being presented are grounded in the
real world.

The rest of the paper is organised as follows: Section 2 gives details of the test corpus; Section 3 describes
our text mining methodology; Section 4 presents the evaluation method; Section 5 describes the experimental
1 In the experiments run up to date, we have been able to handle graphs of 80,000 terms in real time applications for online data analysis
and query refinement.
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In order to carry out an evaluation, we chose a dataset with an existing ideal partition (gold standard). The
GENIA project2 consists of 2000 abstracts downloaded from the MEDLINE database using the search key-
words: Human, Blood Cells, and Transcription Factors. Biologists manually annotated the valid domain terms
in these texts, yielding 31,398 terms. This ensures in our experiment that competing methods start from the
same input. The GENIA project also furnished a hand-built ontology, i.e. a hierarchy of these domain terms
arranged into semantic categories. There are 36 such categories at the leaf nodes. Each term in the GENIA
corpus was assigned a semantic category at the leaf node of the ontology. We shall refer to the leaf node cat-
egories as classes henceforth. Of course, the GENIA ontology’s hierarchy, the number of classes and the
semantic category of each term were hidden from the clustering methods. It should be noted that since the
GENIA ontology is a result of a human semantic and pragmatic analysis, we do not expect automatic clus-
tering methods to reproduce it exactly without prior and adequate semantic knowledge. The goal of the eval-
uation is to determine the method whose output requires the least effort to reproduce the classes at the leaf
nodes of the ontology. Also, it is worth noting that although the authors of this project use the term ontology

to qualify this hierarchy, it is more of a small taxonomy. Indeed, the GENIA ontology is still embryonic
because of its small size (36 classes, 31,398 terms). The classes are of varying sizes. The largest class, called
other name has 10,505 terms followed by the protein molecule class with 3899 terms and the dna domain or

region class with 3677 terms. The 12 smallest classes (rna domain or region inorganic, rna substructure, nucle-

otide, atom, dna substructure, mono cell, rna n/a, protein n/a, carbohydrate, dna n/a, protein substructure) each
has less than 100 terms. It is quite revealing that the largest class is a miscellaneous class. This suggests that
this class can be further refined. Also some relations normally found in a full-fledged ontology are absent (syn-
onymy in particular). This tends to suggest that this hierarchy is a weaker semantic structure than an ontology
and can thus constitute an adequate clustering task. For these reasons, we prefer to refer to it as the GENIA
taxonomy henceforth.

Table 1 gives some examples of terms in the GENIA corpus.
Fig. 1 shows the fast decreasing distribution of terms in the 35 classes. We omitted the largest class, called

other name which concentrated 33% of the terms because it was difficult to fit in. A few number of classes (pro-

tein molecule, dna domain or region, protein family or group, cell line, cell type) concentrated the rest of the
terms (almost 75%). The bars show the proportion of terms according to their length. As a consequence of
this fast decreasing model, a clustering method optimised for one of the prominent classes can obtain good
scores without correctly classifying terms in the majority of the smaller classes. Another feature that can be
observed in Fig. 1 is that the distribution of one word terms is not correlated with the general distribution
of terms. Meanwhile, we will see in Section 6 that most of the clustering methods perform better on long terms
and thus on classes like ‘‘protein family or group’’ and ‘‘dna domain or region’’ that contain few one word
terms. In an OTC task, the intrinsic properties of MWTs (like term length) obviously play an important role
since they are the only available context.
U
N3. Overview of our text mining methodology

Our methodology consists of three major components: MWT extraction; relation identifier and clustering
module. An integrated visualisation package3 can be used if topic mapping is the target. In this experiment,
this aspect will not be explored as evaluation will focus on cluster quality and not on their layout. However,
interested readers can find an application of research topic mapping in (Ibekwe-SanJuan & SanJuan, 2004).
2 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/.
3 The aiSee visualization package (http://www.aisee.com) has been integrated to the system.

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
http://www.aisee.com
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Fig. 1. Distribution of terms in GENIA categories.

Table 1
Examples of terms in GENIA corpus

GENIA category Terms

Amino acid monomer Amide-containing amino acid
Asparagines
n-Acetylcysteine

Atom Cytosolic calcium
feca2+

Body part Organ
Peripheral lymphoid organ
Tumor-draining lymph node

Cell component 1389 sites/cell
b6d2f1 mouse uterine cytosol
Cytoplasmic protein extract
il-13-treated human peripheral monocyte nuclear extract

Cell line Anergized t cell
Adherence-isolated monocyte
Xenopus hepatocyte

Other name Anatomic tumor size
Apoptosis
Follicular lymphoma
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Note that in the current experiment, our term extraction module was not used as the terms were already
manually annotated in the corpus. We however describe summarily its principle. TermWatch performs term
extraction based on shallow natural language processing (NLP) techniques. Extraction is implemented via the
NLP package developed by the University of Edinburgh. LTPOS is a probabilistic part-of-speech tagger based
on Hidden Markov Models. It uses the Penn Treebank tag set which ensures the portability of the tagged texts
with many other systems. LTCHUNK identifies simplex noun phrases (NPs), i.e., NPs without prepositional
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attachments. In order to extract more complex terms, we wrote contextual rules to identify complex termino-
logical NPs. An example is provided in Appendix A. About 10 such contextual rules were sufficient to take
care of the different syntactic structures in which nominal terms appear in English. Given that some domain
concepts can appear as long sequences like in parental granulogyte-macrophage colony-stimulating factor (GM-
CSF)-dependent cell line, it is obvious that such MWTs are not likely to re-occur frequently in the corpus.
Hence, the difficulty of clustering them with methods based on co-occurrence criteria.

3.2. Relation identifier

Different linguistic operations can occur within NPs. These operations either modify the structure or
the length of an existing term. They have come to be known as variations and have been well studied
in the computational terminology field (Ibekwe-SanJuan, 1998b; Jacquemin, 2001). Variations occur at differ-
ent linguistic levels: morphological (gender and spelling variants), lexical (substitution of one word by another
in an existing term), syntactic (expansion or structural transformation of a term), semantic (synonyms, gen-
eric/specific relations). Our relation identifier tries to acquire all these types of variations among the input
terms.

