
Open Source Software and the Library Community

Written by
Kevin S. Clarke

A Master's paper submitted to the faculty of
the School of Information and Library Science of
the University of North Carolina at Chapel Hill in

partial fulfillment of the requirements for
the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

May, 2000

Approved by:

 ,

Advisor

ii

Kevin S. Clarke. Open Source Software and the Library Community. A
Master's paper for the M.S. in I.S. degree. May, 2000. 67 pages.
Advisor: Gregory B. Newby.

This paper examines whether the library community should support

the development of open source software, software whose licensing

allows its source code, the part of a computer program that is readable

by humans, to be redistributed and/or modified without restriction or

charge. Included is an investigation into the present state of library-

specific open source software and a discussion on the ideological and

practical strengths and weaknesses of open source software in general.

In addition, this paper explores the similarities between the

“hacker culture” of the programming world and the traditional “gift

culture” of the library community. Problems implementing open source

software solutions are discussed, as are the strengths and weaknesses

of library-specific open source software. In the final analysis, the

support of open source software is seen as a positive step for the

library community as it builds on the community’s strengths while

minimizing its weaknesses.

Headings:

Free computer software

Information retrieval – social aspects

Community collaboration

Online catalogs

iii

Table of Contents:

A. Introduction p. 1

B. A Brief History of Shared Software p. 2

1. In the Beginning there was the Community

2. Recognizing the Need for Free Software

3. Open Source Software and Practical Idealism

4. Open Source Software Reaches the Mainstream

C. The Purpose of Librarianship p. 10

1. Resources are for Use

2. Access Should be Available to Every Person

3. Resources Satisfy User Needs

4. User Satisfaction is the Goal

5. Libraries Must Evolve

D. Open Source Software (OSS) and Librarianship p. 21

1. Are They Ideologically Compatible?

2. Practical Reasons for Choosing OSS

3. Strengths and Weaknesses of Libraries and OSS

4. Traditional OSS Currently in Use in Libraries

 E. Existing Closed-source Library Software p. 30

1. General Desktop Software in Use by Libraries

2. OPACs, ILL Software, Cataloging Tools, etc.

F. Existing Open Source, Library Specific Software p. 33

 1. Open Source Systems for Libraries (OSS4LIB)

 2. Jake (A Jointly Administered Knowledge Environment)

 3. FreeReserves (An Electronic Course Reserves System)

 4. The Open Source Digital Library System (OSDLS)

 5. MyLibrary (NCSU’s Customized Knowledge Environment)

G. The Future of Library Specific, Open Source Software p. 47

1. Possibilities for Evolving Open Source Solutions

2. Possible Limitations of Open Source Software

3. Conclusion and Suggestions for Future Research

H. Bibliography p. 50

I. Appendix: Examples of Open Source Licenses p. 55

1

Libraries and librarians have, for many years, been using,

creating, and sharing software, scripts, and batch files. Recently,

however, with the growing popularity of the Open Source movement, some

librarians have started to promote open source software, software whose

licensing allows it to be redistributed and/or modified without

restriction or charge, as a solution to the problems associated with

traditional closed-source proprietary library software. They argue that

the goals and methods of the Open Source movement are similar to those

of the traditional library community and that, by bridging the gap

between the two, each can benefit from the other’s experience and

knowledge. Should libraries promote Open Source as a style of software

development? Answering a question like this requires that we look at

the purpose of librarianship and examine how libraries’ present and

future needs might be met by encouraging the development of open source

software.

Introduction

First, what is open source software? There are actually several,

sometimes competing, interpretations of what Open Source, or Free

Software, is. Perhaps the best, though certainly not the most

definitive, way to describe open source software is to say that it is

software created by communities of programmers who share their source

code, that part of a program that is readable by humans, with anyone

who might find the program, or a variation of the program, useful. Some

programmers prefer to call this shared software “Open Source” while

others prefer to call it “Free Software”. Free, here, refers to one’s

freedom to use rather than freedom from price (Stallman, 1998a). The

dispute over which name is best is, in part, a difference of opinion on

2

how software should be licensed. To understand the reasons behind this

disagreement, a brief history of code sharing is necessary.

A Brief History of Shared Software

Richard Stallman, founder of the GNU Project, the first

intentionally formed software sharing community, observes that software

sharing, in its various forms, started with the development of

computers. He says, “[Sharing code] is as old as computers, just as

[the] sharing of recipes is as old as cooking” (Stallman, 1998). Eric

Raymond, author of The Cathedral and the Bazaar and co-founder of the

Open Source Initiative, agrees but says, for practical purposes, that

the birth of the Open Source, Free Software, culture we that know today

can be conveniently dated to 1961 (Raymond, 1999). It grew out of MIT’s

Artificial Intelligence Laboratory where Stallman worked throughout the

1970s and early 1980s.

This sharing of code, that started in isolated research centers

around the United States, reached a critical mass with the development

of the Department of Defense’s ARPAnet, a transcontinental, high-speed

computer network built as an experiment in digital communications

(Raymond, 1999). The ARPAnet linked defense contractors, research

communities, and universities together in what came to be the

Internet’s predecessor. It was over these high-speed networks that the

world’s first programming community grew. With the growth of this new

community, programmers developed their own culture, a culture that

produced a variety of cultural artifacts, the Jargon File being,

perhaps, the most well known (Raymond, 2000).

As the development of new computer technologies advanced, the

older models became obsolete. These newer models had their own

3

operating systems but, unlike the old systems, their operating systems

were proprietary; users were required to sign a non-disclosure

agreement before they were allowed to receive and use the system’s

software. Many, like Richard Stallman, did not approve of the new

rules. He says, “This meant that the first step in using a computer was

to promise not to help your neighbor. A cooperating community was

forbidden. The rule made by the owners of proprietary software was, ‘If

you share with your neighbor, you are a pirate. If you want any

changes, beg us to make them’" (Stallman, 1998).

Believing he could not, in good conscience, create software whose

use was restricted, Stallman resigned from MIT and started the first

organization intentionally formed to create free software, the GNU

Project. While the goal of the GNU Project was to write a freely

available UNIX clone, they are perhaps better known for the non-kernel

elements of HURD, their developmental UNIX-like system. Many of these

elements, combined with the Linux kernel, now constitute the GNU/Linux

operating system, a system that has, recently, garnered a good deal of

press, as has open source software in general. This enormous growth in

popularity has been documented by Eric Rauch who, by searching

Lexis/Nexis for key terms related to the open source movement, plotted

references to the GNU/Linux system, and to open source software in

general, in an easy to read graph (Rauch, 1998).