3.2.1. Morphological variants

These refer to number (tumor cell nuclei/tumor cell nucleus) and gender variations in a term and also to
spelling variants. They enable us to recognise different appearances of the same term. For instance, IL-9-
induced cell proliferation will be recognised as a spelling variant of IL 9-induced cell proliferation. Spelling vari-
ants are identified using cues such as special characters while gender and number variants are identified using
WordNet (Fellbaum, 1998).

3.2.2. Lexical variants

We call substitution variants operations involving the change of only one word in a term, either in the mod-
ifier position (coronary heart disease M coronary lung disease) or in the head position (mutant motif M mutant

strain). The head is the noun focus in an English NP, i.e., the subject while the modifier plays the role of a
qualifier (an adjective). The head word is usually the last noun in a compound phrase (strain in mutant strain)
or the last noun before a preposition in a prepositional structure (retrieval in retrieval of information).

3.2.3. Syntactic variants

These refer to the addition of one or more words to an existing term as in information retrieval and efficient

retrieval of information. We call these operations expansions. Expansions that affect the modifier words are fur-
ther broken down into left-expansion and insertion. Alternatively, expansions can affect the head word. In this
case, we talk of right expansion.

Morphological variants (spelling) and permutation variants are recognised first since they refer to the same
term. Then these variants are used to recognise the more complex variants. For instance, B cell development

haven been recognised as a spelling variant of B-cell development, this enables the identification of other types
of variants (syntactic and lexical) containing the two spelling variants. Variations are assigned a role during
clustering depending on their interpretation. This will be further detailed in Section 5.

3.2.4. Semantic variants

It is an accepted fact that syntactic relations suggest semantic ones (left expansions and insertion can engen-
der generic-specific links, some substitution variants can reflect see also relations). However, these semantic
relations are not explicit. Moreover, the types of relations considered so far all require one stringent condition:
that the related terms share some common words. This leaves out terms which can be semantically-linked but
without sharing common words, i.e. synonyms. In order to acquire explicit semantic links, we need an external
semantic resource. For this purpose, we chose WordNet (Fellbaum, 1998), a large coverage semantic database
which organises English words into synsets. A synset is a particular sense of a given word. SinceWordNet
organises only words and not multi-word terms, we had to devise rules in order to map word-word semantic
relations into ‘‘MWT–MWT’’ relations in our corpus. One way to achieve this is to replace words by their
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synsets and then apply the same variation relations to sequence of synsets. However, like all external
resources, WordNet has some limitations. First is its incompleteness vis-à-vis specialised domain terminology.
Second, being a general purpose semantic database, WordNet establishes links which can be incorrect in a
specialised domain.

We thus restricted the use of WordNet to filtering out lexical substitutions, and consequently to pairs of
terms that share at least one word in order to reduce the number of wrong semantic links. Only a very few
number of relations were found. The following rule was applied to lexical substitutions in order to identify
the semantic ones using WordNet hierarchy: given two terms related by a lexical substitution, check if the
two words substituted are linked by an ascending or descending path in the hierarchy. Observe that, by def-
inition of lexical substitutions, this rule only applies to words that are in the same grammatical position (head
or modifier).

In this way, we acquired the following synonymy relations:
Table
Statist

Variat

Spellin
Left R
Right-
Left-ex
Inserti
Modifi
Head-
WordN
RT cell growth � T cell maturation

antenatal steroid treatment � prenatal steroid treatment
C
O

R
R

E
C

TE
D

POnly 365 WordNet modifier substitutions and 208 WordNet head substitutions were found whereas lexico-
syntactic variants were much more abundant (see Table 2).

Table 2 gives the number of variants identified for each type among the GENIA terms. As a term can be
related to many others, the number of relations is always higher than the number of terms.

Details of the variation identification rules are given in Appendix B.

3.3. Clustering module

The TermWatch system implements a graph-based approach of the hierarchical clustering called CPCL
(Classification by Preferential Clustered Link) originally introduced by Ibekwe-SanJuan (1998b). The main
features of this approach are

(1) the intuitiveness of its results for human users since any pair of terms clustered together are related by a
relative short path of real linguistic relations,

(2) an ultrametric model that ensures the existence of a unique and robust solution,
(3) its linear time complexity on the number of variations that allows interactive data analysis since cluster-

ing can be processed in real time.

We show here that this algorithm can be applied to other types of inputs. For that, we need to cast the
description of the algorithm in the more general context of data analysis.

Let S be a sparse similarity data matrix defined on a set X of objects. This matrix can be represented advan-
tageously by a valuated graph G = (X,E, s) where E is the set of edges made of all unordered pairs {i, j} of
objects such that Sij > 0 and s is the valuation of edges defined for all (i, j) 2 X2 by s(i, j) = Sij. In the case
of sparse data, the size of E is much smaller than jXj2.
U
N2

ics on variation relations per type

ion relation Terms Relations

g variants 1560 2442
ight-expansions (exp_2) 294 441
expansions (exp_r) 2329 3501
pansions (exp_l) 2818 4260

ons (ins) 526 798
er-substitutions (sub_mod.) 4291 37773

substitutions (sub_head) 781 1082
et-synonyms (sub_wn) 365 208
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Let ValS be the set of values in S. If jValSj � jSj then, the usual hierarchical algorithms will produce small
dendrograms since they will have at most jValSj levels. Thus, they will induce a very reduced number of inter-
mediary balanced partitions in the gap between the trivial discrete partition and the family of connected com-
ponents of G. A way to correct this drawback of hierarchical clustering without losing its intuitiveness and
computer tractability is not to consider edge values in an absolute way but in the context of adjacent edges.
Thus, two objects related by an edge e will be clustered at a given iteration, only if the value of e is greater than
any other value in its neighborhood. This means that i, j will be clustered at the first iteration only if Sij is
greater than the maximum in the line Si. and in the column S.j. It has been shown in Berry, Kaba, Nadif,
SanJuan, and Sigayret (2004) that this variant of hierarchical clustering preserves its main ultrametric
properties.

This solution is specially well adapted when the observed similarities between objects are generated by pair-
wise observations. In the case of out-of-context clustering (OTC), given three terms u, v, t such that v shares at
least one word with u and t (possibly not the same), we will consider a local criteria to decide if v is closest to u

or to t.
In this approach, the clustering phase can be easily implemented using the following straightforward pro-

cedure which we call SLME ( Select Local Maximum Edge). This procedure runs in linear time on the number
of edges. In fact, the procedure does as many comparisons as the sum of vertex degrees which is two times the
number of vertices. It uses a hash table m to store, for each vertex x, the maximal value of previously visited
adjacent edges.

SLME procedure

Input : a valued graph (V,E,s)

Output : a relation R on V

L :¼ {}
D :¼ {}
for every x in V, m[x] :¼ �1
while V-L is not empty
U
N

C
O

R
R

E
C

Select one vertex v in V-L

add v to L

C :¼ {v}
while C is non empty

x :¼ pop(C)

add x to L

add neighbours(x) - L to C

m[x] :¼ max{s(n): n in neighbours(x)}
for every n in neighbours(x)

if m[n] = m[x] add {n,x} to R

Once done, the clustering phase consists in computing the reduced graph G/R, whose vertices are the con-
nected components of the subgraph (V,R) of G and in inducing a new valuation according to a hierarchical
criteria chosen among the following:

single-link: the value of an edge in G/R between two components C1, C2 is the maximal value of edges in
EC1;C2

¼ E \ ðC1 � C2Þ.
complete-edge: the minimal value in EC1C2

,
average-edge: the average value in EC1C2

,
vertex-weight: the sum of values in EC1C2

over jC1j + jC2j

Observe that the above complete-edge and average-edge criteria differ from the usual complete and average
link clustering since they are computed on a restricted set of pairs. The vertex-weight criterion is the one that
best minimised the chain effect in our experiments. However in general, single link will also be satisfactory
because the chain effect has already been reduced by the SLME procedure. In fact, this approach appears
to be robust with regard to the clustering criteria. It is more sensitive to the existence of very small values
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in the similarity matrix S. Indeed, any non null value will generate an edge in the graph and if this edge is the
only one linking two objects, then these objects will be clustered even if the similarity is very small. This draw-
back can be corrected by the use of a threshold which clarifies the borderline between null values and signif-
icant similarities.

The CPCL algorithm then becomes

Algorithm CPCL

input : a valued graph G = (V,E,s)
parameters : a threshold t and a number of iterations I

output : a partition of V

for i = 1 to i = I do
C
TE

D
P
R

OE 0 :¼ {e in E : v(e) > t}
R :¼ SLME(V,E 0,s)

G :¼ G/R

return V

It involves I calls to the SLME procedure on the current reduced valued graph (V,E 0, s).
It follows from this re-exploration of CPCL that it can by used for fast clustering of sparse similarity matrix

with a reduced range of distinct values.
Until now, this algorithm has been applied to the following similarity matrix defined on groups of objects

and generated in two steps:

Step 1: We consider a reduced subset of variation relations among those presented in Section 3.2 that we
shall note COMP.

We then compute the set of connected components generated by the COMP relations. Terms that
are not related by any of the variations in COMP will form singleton components.

Step 2: We select a second subset of variations denoted by CLAS to group components. Next, given two com-
ponents C1 and C2, a similarity value v is defined in the following way:
4 Ter
E

v ¼
X

R2CLAS

jR \ C1 � C2j
jRj
U
N

C
O

R
R

This similarity relies on the number of variations across the components and on the frequency of the variation
type which on a large corpus will substantially reduce the influence of the most noisy variations like lexical
substitutions on binary terms. The resulting matrix has all the characteristics that justify the application of
the CPCL algorithm.

3.4. Implementation issues

Fig. 2 gives an overall view of the system. It is currently run on-line on a Linux Apache MySQL Php PERL
Secured (LAMPS) server.4 The three components term extractor, relation identifier and clustering module are
implemented as PERL5 OO programs while all the data are stored in a MySQL database. Clustering outputs
can be accessed either via an integrated visualisation package (aiSee based on Graph Description Language)
for domain topic mapping or through an interactive hypertext interface based on PERL DBI and CGI pack-
ages. This interactive interface enables the user to browse the results, from the term network(variation links) to
clusters contents and finally to documents where the terms appeared. The systems’ modules can also be exe-
cuted from this interface.
mWatch is available for research purposes after obtaining an account and a password from the authors.
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Fig. 2. Overall view of the TermWatch system.
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Evaluating the results of a clustering algorithm remains a bottleneck issue (Jain & Moreau, 1987; Tibsh-
irani, Walther, & Hastie, 2000; Yeung & Ruzzo, 2001). The objective of the evaluation for our specific task:
clustering multi-word terms out-of-context, is detailed in Section 4.1 followed by a review of existing evalua-
tion methods Section 4.2. Finally, in Section 4.3 we propose enhancements to the editing distance suggested by
Pantel and Lin (2002) for cluster evaluation.

4.1. Out-of-context Term Clustering (OTC)

Given a list of terms, the task consists in clustering them using exclusively surface lexical information in
order to obtain coherent clusters. In this framework, clustering is done without contextual document informa-
tion, without any training set and in a completely unsupervised way. We refer to this task as OTC (Out-of-
context Term Clustering).

Let us emphasise that OTC is different from Entity Name Recognition (ENR). ENR task as described in
Kim, Ohta, Tsuruoka, Tateisi, and Collier (2004) is based on massive learning techniques and new terms are
forced to enter known categories. Whereas in unsupervised clustering, a new cluster can be formed of terms
not belonging to an already existing category. This can lead to the discovery of new domain topics. It should
also be noted that MWTs cannot be reduced to single words. Unlike single words, a MWT can occur only
once ‘‘as is’’ (without variations) in the whole corpus. It is thus difficult for the usual document · feature rep-
resentation to find enough frequency information to form clusters. Therefore methods based on term-docu-

ment representation cannot be directly applied to OTC without adaptation. This adaptation is described in
further details in Section 5.