In 1985, to promote the software that the GNU Project was

producing, Stallman created the Free Software Foundation (FSF), a tax-

exempt charity for the development and promotion of free software

(Stallman, 1999). Around this time, Stallman also wrote the GNU General

Public License (GNU GPL) (Stallman, 1991). The GNU GPL is a license

that insures that no programmer or organizational entity can subvert

the right of a GPLd program to be shared with others in the programming

4

community. The GNU license has been called a “copyleft” license because

it seeks to guarantee the right of the programming community to use

another programmer’s freely shared source code; this is unlike a

copyright, which only guarantees the author’s right to restrict the use

of his or her program (Stallman, 1999a).

In the late 1980s, the Free Software movement gathered momentum.

Many programmers, distressed by the lack of a decent propriety

compiler, chose the GNU Project’s free compiler, GCC, as their

development tool of choice. Some of these programmers, interested in

learning why such a useful tool was being given away for free, read the

philosophical texts published by Richard Stallman and the Free Software

Foundation. Michael Tiemann, one of these programmers, saw a blueprint

in Stallman’s work for what he believed could be a successful business

model. He says:

Suffice it to say that on the surface, [Stallman’s
Manifesto] read like a socialist polemic, but I saw
something different. I saw a business plan in
disguise. The basic idea was simple: Open Source
would unify the efforts of programmers around the
world, and companies that provided commercial
services (customizations, enhancements, bug fixes,
support) based on that software could capitalize on
the economies of scale and broad appeal of this new
kind of software (Tiemann, 1999).

Tiemann realized, in short, that the Free Software development model

could, as a business model, accomplish corporate goals in a way that

most proprietary software companies’ business models could not.

In 1989, Michael Tiemann joined with David Henkel-Wallace and

John Gilmore to co-found Cygnus Solutions, the world’s first Open

Source software company. The creation and initial success of Cygnus

Solutions proved that free software could be profitable, and that a

commercial venture could be sustained and even succeed by capitalizing

on the Open Source development model. While Stallman had argued for the

development of free software from an ethical/political perspective,

5

Tiemann realized that free software could also succeed for

“competitive, market-driven reasons” (Tiemann, 1999). Was he right?

In 1998, almost a decade after its creation, Cygnus Solutions was

still the largest and most successful Open Source company in the world

(McHugh, 1998). It was this long term commercial success that led Red

Hat, the most popular U.S. distributor of the GNU/Linux operating

system, to acquire Cygnus Solutions in November of 1999 for an

estimated $624 million, using money it had raised from its own

incredibly successful initial public offering (LinuxDevices.Com, 1999).

It is worthwhile to note that for the three years before its

acquisition, Cygnus Solutions consistently ranked on Software

Magazine's list of the top 500 software companies in the world

(Software Magazine, 1999).

Throughout the 1980s and 1990s, many programmers worked on open

source projects based on the Berkeley Standard Distribution of UNIX

(BSD). Unfortunately for the community as a whole, these programmers

often had disagreements that, because of the centralized nature of

their development model, resulted in divisions in the BSD community

(Raymond, 1998b). Some of these disagreements led to the FreeBSD,

OpenBSD, and NetBSD distributions, among others. Legal troubles also

stunted the growth of the BSD movement. AT&T, which owned the rights to

an earlier proprietary UNIX operating system, sued the BSD movement,

just as it was gaining momentum, claiming that BSD programmers were

using code from the older proprietary UNIX operating system that AT&T

owned (Sullivan, 1999). The suit was eventually dismissed, but it

slowed the acceptance of BSD within the software industry. Despite

these impediments, the BSD movement is, today, still successful. Many

active Internet sites use FreeBSD (Vaughan-Nichols, 1999); in addition,

6

BSD was selected by Apple Computer as the foundation for its new

operating system, Mac OS X (NetBSD Community, 1999).

According to Eric Raymond, many of the early BSD programmers were

pragmatists; they were not motivated by the ideology of Free Software

advocates like Richard Stallman. For them, the GPL and other open

source licenses were tools to provide alternatives to the software

industry’s giants not a way to eliminate commercial software altogether

(Raymond, 1998b). In fact, many of these programmers still prefer the

more permissive open source licenses that allow for the proprietary use

of open source code; one example of this type of license is the BSD

License (Open Source Initiative, 1999). The BSD developers represent

the middle ground between the ideological goals of the Free Software

Foundation and the proprietary desires of much of the business world.

Since the GPL has been referred to as a “copyleft” license, developers

in the BSD camp have been suggested that the BSD license is a

“copycenter” license (Lehey, 1999).

Then in 1992 something happened that would bring the Open Source

movement into the public’s eye, Linus Torvalds began working on what

would become the Linux kernel (Torvalds, 1999). A student at the

University of Helsinki, Torvalds wanted a UNIX-like operating system

for his 386 computer. Unable to find one, he decided to build his own,

based on a developmental UNIX-like system called Minix. Eventually, all

the old Minix code was removed and the GNU Project’s non-kernel

elements were added; the system became what we know today as the

GNU/Linux operating system (though many people just refer to it as

Linux). What started as one college student’s hobby, now has an

estimated 7 to 10 million users worldwide and is the operating system

chosen for more Internet servers than any other available, including

Microsoft’s (DiBona, Ockman, & Stone, 1999).

7

While Torvalds did initiate the development of the Linux kernel,

it is important to note that he did not do the majority of the coding.

Nor is it the kernel’s source code alone, though that is impressive,

that distinguishes Linux as an Open Source marvel. Eric Raymond, author

of The Cathedral and the Bazaar and co-founder of the Open Source

Initiative, (1999d) says:

In fact, I think Linus's cleverest and most
consequential hack was not the construction of
the Linux kernel itself, but rather his
invention of the Linux development model. When
I expressed this opinion in his presence once,
he smiled and quietly repeated something he has
often said: “I'm basically a very lazy person
who likes to get credit for things other people
actually do.”

What makes the GNU/Linux system so successful, Raymond believes, is the

decentralized development model that Torvalds employed to create it.