4.2. Existing measures for cluster evaluation

Cluster evaluation generally falls under one of these two frameworks:

(1) Intrinsic evaluation: evaluation of the quality of the partitions vis-à-vis some criteria.
(2) Extrinsic evaluation: task-embedded evaluation or evaluation against a gold standard.

Intrinsic evaluation, also called ‘‘internal criteria’’ is used to measure the intrinsic quality of the clusters in
the absence of an external ideal partition. Internal criteria concern measures like cluster homogeneity and
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separation, or the stability of the partitions with respect to sub-sampling (Hur, Elisseeff, & Guyon, 2002).
Alternatively, the measure can also seek to determine the optimal number of clusters (Hur et al., 2002).

Extrinsic evaluation, also known as ‘‘external criteria’’ refers to the comparison of a partition against an
external ideal solution (gold standard) (Jain & Moreau, 1987; Milligan & Cooper, 1985) or a task-embedded
evaluation. The comparison with a gold standard is done using measures like the Rand index or its adjusted
variant (Hubert & Arabie, 1985) that measures the degree of agreement between two partitions.5 Milligan and
Cooper (1986) recommended the use of Adjusted Rand index even when comparing clusters at different levels
of the hierarchy. As observed by Yeung and Ruzzo (2001), external criteria has the advantage of providing
an ‘‘independent unbiased assessment of the cluster’’ but has as inconvenience the fact that they are hardly
available.

Internal criteria has as advantage the fact that it can bypass the necessity of having an external ideal solu-
tion but its major inconvenience is that evaluation is based on the same information from which the clusters
were derived. Pantel and Lin (2002) observed a flaw in the external criteria approach as suggested by the Rand
index. According to them, computing the degree of agreements and disagreements between proposed parti-
tions and an ideal one can lead to unintuitive results. For instance, if the ideal partition has 20 equally-sized
clusters with 1000 elements each, treating each element as its own cluster will lead to a misleading high score of
95%. We observe also that the Rand index and the adjusted Rand Index (Hubert & Arabie, 1985) have the
following flaws:

� they are computationally expensive since they require jXj2 comparisons which is problematic when jXj is
large,
� they are too sensitive to the number of clusters when comparing clustering outputs of different size (Weh-

rens, Buydens, Fraley, & Raftery, 2003),
� the adjusted Rand Index supposes a hyper-geometric model which is obviously not fitted to the distribution

of terms in the current experiment (GENIA categories).

Denoeud, Garreta, and Guénoche (2005) tested the ability of different measures in determining the distance
between two partitions. The Jaccard measure appeared as the best in this task since it does not have the draw-
backs of the (adjusted) Rand Index. It computes the number of pair of items clustered together by two algo-
rithms divided by the total number of pairs clustered by one of the algorithms. However, it cannot take into
account the specificities of a target distribution. More precisely, suppose that we want to measure the gap
between a clustering output and a target classification, suppose moreover that the target classification has a
very large class with a great number of terms whereas the mean size of the other classes is small, (this is pre-
cisely the case in the GENIA taxonomy where the other name class groups 33% of all the terms in this taxon-
omy), although this class is disproportioned, it is definitely not the most informative. The Jaccard measure will
favour methods that focus on the detection of the biggest class against more fine-grained measures that try first
to fit the distribution of items in the smaller classes. Yeung and Ruzzo (2001) proposed a compromise for clus-
ter evaluation in which evaluation is based on the predictive capacity of the methods vis-à-vis a hidden exper-
imental condition. They tested their method on gene expression (microarray) data. This approach, aside from
being computationally intensive, is not suitable for datasets where no experimental conditions (hidden or
otherwise) obtain nor will it be suitable for datasets where the different samples do not share any dependent
information.

In the task-embedded evaluation framework, what is evaluated is not the quality of the entire partition but
rather that of the best cluster (Pantel & Lin, 2002), i.e., the cluster which enables the user to best accomplish
his information seeking need. This is typically the case with cluster evaluation in the information retrieval
field.

Following the extrinsic evaluation approach, Pantel and Lin (2002) proposed the use of the editing distance
to evaluate clustering outputs. The idea is to evaluate the cost of producing the ideal solution from the pro-
5 Given two equivalence relations P and Q defined on a set X, the rand Index is the number of agreements between the two relations
j(P \ Q) [ � (P \ R)j over the total number of pairs jXj2. The adjusted rand index assumes the generalized hypergeometric distribution as
the model to ensure that two random partitions do take a constant null value.
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posed partitions. This supposes the existence of an external ideal solution. The editing distance is an old notion
used to calculate the cost of elementary actions like copy, merge, move, delete needed to obtain one word (or
phrase or sentence) from another. Here, the authors applied it to cluster contents and chose to consider three
elementary actions: copy, merge, move. Considering the OTC task, we needed a measure that focused on clus-
ter quality (homogeneity) vis-à-vis an existing partition (here the GENIA classes). Pantel and Lin’s editing
distance appeared as the most suitable for this task. It is adapted to the comparison of methods producing
a great number of clusters (hundreds or thousands) and of greatly differing sizes. On a more theoretical level,
the idea of editing distance is conceptually suited to the nature of our evaluation task, i.e., calculate the effort

or the cost required to attain an existing partition from the ones proposed by automatic clustering methods.

4.3. Metrics for evaluation of clusters

Given an existing target partition, Pantel and Lin’s (2002) measure evaluates the ability of clustering algo-
rithms to detect part of the structure represented by this partition. This measure extends the notion of editing
distance to general families of subsets of items. In particular, it allows to consider fuzzy clustering where clus-
ters overlap (copy action). Here we will not use this feature since we target crisp clustering. Hence, we focus on
the two elementary operations: merges which is the union of disjoint sets and moves that apply to singular ele-
ments. In this restricted context, Pantel and Lin’s (2002) measure has a more deterministic behaviour and
shows some inherent bias which we will correct.