This was unlike any other modern free software project up to this time;

earlier projects, like the GNU Project and BSD distributions, had

centralized hubs of activity. Linus Torvalds opened up the development

of the Linux kernel to anyone who had access to a computer, an Internet

connection, and the skills to contribute.

Torvalds agrees with Raymond that this made an important

difference and helped distinguish Linux from many earlier free software

projects. It is, he says, Linux’s decentralized, collaborative

environment that makes the GNU/Linux system notable:

The power of Linux is as much about the
community of cooperation behind it as the code
itself. If Linux were hijacked--if someone
attempted to make and distribute a proprietary
version--the appeal of Linux, which is
essentially the open-source development model,
would be lost for that proprietary version
(Torvalds, 1999).

What is it about this decentralized collaborative environment that

attracts so many talented programmers? It might be that Torvalds’

8

model attracts the pragmatic programmers in addition to the idealist

ones; in Homesteading the Noosphere, Eric Raymond (1998b) says:

Not until the Linux explosion of early 1993-
1994 did pragmatism find a real power base.
Although Linus Torvalds never made a point of
opposing [Richard Stallman], he set an example
by looking benignly on the growth of a
commercial Linux industry, by publicly
endorsing the use of high-quality commercial
software for specific tasks, and by gently
deriding the more purist and fanatical elements
in the culture.

Some programmers might also be attracted to the radical openness of the

community that Torvalds created. Raymond (1999a) says, “Linus

Torvalds's style of development [is to] release early and often,

delegate everything you can, be open to the point of promiscuity...”

This unique development style intrigued programmers like Eric

Raymond, so, he decided to study it. He decided the best way to

understand Torvald’s development method was to put it into practice

with a project of his own, Fetchmail (Raymond, 1999h). The results of

this experiment are documented in Raymond’s work, The Cathedral and the

Bazaar. While Torvalds can be credited with popularizing a model of

development that has revolutionized the software industry, Raymond

should be credited as the movement’s most effective proponent. His

article, The Cathedral and the Bazaar, caught the attention of Netscape

and convinced them to release their popular World Web Web browser under

an Open Source license. Raymond and other open source developers,

recognizing that this was a great opportunity for the Open Source

movement, co-founded the Open Source Initiative (OSI) to promote Open

Source software (Raymond, 1999c).

The term “Open Source” was not actually used in the free software

community before February of 1998. It was created in part to clarify

that the word ‘free’ in free software referred to a ‘freedom to use’

9

rather than ‘freedom from price’ (Stallman, 1998a), but more

importantly, in Raymond’s mind at least, to “sell the idea [of Open

Source] strictly on the same pragmatic, business-case grounds that

motivated Netscape” (Raymond, 1999c). Many free software programmers

accepted the term, and it is the term the mainstream media prefers, in

part, because of the OSI’s publicity efforts, but not all developers

think that abandoning the ‘free software’ label is a good idea. Richard

Stallman, for instance, has expressed concern about the de-emphasis of

the ethical reasons for writing free software (Stallman, 1999b). The

emphasis on getting commercial interests to accept free software, he

believes, is wrong headed in that it allows the software industry to

capitalize on the programming community, often without returning

anything to the community from which it takes. For the most part,

though, the term Open Source seems to have become the standard term for

shared software.

It is hard to read anything about the software industry now

without hearing about the wild success of Open Source software or the

latest Linux IPO to cash in on the Open Source craze. Mainstream web

sites like Time Magazine have started permanent web sites to chronicle

the latest Open Source news (Time Magazine, 2000). Despite the

commercial success of companies like Cygnus Solutions and Red Hat and

the mainstream recognition of open source software, most in the Open

Source movement acknowledge that the future of open source software

rests in hands of the open source community of developers. Michael

Tiemann, co-founder of Cygnus Solutions and now CTO at Red Hat, Inc.,

says, “The people who think money is the engine are the people who are

wrong. Money is just the gas, and the engine is the open source

development community. And the quality of the people who are in that

10

community determines how much horse power this movement's going to

have” (Dougherty & Sims, 2000).

The Purpose of Librarianship

In 1931, Shiyali Ramamrita Ranganathan, one of the founders of

modern librarianship, conceived of five simple, yet profound, laws of

library science: books are for use, every reader his book, every book

its reader, save the time of the reader, and a library is a growing

organism (Encyclopedia of Library and Information Science, 1968, p.

67). These five laws, though somewhat dated by their language, are just

as applicable to the practice of library and information science today

as they were in 1931. To put Ranganathan’s laws into modern terms, one

might say: resources are for use, access should be available to every

person, resources satisfy user needs, user satisfaction is the goal,

and libraries must evolve.

Library resources are for use. This is true regardless of whether

the resource is stored in the library or whether access to the resource

is provided through the library. Unfortunately, in the past, library

use has been restricted to particular groups of users. In early Roman

times, and as far back as the Librarian King Asurbanipal’s time,

libraries were open to the public, but later, starting in Medieval

times, libraries were regarded as institutions for preserving and

storing scrolls and books, rather than for promoting their use. A. K.

Mukherjee says:

In Medieval times … books were actually chained
to the shelves … During the period of the
Renaissance and Reformation, transition started
from the Middle Ages to the modern world. The
chains were removed at first, although access
was limited to chosen few. The use of payment
became the vogue. As a further step, books were

11

made free to all, but only for use in the
premises of the library. Then came lending to
favoured few: then to all who paid the fee: and
at last, lending free to all (1966, p. 32).

While some libraries still serve to archive and preserve materials, the

idea that books, or other media, are merely storage containers for

society’s wisdom has passed from favor in the profession. Today,

library resources are collected, organized and made available,

primarily, for use by the patron (Morgan, 1999a).

With this historical change have come changes in the cultural

assumptions of librarians and library administrators. Some in the

profession suggest that librarianship, as a result of these changes,

has become a “gift culture” (Morgan, 2000a). Eric Raymond in his The

Cathedral and the Bazaar explains what a gift culture is; he says,

“Gift cultures are adaptations not to scarcity but to abundance. They

arise in populations that do not have significant material scarcity

problems with survival goods” (Raymond, 1998). Gift cultures can be

found in many civilizations around the world. One such example of a

gift culture practice is the Native American Potlatch. The Potlatch is

“a ceremonial feast of the American Indians of the northwest coast

marked by the host’s lavish distributions of gifts or sometimes

destruction of property to demonstrate wealth and generosity with the

expectation of eventual reciprocation” (Merriam-Webster, 2000).