To measure the distance between a clustering output and an ideal partition, these authors considered the
minimal number of merges and moves that have to be applied to a clustering output in order to obtain the
target partition. In fact, this number can be easily computed since the number of merges corresponds to
the number of extra-classes and the number of moves to the number of elements that are not in the dominant
class of the cluster. Indeed, each cluster is associated to the class with which it has the maximum intersection.
The elements of a cluster which are not in the intersection will then have to be moved.

Thus, let X be a set of objects for which we know a crisp classification C � 2X, seen as a family of subsets of
X such that [C ¼ X and C \ C 0 = ; for all C, C 0 in C. Consider now a second disjoint family F of subsets of
X representing the output of a clustering algorithm. For each cluster F 2F, we denote by CF the class C 2 C
such that jC \ Fj is maximal. Pantel and Lin’s measure can be re-formulated thus:
E

lLP ðC;FÞ ¼ 1� ðjFj � jCjÞ þ
P

F2FðjF j � jCF \ F jÞ
jXj ð1Þ
U
N

C
O

R
R

In the numerator of formula (1), the term jFj � jCj gives the number Mg of necessary merges, and the sumP
F2FðjF j � jCF \ F jÞ the number Mv of moves. The denominator jXj of (1) is supposed to give the maximal

cost of building the classification C from scratch. Indeed, Pantel and Lin considered two trivial partitions: the
discrete one where all clusters are singletons (every term is its own cluster) and the complete one where all
terms are in a single cluster. These trivial partitions are supposed to be at equal distance from the target clas-
sification. These authors suggest that the complete clustering needs jXj moves and the discrete jXj merges but
this turns out not to be the case.

Clearly, discrete clustering only needs j X j �C merges.Moreover, if g ¼ maxfjCj : C 2 Cg is the size of the
largest class in C, then the distance of the trivial complete partition to the target partition is jXj � g. It follows
that in the case where g is much more greater than the mean size of classes in jCj, Pantel and Lin’s measure,
based on the total number of necessary moves and merges over jXj favours the trivial complete partition over
the discrete one and therefore algorithms that produce very few clusters, even of poor quality. Incidentally,
this happens to be the case with the GENIA classes. Following these observations, we propose the following
corrected version (2) where the weight of each move is no more 1 but jXj/(jXj � g) and the weight of a merge is
j X j =ðj X j � j C jÞ:
lEDðC;FÞ ¼ 1�maxf0; jFj � jCjg
jXj � jCj �

P
F2FðjF j � jCF \ F jÞ

jXj � g
ð2Þ

¼ 1� Mg
jXj � jCj �

Mv
jXj � g

ð3Þ
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The maximal value of lED is 1 in the case where the clustering output corresponds exactly to the target par-
tition. It is equal to 0 in the case that F is a trivial partition (discrete or complete).

However, lED can also take negative values. Indeed consider the extreme case where C is of the form
{A,B1, . . . ,Bn} with one class A = {a1, . . . ,an,w1,w2} with n + 2 elements and n singleton classes Bi = {bi}.
Now take as F the whole family of n pairs {ai,bi} for 1 6 i 6 n augmented with the singletons {w1}, {w2}.
Then
lEDðC;FÞ ¼ 1� 1

ðnþ nþ 2Þ � ðnþ 1Þ �
n

ðnþ nþ 2Þ � ðnþ 2Þ ¼ �
n

nþ 1
< 0
R
O

O

and limn!1lEDðC;FÞ ¼ �1
In fact, in the case that g is much more greater than the mean size of classes and that the distribution of sizes

of classes fits an exponential model, we have experimentally checked that lEDðC;FÞ 2� � 1; 0½ for random
clusterings F with 2g clusters and equiprobability for an element w to be affected to anyone of these clusters.

Based on the corrected lED index, we propose a complementary index, Cluster homogeneity (lH) defined as
the number of savings (product of lED per jXj) over the number Mv of movings:
PlH ðC;FÞ ¼

lED

1þMv
� jXj
U
N

C
O

R
R

E
C

TE
DlH takes its maximal value jXj if F ¼ C and, like the lED measure, it is null if F is one of the two trivial

partitions.
We will use lH to distinguish between algorithms having similar editing distances but not producing clus-

ters of the same quality (homogeneity). However, since the cluster homogeneity measure relies on the cor-
rected editing distance (lED), for a method to obtain a good cluster homogeneity measure (lH), it also has
to show a good savings value (good lED).

5. Experimental setup

In this section, we describe the principles (relations) used for clustering (Section 5.1), the different term rep-
resentations adopted for the methods evaluated (Section 5.2) and the clustering parameters for each method
(Section 5.3).

5.1. The relations used for clustering

Given the OTC task, our experiment consisted in searching for the principle and the method that can best
perform this task. Three principles were tested:

CLS: Clustering by coarse lexical similarity: grouping terms simply by identical head word. We call this
‘‘baseline’’ clustering as it is technically the most straightforward to implement and is also a more basic
relation than the ones used by TermWatch (see Section 3.2). However, it should be noted that this head
relation is not so trivial for the GENIA corpus. Indeed, Weeds, Dowdall, Keller, and Weir (2005) showed
that grouping terms by identical head words enables to form rather homogeneous clusters with regard to
the GENIA taxonomy. In their experiment, out of 4, 797 clusters, 4104 (85%) contained terms with the
same GENIA category while 558 (12%) clusters contained terms with 2 or 3 semantic categories. A further
135 (3%) clusters contained terms with more than p semantic categories.
LSS: Clustering by fine-grained Lexico-Syntactic Similarity as implemented in the TermWatch system
using the CPCL clustering algorithm described in Section 3.3. Terms are represented as a graph of
variations.
LC: Clustering by Lexical Cohesion. This principle required a spatial representation based on a vector rep-
resentation of terms in the space of words they contain. It was suggested by the characteristics of the base-
line and graph (LSS) representations. The LC representation offers a numerical encoding of term similarity
that allows us to subject statistical clustering approaches (hierarchical and partitioning algorithms) to the
OTC task. We describe this representation in more details below.
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5.2. Vector representation for statistical clustering methods

In order for statistical clustering methods to find sufficient co-occurrence information in an OTC task, it was
necessary to represent term-term similarity. We redefined co-occurrence here as intra-term word co-occurrence
and built a term · word matrix where the rows were the terms and the columns the unique constituent words.