In a private email, on February 10, 2000, Eric Morgan, a

librarian at North Carolina State University, suggested that librarians

share this “gift culture” with other groups like the Open Source

programming community. He said, “Libraries have an abundance of data

and information … Librarians do not exchange this data and information

for money; you don’t have your credit card ready as you leave the door.

Libraries do not accept checks. Instead the exchange is much less

12

tangible.”1 Morgan makes sure not to confuse data and information with

knowledge, but points out that the measure of a library’s worth is

often directly related to how much it gives away. He says:

The items of value are information and
information services exchanged for a perception
of worth--a rating valuing the services
rendered. This perception of worth, a highly
intangible and difficult thing to measure, is
something that the user of library services
‘pays’, not to libraries and librarians, but to
administrators and decision-makers. Ultimately
these payments manifest themselves as tax
dollars or other administrative support. As the
perception of worth decreases so do tax dollars
and support (Morgan, 1999).

If we accept that librarianship is a gift culture, Ranganathan’s first

law makes even more sense, but what about Ranganathan’s other laws?

Access should be available for every person. In a paper on the

nature and future of the academic community, Peter Lyman (1997) says,

“Scholarly publications are consumed within a gift culture institution

called the library, a subsidized public good within which knowledge

appears to the reader as a free good.” That access should be free or,

more accurately, subsidized is perhaps the greatest assumption of

modern librarianship. One need not look much farther than the largest

professional organization for librarians, American Library Association

(ALA), to realize that “equity of access” is considered by most

librarians to be a central purpose of modern librarianship. An ALA

advocacy pack from their web site says, “Libraries have historically

served as the nation's great equalizers of knowledge, providing access

to information regardless of the ability to pay” (American Library

Association, 2000). In Libraries, An American Value, the American

Library Association (1999) says, “Libraries in America are cornerstones

1 Morgan, Eric (eric_morgan@ncsu.edu). (2000, February 9). Subject: Gift
cultures, librarianship, and open source software development. Email from

mailto:eric_morgan@ncsu.edu

13

of the communities they serve. Free access to the books, ideas,

resources, and information in America's libraries is imperative for

education, employment, enjoyment, and self-government.”

Free access to library resources, like free access to software,

has often been confused with a freedom from cost. This is not how the

word free, in this context, should be understood. Richard Stallman

(2000) says, “Free software is a matter of liberty, not price … Free

software refers to the users' freedom to run, copy, distribute, study,

change and improve the software.” Likewise, the Code of Ethics of the

American Library Association says, “In a political system grounded in

an informed citizenry, we are members of a profession explicitly

committed to intellectual freedom and the freedom of access to

information. We have a special obligation to ensure the free flow of

information and ideas to present and future generations” (American

Library Association, 1995).

That access should be available to every person or, as

Ranganathan would say, “Every reader his book” is a fundamental

assumption of modern librarianship. This does not mean, however, that

there are no costs associated with providing this freedom. Libraries

are supported by academic institutions, receive donations, and/or are

supplemented by tax dollars. Free software, on the other hand, is often

made available on a web site for no charge other than the cost of an

Internet connection and, at the same time, sold on a compact disc for a

profit; free software can also be given, freely, from one person to

another. Richard Stallman (2000) says, “You should be free to

redistribute copies, either with or without modifications, either

gratis or charging a fee for distribution, to anyone anywhere. Being

author to rivers@clatsop.cc.or.us, arhyno@server.uwindsor.ca, and
kevin_clarke@unc.edu.

mailto:rivers@clatsop.cc.or.us
mailto:arhyno@server.uwindsor.ca
mailto:kevin_clarke@unc.edu

14

free to do these things means (among other things) that you do not have

to ask or pay for permission.”

Unrestricted access to every user is an ideal that libraries must

often defend. In the quest to provide, “Every reader his book,”

libraries are often criticized for allowing objectionable material to

reach those who might not be able to make their own judgements about

its validity and worth. To this, the ALA, through its Library Bill of

Rights, has responded that free access, through the library, is

necessary for all members of society. Access is necessary, librarians

believe, for those who possess the ability to distinguish between a

variety of information sources and for those who need to develop the

skills necessary to distinguish between these questionable sources. An

ALA interpretation (1997) of the Library Bill of Rights says:

Those libraries with a mission that includes
service to minors should make available to them
a full range of information necessary to become
thinking adults and the informed electorate
envisioned in the Constitution. The opportunity
to participate responsibly in the electronic
arena is also vital for nurturing the
information literacy skills demanded by the
Information Age. Only parents and legal
guardians have the right and responsibility to
restrict their children's and only their own
children's access to any electronic resource.

Both librarians, represented by the American Library Association, and

programmers in the free software community, represented by the Free

Software Foundation, share the assumption that unrestricted freedom is

a good thing.

Ranganathan’s third law, “Every book its reader,” or as I have

restated, “Resources satisfy user needs,” approaches his second law

from the opposite angle. For every item in the library there is a user

who would find that item useful or enjoyable; the resource, it is

assumed, was purchased for good reason. Mukherjee says,

15

“[Ranganathan’s] third law as such, runs the gamut of library

operations devised mechanically or through human agencies, fulfilling

the objective of ultimate utilization of every reading material,

acquired with a purpose” (1966, p. 34). In short, Ranganathan’s third

law says that librarians should connect a resource to a library user’s

needs. This can be done through a reference interview, by cataloging

the item in such a way as to make it apparent to the patron who needs

it, or by creating a library catalog whose interface facilitates the

end user’s search.

The goal of connecting resources to patron needs is not new.

Ernest Richardson, in 1927, said, “For these [that know the information

they want but not the resource in which it can be found] we furnish

reference books, bibliographic cataloging, classification on the

shelves and reference service to show the book that they ought to want

and then proceed as before to serve it, or to beg, buy, or borrow it

for them” (1975, p. 60-61). Connecting a resource to the patron’s needs

is not always an easy task. In many cases, patrons are in an anomalous

state of knowledge (Belkin, Oddy & Brooks, 1982). They cannot

successfully articulate their needs for information in a verbal form

(Taylor, 1968). In addition to this, many do not have predefined search

criteria (Hildreth, 1982). Librarians, as information professionals,

create library mechanisms (the formalized reference interview, the

online catalog, a classification system) intended to reveal, in the

most efficient way, those resources that the library owns, or to which

it provides access, that might satisfy the nebulous information needs

of the end user.