To ensure that the statistical methods will be clustering on a principle as close as possible to the LSS rela-
tions used by TermWatch and to the head relation used by the baseline, we further adapted this matrix as fol-
lows: words were assigned a weight according to their grammatical role in the term and their position with
regard to the head word. Since a head word is the noun focus (the subject), it receives a weight of 1. Modifier
words are assigned a weight which is the inverse of their position with regard to the head word. For instance,
given the term ‘‘coronary heart disease’’, disease (the head word) will receive a weight of 1, heart will be
weighted 1/2 and coronary 1/3.

More formally, let W = (w1, . . . ,wN) be the ordered list of words occurring in the terms. A term
t = (t1, . . . , tq) can be simply viewed (modulo permutations) as a list of words where the ti are words, tq is
the head and t1, . . . , tq�1 is a possible empty list of modifiers. Each term t is then associated with the vector
Vt such that
 P
V t½i� ¼
1

1þ q� j
whenever wi ¼ tj

0 elsewhere

8<
:
 D
C
O

R
R

E
C

TE
Let M be the matrix whose rows are the Vt vectors. We derive two other matrices from M:

(1) A similarity matrix S = M Æ Mt whose cells give the similarity between two terms as the scalar product of
their vectors (for hierarchical algorithms).

(2) A core matrix C by removing all rows of M corresponding to terms with less than three words and all
columns corresponding to words that appeared in less than 5% of the terms. Indeed, experimental runs
showed that the k-means algorithms could not produce meaningful clusters when considering the matrix
of all terms.

This weighting scheme translates the linguistic intuition that the further a modifier word is from the head,
the weaker the semantic link with the concept represented by the head. This idea shares some fundamental
properties with the relations used by TermWatch for clustering. Note also that this weighting scheme is a more
fine-grained principle than the one used by the baseline. Representing terms in this way leads to the identifi-
cation of lexically-cohesive terms (i.e., terms that often share the same words). This idea was explored by
Dobrynin, Patterson, and Rooney (2004) although in a different way. Their contextual document clustering

method focused on the identification of words that formed clusters of narrow scope, i.e. lexically cohesive
words which appeared with only a few other words. Lexical cohesion is not a new notion in itself. It has
already been explored in NLP applications for extracting collocations (fixed expressions) from texts (Church
& Hanks, 1990; Smadja, 1993).
U
N5.3. Clustering parameters

MWTs were clustered following the three types of relations described in Section 5.1. The following methods
were tested: baseline; CPCL on graph of variations; partitioning (k-means, Clara based on medoids), hierar-
chical (CPCL on similarity matrix S).

� Baseline on CLS: No particular parameter is necessary. All terms sharing the same head word are put in the
same cluster.
� CPCL on LSS: Parameter setting consists in assigning a role to each relation (COMP or CLAS). Among all

the variations extracted by TermWatch, we selected a subset that optimised the number of terms over
the maximal size of a class. Hence this selection was done without prior knowledge of the GENIA taxon-
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omy. The variations selected for the COMP phase are those where terms share the same head word or
WordNet semantic variants. In the current experiment, by order of ascending cardinality, COMP relations
were:
– spelling variants,
– substitutions of modifiers filtered out using WordNet (sub_wn_modifier),
– insertion of one modifier word (strong_ins),
– addition of one modifier word to the left (strong_exp_l),
– substitutions of the first modifier in terms of length P3 (strong_sub_modifier_3).
The CLAS variations were
– WordNet head substitutions (sub_head_wn),
– insertions of more than one modifier (weak_ins),
– addition of more than one modifier word to the left (weak_exp_l),
– substitution of modifiers in terms of length P3 (weak_sub_modifier_3).
No threshold was set so as not to exclude terms and relations. Since the objective of this experiment is to

form clusters as close as possible to the GENIA classes, the algorithm was stopped at iteration 1. Thus, only a
few part of relations induced by the variations were really used in the clustering. More precisely, only relations
induced by rare variations which are assigned a higher weight or relations between near-isolated terms were
considered. Hence, the exact technique used in agglomerative clustering (single, average or complete link) did
not come into play here. We also tested the performance of the 1st step grouping, i.e., the level forming con-
nected components (COMP) with a subset of the relations. This level is akin to baseline clustering although
the relations are more fine-grained.
� Hierarchical on LC: Clustering is based on the similarity matrix S[S P th] derived from S by setting to 0 all

values under a threshold th. We used the following values for th:
– 0.5: the rationale is that at this weight, terms either share the same head or have common modifiers close

to the head,
– 0.8: this weight imposes the same head on related terms.
Because the dissimilarity matrix was too large, we had to use our own PERL programs to handle such

sparse matrices. Based on a graph representation of the data, only non zero values were stored as edge values
enabling each iteration to be done in a single search. We were thus able to run the usual variants of single,
average and complete link hierarchical clustering on this system but they did not produce any relevant clus-
tering (all the cluster evaluation measures were negative). Since the similarity matrix S had all the require-
ments to be an input to the CPCL algorithm, we subjected it to the CPCL algorithm. After some tests,
we finally selected the vertex-weight (Section 3.3) as the agglomerative criterion since it significantly reduced
the chain effect. We did four iterations for each threshold value. This yielded significant results. Thus
the results shown for hierarchical clustering were obtained using the CPCL algorithm on the term · word