These mechanisms bridge the gap between the fragmented

understanding of a single individual and the vast store of knowledge

available through libraries. Richardson says:

16

As an image of the whole of things, the
knowledge of any one man is poor, fragmentary,
and as a rule, rather confused heap of jumbled
impressions and cognitions. The classification
of these ideas organizes the confused ideas
into the representation of an orderly universe,
and gives unity, coherence, and integrity to
knowledge and personality … Any one man by
himself would never get far toward the complete
picture, but happily knowledge is cooperative.
It grows by each man producing something,
recording it in books, and gathering the books
into libraries … [The task of the librarian] is
to help [patrons], and to help anyone is to
cooperate with him carrying out his own plan or
wishes, to help him help himself (1975, p. 57-
59).

The image of librarians collaborating with each other and with the

library’s patrons to satisfy the patrons’ current information needs is

not that different from the image of open source programmers

collaborating to solve their own needs. Both are working together to

solve problems that exist because a single individual’s understanding

is, by its nature, incomplete.

Eric Raymond (1999g) touches on the necessity for collaboration

in his work, The Cathedral and the Bazaar when he says, “While coding

remains an essentially solitary activity, the really great hacks come

from harnessing the attention and brainpower of entire communities.”

Information seeking, too, is essentially a solitary activity because

its goal is the satisfaction of the seeker’s individual information

needs. Librarians, working with information seekers, bring to the

process the collected knowledge of the library community; often, they

consult other reference librarians or the mechanisms that have been

constructed to represent the accumulated wisdom of the community (the

catalog, classification scheme, etc.)

Fortunately, for librarians and the library’s patrons, the

information seeking process is iterative. The experience of the

librarian, in attempting to discern and satisfy the library patron’s

17

information needs, often leads to ways to improve the library

communities’ retrieval mechanisms. For instance, extra access points to

bibliographic records are often added once there is the recognition,

often gained through a reference interview, that such a link would be

useful. This “scratch your own itch” approach to maintaining the

usefulness of the library’s mechanisms can also be found in the

programming community. Raymond (1999g) says, “It is truly written: the

best hacks start out as personal solutions to the author’s everyday

problems, and spread because the problem turns out to be typical for a

large class of users.” If we think of the library’s mechanisms for

information retrieval as being similar to the shared code of an open

source program, understanding the importance of Ranganathan’s third

law, “Every book its reader,” makes sense.

We can also understand, in this context, why Raymond (1999f)

says, “Given enough eyeballs, all bugs are shallow.” Finding the right

reader for a book is similar to finding the right programmer for a bug

in the code. Open source programmers open up the source code to the

community, and librarians open up the library’s collection, and unique

organization of knowledge, to the library community, both hoping to

match something they possess with someone who could use or benefit from

its use. In the ideal situation, after using the source code of an open

source project, or the mechanisms of the library, an individual also

contributes something back to the system in such a way as to improve

the whole for the next person.

Ranganathan’s fourth law, as restated by the author, “User

satisfaction is the goal,” speaks to a central focus of librarianship

and open source programming. Both librarianship and software

programming are goal oriented. While both have developed philosophical

and theoretical foundations through which the practice of each is

18

informed, programming and librarianship are, at their core, pragmatic.

Programmers seek to solve the problem at hand by writing code that

accomplishes a certain task or collection of tasks. Librarians create a

unique library product and related service that can be used by the

patron to solve his or her immediate information needs. This focus on

pragmatic tasks has sometimes been bemoaned in the library community

(Danton, 1975), but for the most part developing a theoretical

foundation for library science has taken a back seat to satisfying

library users’ needs.

Ranganathan’s original formulation of his fourth law, “Save the

time of the reader,” also captures the need for efficiency that is

desirable when working with such a complex process. Mukherjee says,

“The processes of service generally generate procrustination in

libraries intent on thoughtless formalities, which can be easily gotten

rid of …” (1966, p. 34). The modern library does as much as possible to

reduce impediments to the user’s ability to find the desired resource

in the least amount of time. There are many things, internal and

external to the library, that contribute to a potentially poor user

experience. For instance, in this age of information overload, many

librarians are turning to technology as a way to save the time of the

patron.

Recently, the administrator of one open source library portal’s

email discussion list took an informal survey of why librarians were

interested in the project; “reducing information overload” was

perceived by participating librarians as being the biggest advantage to

creating and sharing an open source personalized library interface.

Supporting answers from individual librarians included, “To help our

users circumvent wading through ever-growing lists of electronic

resources” and “A well designed personal interface keeps the main

19

contact local but enables access to the whole -- but mainly it helps

the student better and more useful[ly] use [his or her] time” (Morgan,

2000b).

Librarians recognize that saving the time of the reader is not

something that can be done once and then forgotten. It is an ongoing

process. As technology has evolved, many in the information community

have witnessed a growing information glut. This abundance of

information has led to an increased need for personalization, but many

librarians and information professionals ask how much personalization

is too much (how many information portals do we need before the portal,

itself, becomes an impediment?) (Morgan, 2000b). Also of concern to

librarians is the library’s ability to provide support for patrons who

have no computer experience.

This constant change is not just a result of new technologies

being introduced and accepted. Ranganathan’s fifth law, “a library is a

growing organism,” spoke to these issues back in 1931, before the

modern Information Age. Still, the particular changes that shape the

libraries and librarians of today are often shaped by technological

evolution. Indiana University’s School of Library and Information

Science (1998) says, “Libraries are changing. Once passive storehouses,

they have become active agents of change and early adopters of new

information and communication technologies.” The school’s home page

suggests that evolving libraries need librarians that can adapt.

“Librarians are changing, too. The ’informatization’ of society has

generated unprecedented demand in all walks of life for specialists who

will function as information resource managers and as guides,

interpreters, integrators, brokers…” (Indiana University, 1998).

Assuming that the librarians can adapt, can the patrons? Will

more time need to be spent helping patrons? What does this mean for

20

the development of future library information systems? Some patrons

fear that the influx of technology will create a much larger workload

for public service librarians. Cate Corcoran (1997) says,

”Unfortunately, the same technology that cuts costs and relieves

librarians of work behind the scenes increases it for the public -- and

for the librarians at the front desk who have to help the public figure

out how to use the technology. The unhappy result: People are simply

not finding the information they seek.” While library software can

automate many of the day to day tasks, librarians need to consider

whether the adoption and promotion of library software will actually

save the time of the patron.