matrix.
� Partitioning on LC: This method is based on the computation of k-means centers and medoids on the core

matrix C. We used the standard functions of k-means and CLARA (Clustering LARge Applications) fully
described in Kaufman and Rousseeuw (1990). CLARA considers samples of datasets of fixed size on which
it finds k medoids using PAM algorithm (Partitioning Around Medoids) and selects the results that induce
the best partition on the whole dataset. PAM is supposed to be a more robust version of k-means because it
minimizes a sum of dissimilarities instead of a set of distances. However, for large datasets, PAM cannot be
directly applied since it requires a lot of computation time. CLARA and PAM are available on the standard
R cluster package.6 To initialize CLARA, we used the same procedure as CLARANS (Ng & Han, 2002)
to draw random samples using PERL programs and a graph data structure. We ran these two variants
(k-means and CLARA) for the following values of k: 36, 100, 300, 600 and 900. Then, given these centers
and medoids, we again used our PERL programs for storing large sparse matrix, to assign each term to its
nearest center or medoid and to obtain a partition on the whole set of terms.
6 Version 1.10.2, 2005-08-31, by Martin Maechler, based on S original by Peter Rousseeuw (rousse@uia.ua.ac.be), Anja.Struyf@
uia.ua.ac.be and Mia.Hubert@uia.ua.ac.be.
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The results of clustering with these algorithms and their variants were then evaluated against the target par-
tition (the GENIA taxonomy) using the measures described in Section 4.3. Combining R and PERL 5 has
been quite efficient. R offers very robust implementations of spatial clustering algorithms while PERL allows
one to easily define optimal data structures. Thus all the data processing including the initialization phase and
sample extraction was done with PERL, leaving to R the massive numerical computations based on C and
FORTRAN subroutines. All the tests were performed on a PENTIUM IV PC server running LINUX
DEBIAN stable with 1Go of RAM, SCSI disk and no X11 server for memory saving.
TE
D

P
R

O
O

6. Results

6.1. Possible impact of the variations on TermWatch’s performance

Before comparing the clustering results obtained by the different methods, we investigated the possible
impact of the variations used by TermWatch on its performance. The idea was to determine if our variation
relations alone could reproduce these categories, i.e., if they grouped together terms from one only GENIA
class. In this case, then there would be no need to perform clustering since the variation relations alone
can discover the ideal partition. However, our study showed that this was not the case.

The chart Fig. 3 shows for each of our variation relation, the number of links acquired, the proportion of
intra-category links and the proportion inter-category links (from different classes). We can see clearly from
this figure that some relations are rare, i.e., they capture too few links although they link terms from the same
class (sub_modifier_wn, strong ins, weak ins). These relations are in the minority especially by the proportion of
terms linked. Other relations like weak_exp2, weak_sub_head3, weak_exp_r are more abundant but they lead
to heterogeneous clusters, they link terms from different GENIA classes. Surprisingly, weak_exp_l and
strong_sub_mod3 produced relatively good quality clusters while relating a considerable number of terms.
E
C6.2. Evaluation of clustering results

Using the relations chosen in Section 5.3, CPCL on LSS generated 1897 non trivial components (at the
COMP phase) involving only 6555 terms. Adding CLAS relations in the second phase led to 3738 clusters
involving 19,887 terms.
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Hierarchical clustering based on similarity matrix introduced in Section 5.2 generated 1090 clusters involv-
ing 25.129 terms for a threshold th = 0.5 and 1217 clusters involving 19,867 terms for th = 0.8.

The plots in Figs. 4 and 5 show the results of the evaluation measures lED and lH introduced in Section 4.3.
Since the majority of the clustering methods are sensitive to term length, we plotted the score obtained by
each of the measure (y-axis) by term length (x-axis). Note that at each length, only terms of that length
and above are considered. For instance, at length 1, all terms are considered. At length 2, only terms having
at least two words are considered. Thus, the further we move down the x-axis, the fewer the input terms for
clustering.

Fig. 4 shows the % of savings obtained by the nine algorithms tested using the corrected ED measure. We
see that the hierarchical method with a threshold = 0.8 and CPCL obtain a better score than the baseline clus-
tering when considering all the terms (length P 1). When fewer and longer terms are considered (length P 3),
partitioning methods outperform CPCL and hierarchical algorithms but still remain below the baseline. This
is because, at length P 3, CPCL has fewer terms, thus fewer relations with which to perform the clustering.
Statistical methods on the other hand, with longer terms have a better context, thus more relations in the
matrix. From terms of length P 4 words, partitioning methods outperform the baseline.
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Fig. 4. Editing distance between clustering results lED and Genia categories.
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However, the ED measure masks important features of the clustering outputs since it is a compromise
between the number of necessary moves and merges needed to reach the target partition. More important
is the quality of the clusters (cluster homogeneity) vis-á-vis the target partition (GENIA classes). This is mea-
sured by the lH which calculates the ratio between the value of ED and the number of movings. The lH per-
formance of the algorithms is shown in the plot of Fig. 5.

It appears clearly that on cluster quality, CPCL is the only algorithm that significantly outperforms the
baseline irrespective of term length. Hierarchical algorithm with th = 0.8 and the COMP phase of CPCL fol-
low closely but only on all terms (length P 1). Their performance drops when terms of length >= 4 are con-
sidered. Partitioning algorithms show poor cluster homogeneity. K-means with k = 100 performs worse than
the other variants (Clara, k-means with k = 300, k = 900). Hierarchical with th = 0.5 obtain the poorest score.

To gain a better insight on the cluster homogeneity property, we generated for every algorithm a chart
showing the proportion of terms which share the same GENIA class with the majority of terms in the same
cluster (and thus that do not require any move) The nine charts are shown in Fig. 6.

It appears that the COMP variant of CPCL produced the most homogeneous clusters which is not alto-
gether surprising because the relations used in COMP phase are the most semantically tight. COMP and
CPCL significantly outperform the baseline. This good performance is a bit unexpected for CPCL because
the CLAS relations induce a change of head word which could lead to a semantic gap (change of semantic
class).

Closely following is the hierarchical algorithm at th = 0.8. The baseline comes fourth which shows that
grouping terms simply by identical head words as done by baseline is good but not good enough to form
semantically homogeneous clusters.

Partitioning methods clearly produced less homogeneous clusters. These algorithms showed low error rates
roughly on categories with a low proportion of one word terms.
C
U
N7. Concluding remarks

We have developed an efficient text mining system based on meaningful linguistic relations which works
well on MWTs and thus on very large and sparse matrices. This method is suitable for highlighting rare phe-
nomena which may correspond to weak signals.

The specific evaluation framework set up here led us to redefine a matrix representation in order to enable
comparison with existing statistical methods. We defined a new term weighting scheme in the matrix represen-
tation enabling statistical methods to build significant clusters. We also corrected an existing cluster evaluation
measure and defined a complementary one focused on cluster homogeneity.

The choice of the evaluation metric made it possible to compare algorithms outputting very high number of
clusters, with considerable differences in this number (between 100 for K-means and 3738 for CPCL). This was



642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

659

660
661
662
663

664
665
666
667
668

669
670
671
672

673
674
675
676
677
678
679
680
681
682
683
684

685

686

18 E. SanJuan, F. Ibekwe-SanJuan / Information Processing and Management xxx (2006) xxx–xxx

IPM 921 No. of Pages 21, Model 3+

2 May 2006; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

done without any assumption of equal cluster size. We believe these differences did not handicap any algo-
rithm unduly since all produced clusters whose numbers were very far from the target partition (36 classes),
especially our own method. As we cannot define a priori the number of optimal clusters, CPCL’s performance
was hampered for the lED measure. Statistical methods (both hierarchical and partitioning) were more sensi-
tive to term length.

The results however show that CPCL performs well in terms of cluster quality (homogeneity). Since this
approach is computationally tractable in linear time, it also appears to be the best candidate for tasks requir-
ing interaction with users in real time, like interactive query refinement. This aspect will be explored in a sep-
arate study.

Overall, this experiment has shown that even without adequate context (document co-occurrence), cluster-
ing algorithms can be adapted to partially reflect a human semantic categorisation of scientific terms.

Another interesting finding of this study is that when considering an OTC or a similar task, it may be inter-
esting to first consider clustering by a basic relation before resorting to more complex and fine-grained term
representation. The performance of the baseline clustering in our experiment is far from poor. It could be sat-
isfactory for some tasks, for instance as a first stage for learning new taxonomy or knowledge structures from
texts. These can be further refined using more sophisticated approaches: fine-grained linguistic relations,
machine learning techniques with manually tagged learning sets.

Appendix A. Example of rule used in term extraction

This following simple rule translates the hypothesis that the preposition ‘‘of’’ plays a major role in the for-
mation of terms. Thus prepositional phrases introduced by this preposition are attached to their governing
NP.

From the tagged sentence:

[[The_DT inability_NN ]] of_IN [[ E1A_CD gene_NN products_NNS]]
( to_TO induce_VB )

[[ cytolytic_JJ susceptibility_NN ]].

Our term extraction module would extract two multi-word terms (MWTs):

[[ The_DT inability_NN ]] of_IN [[ E1A_CD gene_NN products_NNS]]
[[ cytolyticn_JJ susceptibilityn_NN ]]

This rule can be formulated as the following regular expression:

If:
<mod>* <N>+ of <mod>* <N>+<prep1> <verb> <mod>* <N>+

then return:

(1) <mod>* <N>+ of <mod>* <N>+
(2) <mod>* <N>+

where:

<mod> = a determiner (DT) and/or an adjective (JJ)

<N> = any of the noun tags (NN, NNS, NNPS, NNP)

<prep1> = all the prepositions excluding ‘‘of’’

* = Kleene’s operator (zero or n occurrences of an item)

+ = at least one occurrence

Appendix B. Variation rules

For the sake of clarity, all the variation rules will be given for the compound structure only.
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B.1. Lexical variants

Modifier substitutions (sub_modifier) can be identified with this simple rule:

t2 is a substitution of t1 if and only if:

t1 = M m M 0 h and t2 = M m 0 M 0 h

with m 0 <> m

where

t1 and t2 are terms,

M and M 0 are optional sequence of modifier words,

m and m 0 are a modifier words

h and h 0 are head word.

A chain of modifier substitutions can highlight properties around the same concept. For instance, the fol-
lowing variants all specify a type of human cell line:

� human leukemia cell line

� human lymphoblastoid cell line

� human monoblastic cell line

� human monocytic cell line

Head substitutions (sub head) are identified via the following rule:

t2 is a substitution of t1 if and only if:

t1 = M m h and t2 = M m h 0

with h 0<>h

Head substitutions highlight on the other hand families of concepts sharing the same property:

� tumor cell killing

� tumor cell line

� tumor cell nuclei

� tumor cell proliferation

� tumor cell type

B.2. Syntactic variants

These rules identify the three types of expansion variants.

� Left expansion (exp_l)
U
Nt2 is a left-expansion of t1 if and only if:

t1 = M h and t2 = M 0 m 0 M h

For example, Ad2 infection has as left expansion adenovirus 2 (Ad2) infection.
� Insertion (ins)
t2 is an insertion of t1 if and only if:

t1 = M1 m M2 h

t2 = M1 m m 0 M 0 M2 h

For instance, CD3-stimulated T lymphocyte has as insertion variant, the term CD3-stimulated human periph-

eral T lymphocyte. Modifier expansions enable us to create generic – specific links. Head expansions identify
topical shifts as in human disease and human disease syndrome. Equivalent terms which undergo either a
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t2 is a right-expansion of t1 if and only if:

t1 = M h and t2 = M h M 0 h 0

An example of right expansion would be B cell development and B-cell development and differentiation. Left
and right expansions (exp-2) can be combined in the same term to yield left-right expansion. An example
would be the link between AIDS and second AIDS retrovirus.
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