On the other hand, librarians are here to serve patron needs and

if the patrons want more electronic resources, as they seem to

(Corcoran, 1997), librarians must adapt to these demands or face the

possibility that their role as information brokers might be replaced by

others who can. So, how do libraries implement technology in a way that

maximizes its strengths without losing that which librarians already do

well? As one would expect, these problems are not new to the library

community. Libraries deal with these issues individually (San Francisco

Public Library, 1998) and through their national organizations

(Association for Research Libraries and Online Computer Library Center,

1999). This paper suggests that these issues must be approached from

philosophical and practical perspectives. The author believes that the

traditional philosophy of librarianship informs the practical

application of these new approaches to the age old problems of

librarianship, as stated by Ranganathan’s five laws, in a unique way

that is necessary for the continued growth of the profession.

21

Open Source Software and Librarianship

The tension between the practical application of library science

and the practice of relying on librarianship’s theoretical foundation

to inform our daily activities remains a central component of modern

librarianship. Manfred Kochen says, “It will not suffice for

information professionals to have only specialized skills. They must

also be humanistically enlightened generalists…” (1983, p. 281). On the

other hand, this type of generality is, in itself, a specialty, says

Jesse Shera (1970). In thinking about the decisions that libraries and

librarians make, some have suggested that libraries do not just deliver

society’s knowledge without also changing in the process. They believe

the library is an iterative system. Michael Buckland (1983) points this

out when he says that libraries are “open systems”; they are affected

and, as a result, affect the society of which they are a part.

What type of software and software development planning best

suits librarians, libraries, and the patrons? Are open systems best

developed using open software, software that allows for the ongoing

collaboration between community members, or are libraries better off

relying on third party vendors to provide closed systems, as they have

in recent years? The answer often depends on whether one believes that

libraries are primarily a business or a service institution.

Historically, most would agree, libraries have been subsidized service

institutions, but there has always been the tension of finding that

balance between cost effectiveness and serving the needs of the

patrons. Ernest Richardson argued, in 1927, that the primary purpose of

librarianship was to serve the library’s community; he says,

“Nevertheless, the main thing about librarianship, even as a business,

is not business but learning of knowledge” (1975, p. 52). Since that

22

time, and probably before, the same concern has been echoed in a

variety of forums (Kilpatrick, 1997).

Recently, a group of eighty academic library administrators met

to discuss librarianship and the future of the traditional library. The

product of this meeting was a paper they called the Keystone

Principles. The Keystone Principles, named after the location of the

meeting place, are “a set of principles and action items to guide

academic libraries’ efforts and establish a foundation for joint

future-oriented action based on traditional academic library values”

(the Association for Research Libraries, ARL, and the Online Computer

Library Center, OCLC, 1999). These eighty administrators, representing

the Association for Research Libraries and the Online Computer Library

Center, for the first time in a national library organization’s

history, stated that the development of open source software was

desirable. They say, “Libraries will create interoperability in the

systems they develop and create open source software for the access,

dissemination, and management of information” (ARL and OCLC, 1999).

What is more significant, perhaps, than the mention of open

source software, in particular, is that the principles and the actions

that the administrators recommended echo many of the same concerns

heard from programmers in the open source community. This suggests that

these two communities are, in fact, similar and that a collaboration

between the two would be beneficial in addressing their shared

concerns. This paper suggests that using open source software, as the

library administrators have recommended, is the best way to accomplish

the library’s goals and insure that the library remains a relevant

institution in the future.

The Keystone Principles begin by stating what the American

Library Association and most librarians have insisted on for years,

23

that access to information is a public good. It says, “Scholarly and

government information is created at the expense of public and/or

academic institutions. Therefore, there is a public interest in the

availability of this information” (ARL and OCLC, 1999). The type of

information to which the Keystone Principles refer is the unique

organization that libraries create and modify to make stored

information accessible. While much of the information contained in an

academic library is created in the academic or public realm, the

library itself also modifies and creates information in such a way that

distinguishes it from other information service institutions. While the

library does create a unique product (its organization of information,

accessible through the public catalog or browsing the stacks), most

librarians still think of the library as primarily a service

institution.

In contrast, closed source software companies think of themselves

as manufacturers. They create a product, just like libraries, but view

the sale of that product as their primary purpose; the service they

provide, helping libraries use the product, is secondary. This is

unlike the open source software community. Eric Raymond says, “As long

as the software industry continues to misperceive itself as a

manufacturing industry, instead of a service industry, reliability is

going to be awful. But that shift is not going to happen until source

is open. That's the difference between closed and open source”

(Leonard, 1998). The open source software community, though providing a

product, is a service community. The emphasis is not in getting a

marketable product out the door, but in an ongoing relationship with a

product and its users. This is similar to the library community.

Librarians are not trying to just get an answer for the patron at the

reference desk, but are teaching the patron how to use the library so

24

that the patrons next interaction with the library will be more

informed; it is an ongoing process.

The second user-centered goal of the Keystone Principles is for

libraries to create bias-free systems. Most libraries today are using

third party systems for the library’s day to day applications. The

Keystone Principles say, “To date, these systems have been created

largely outside of academe and most certainly outside libraries, thus

they exist without the benefit of the expertise gained by librarians in

how information is used and the academic and societal values librarians

bring to the enterprise” (ARL and OCLC, 1997). Open source software

created by librarians would have the advantage of incorporating the

experience of librarians, something that most commercial third party

vendors do not do. This is not to say that these companies do not hire

librarians, but that, if they do, they are a small minority and

probably not actually doing the programming. This is unlike the library

specific, open source software discussed later in this paper; those

programs are created for librarians, by librarians.

Whether a commercial entity can create a bias-free system has

also been questioned. The Keystone Principles say, “Further, in the

online environment commercial access services are distorting search

results for profit without defining how these results are obtained and

organized” (ARL and OCLC, 1999). This is possible in a closed-source

system but not in an open one. Raymond says, “The answer is massive,

independent peer review. You wouldn’t trust a scientific journal paper

that hadn’t been peer reviewed, you wouldn’t trust a major civil

engineering design that hadn’t been independently peer reviewed, and

you can’t trust software that hasn’t been peer reviewed either.”

(Leonard, 1998). Peer review is familiar to academic and public

librarians. Why shouldn’t it be a part of library software as well?

25

As one would expect, the Keystone Principles are a mixture of

ideological principles and practical suggestions for libraries of the

present and the future. The principles suggest that libraries take a

more direct role in managing their role as the information hub of the

modern educational community, that libraries be proactive; they also

consider that libraries’ resources are usually limited. The standards

of collaboration that define the open source community appeal to those

in the field of librarianship, but so do the cost considerations of

sharing the development costs of building library specific software. In

addition to the ideological reasons to support open source software,

libraries are finding plenty of economic and practical reasons to

consider open sourcing their library software development.

As documented by Microsoft engineer/employee Vinod Valloppillil,

open source software has many practical advantages over closed-source

proprietary software (Raymond, 1998a). Open source software can be

developed faster, can be debugged faster, has long term credibility,

has a better release rate, and has an advanced programming interface

evangelization/documentation method that is unrivaled among closed-

source software distributors. Open source software also has some

weaknesses that libraries should consider before choosing to promote or

implement an open source solution. According to Valloppillil (Raymond,

1998a), open source software faces organizational incredibility, has

process issues, and has high management costs.

That open source software can be developed and debugged faster

than closed source proprietary software is for most part an example of

its economy of scale. Even the largest proprietary software company,

Microsoft, can not employee as many people as an open source project.

Since open source projects are Internet based, they draw coders from

around the world, each with his or her own approach to specific coding

26

problems. This is, in part, what Michael Tiemann realized after reading

Stallman’s free software manifesto. On this, Eric Raymond quotes Jeff

Dutky, when he says, “Debugging is parallelizable.” Raymond (1998a)

also notes that Dutky “observes that although debugging requires

debuggers to communicate with some coordinating developer, it doesn't

require significant coordination between debuggers. Thus it doesn't

fall prey to the same quadratic complexity and management costs that

make adding developers problematic.”

Valloppillil also notes that with open source software there is

the possibility for “impulse debugging”. Valloppillil says:

An extension to parallel debugging that I'll
add to Raymond's hypothesis is ‘impulsive
debugging’. In the case of the Linux OS,
implicit to the act of installing the OS is the
act of installing the debugging/development
environment. Consequently, it's highly likely
that if a particular user/developer comes
across a bug in another individual's component
-- and especially if that bug is ‘shallow’ --
that user can very quickly patch the code and,
via internet collaboration technologies,
propagate that patch very quickly back to the
code maintainer. Put another way, OSS processes
have a very low entry barrier to the debugging
process due to the common development/debugging
methodology derived from the GNU tools
(Raymond, 1998a).

An example of “impulse debugging” in a library specific, open source

project is the quick fix that the author of this paper wrote for the

Open Source Digital Library System’s MARC record loader. The initial

implementation of the loader stored an integer as the MARC record’s

unique identification number. The problem with the program was that

most libraries now use a mix of letters and numbers for unique

identifiers. On trying to load some sample MARC records, the author

noticed the problem, wrote a quick and simple fix, and submitted it to

the OSDLS email discussion list (Clarke, 1999). It was a very shallow

27

bug that could be “fixed” in just a few lines code, but the case proves

the potential for “impulse debugging” in open source projects.

Valloppillil has also observes that open source software (OSS)

has the “perfect” API evangelization/documentation method. He says,

“OSS's API evangelization/developer education is basically providing

the developer with the underlying code. Whereas evangelization of API's

in a closed source model basically defaults to trust, OSS API

evangelization lets the developer make up his own mind” (Raymond,

1998a). In practice, this perfect method may also be considered a

weakness. Valloppillil says, “Whereas the ‘enthusiast developer’ is

comforted by OSS evangelization, novice/intermediate developers -- the

bulk of the development community -- prefer the trust model +

organizational credibility (e.g. ‘Microsoft says API X looks this

way’)” (Raymond, 1998a) Whether this is true remains to be proven, but

the fact that it might be true, in some cases, could be characterized

as a weakness of open source software. In short, what open source

software must deal with is the perception of problems with its

organizational structure and processes. Often large companies and

libraries are more comfortable dealing with large software companies.

Perhaps there is an assumption of stability and accountability that

reassures those implementing the new software or perhaps there is just

a feeling of shared values.

Many would argue that the ability to “kick the tires” of a

program is enough, that one cannot know a program is good without the

ability to view its source code, but there may be some who, for

whatever reason, prefer to trust a large corporate body to be working

for their best interests. This is something that large GNU/Linux

distributors are trying to address by providing a corporate entity from

which a contract can be purchased and into with whom a business

28

arrangement can be entered. There are, at present, no library specific,

open source businesses, like this, that could reassure a library with

these fears and uncertainties. There might be in the future, but Open

Source, as a concept, is too new to the library community for the

author to be able to assert with any confidence that there one day will

be. To address this fear that many large libraries have, this paper

investigates open source projects that are not library specific, but

that have long standing track records as reliable software.

There are many open software projects that libraries use, often

without even realizing they are using, open source software. These

programs are often Internet based, have a long history of successful

use, and are generally recognized by the computing community as stable,

reliable, and well supported by their developer communities. Examples

of such open source projects include BIND, Perl, Apache, and Linux. If

a library is connected to the Internet, more than likely it is using at

least two or three of the above in one way or another. The last, Linux,

is probably installed in the library even if the administration or

system administrators are unaware of it and some libraries, like the

University of North Carolina at Chapel Hill’s Law Library, use Linux as

their full-time web server.

BIND is an open source program that any library on the Internet

probably uses. BIND, the Berkeley Internet Name Domain package, is

software that allows one computer to find another without having to

know its unique Internet Protocol (IP) numeric address. BIND, in other

words, translates 10.0.1.100 into www.mydomain.com, and vice versa, so

that humans can type www.mydomain.com rather than having to remember

the IP address, 10.0.1.100. The Internet depends on BIND to function

correctly. BIND provides DNS (Domain Name Service) for the entire

29

Internet and, by extension, for any library connected to it. BIND has

been in use since 1984.

Perl is another open source project that is widely used. A

scripting language, Perl is responsible for much of the active content

on the World Wide Web. It has been called the “duct tape of the

Internet.” Perl has been in use since 1987 and is most commonly used

for CGI scripting, accessing databases, text processing, XML

processing, system administration, web transactions, and many other

activities. Even after all these years, Perl is one of the most popular

programming languages on the web (Perl Mongers, 2000).

Lastly, Apache, an open source web server, is more than likely

the web server most libraries are using to serve their library’s web

site, assuming libraries select a web server for the same reasons other

site owners do. Since January, 1998, Apache has been the number one web

server used on the World Wide Web, as noted in a survey by Netcraft;

the survey’s authors observe that Apache is used on over fifty percent

of the World Wide Web’s web sites (Apache Software Foundation, 1998).

Since that time, the popularity of the Apache web server continues to

grow. A new Netcraft survey, published in March, 2000, shows that the

Apache web server now has a sixty percent share of the market and, with

newly formed web sites, Apache is chosen two out of three times as the

site’s new web server (Speedie, 2000).

Open source software is being used by more and more companies and

organizations with a presence on the World Web Wide. The Open Source

Initiative, in an attempt to promote the reputation of open source

software, has posted a list of companies that make at least a million

dollars a year that use, or have developed their corporate strategy

around, open source software. Some of the names on the list include

IBM, Cygnus Solutions, SGI, Apple Computer, Netscape Communications,

30

Inc., and others (Open Source Initiative, 1999a). In addition to the

wide variety of reliable open source products available for general

use, more and more library specific open source products are being

developed by librarians in attempt to solve library specific software

problems.

Existing Closed-source Library Software

Software plays an important part in many libraries’ daily

activities. Often, patrons search for books in an online public access

catalog, browse Internet sites, request books from other libraries

across the country (many times after searching that library’s online

catalog via the Internet), and search external databases to which their

library provides access. Library staff catalog books, create library

and institution specific web pages, satisfy interlibrary loan requests,

create pathfinders, and collaborate with colleagues across the country

to better serve their patrons. Much of this is done with commercial or

free, but closed-source, software.

Most libraries that use computers probably use Microsoft Windows

as their client-side operating system for library staff. Much of the

word processing that is done in these libraries is probably done on

Microsoft Word and library staff probably use Access or Excel to create

small databases and spreadsheets for managing the library’s expenses or

monthly statistics. There are, of course, open source alternatives to

all these but, as of yet, none have really made much inroads into the

mainstream library. It is likely that the library’s web server is

running an open source operating system or that the system

administrator uses GNOME, or another open source desktop, but the

31

average cataloger, reference librarian, or administrator most likely

uses closed-source software. Why?

One reason is that client side software is usually more complex

to write. There are client side open source projects under development,

but the majority of open source software was written to run on a

server. A recent survey of Linux developers revealed that “Only 16

percent write office app[lication]s and only 15 write graphics or

audio/video app[lication]s” (Speedie, 2000a). With such a small number

of client side applications under development it is little wonder that

most librarians are using closed-source software. The author of the

survey reports that this is likely to change, however, in part due to

the growth of open source desktop projects like KDE and GNOME (Speedie,

2000a).

Another reason why many libraries use closed-source software is

that it is free. The Online Computer Library Center (OCLC), a non-

profit, membership driven, international library organization, gives

away cataloging, interlibrary loan, and reference software to libraries

that use, and pay for, its services (OCLC, 2000). OCLC started in 1967

as the Ohio College Library Center and as it grew it developed into an

international consortium that enables the sharing of bibliographic

records on a world wide scale. The software that OCLC gives away

includes the CatME (Cataloging MicroEnhancer), ILL ME (the InterLibrary

Loan MicroEnhancer), and Passport (a full featured 16 bit cataloging

utility). Libraries who belong to OCLC are able to use these useful

library specific tools free of charge. Unfortunately for libraries that

cannot afford OCLC’s membership fees, the software is restricted to

OCLC members. Also, these programs are closed-source; individual

libraries must rely on OCLC for updates. Customization is possible, to

32

a limited degree through the OCLC Macro Language (OML), but the basic

functionality of these programs is controlled by OCLC.

In addition to the smaller applications used by library staff,

many libraries use and maintain an integrated library system that

provides a public access catalog for patrons to search and back-end

modules for library staff to edit and create bibliographic records,

manage the acquisitions of new materials, and monitor the circulation

of the library’s collection. There are many third party integrated

library system vendors. Some of the most well known include Geac, Data

Research Associates (DRA), Ex-Libris, CARL, Gaylord, PALS, SIRSI, and

Innovative Interfaces, Inc. At this time, none of these vendors are

providing open source software.

Once a library purchases an online public access catalog from one

of these vendors, it has entered into a long term contractual agreement

with that company, not necessarily because this is what vendors require

but because of the amount of effort required for a library to switch

vendors. Each vendor relies on a proprietary, closed-source method of

storing the library’s records. If a library were to change vendors, as

occasionally happens, the entire database would need to be converted.

This is a time consuming and rarely trouble-free process. As a result,

libraries often select a single integrated library system vendor and

then rely, completely, on that vendor to anticipate and respond to the

library’s particular needs. Since one vendor will often sell the same

turnkey system to a variety of libraries, response time for changes to

a library’s system can be slow. For these, and other reasons, many

librarians are considering open source alternatives to traditional

library software.

33

Existing Open Source, Library Specific Software

Perhaps the most well known advocate for open source software in

the library community, Daniel Chudnov first brought open source

software to the attention of the mainstream library community by

writing an article titled “Open Source Software: The Future of Library

Systems?” This article, published in the August 1999 issue of Library

Journal, suggests that “Libraries are in general slightly behind the

curve with software; similarly, we are slightly behind the curve with

open source software. As the free software vision and culture continue

to mature, librarians would be remiss not to serve a major role shaping

that culture” (Chudnov, 1999). The article also listed many library

related open source projects and gave a list of URLs so that librarians

interested in learning more could research the open source phenomenon

for themselves. Chudnov, a medical librarian at Yale Medical Library,

also maintains the OSS4LIB (Open Source Systems for Libraries) web site

and email discussion list along with Gillian Goldsmith Mayman.

The OSS4LIB web site (http://www.oss4lib.org) serves as a

clearinghouse for information on open source development within the

library community. As of April 8, 2000, there were thirty-two separate

open source, library specific projects listed on the OSS4LIB page.

These ranged in scope and purpose from attempts to create a next

generation integrated library system to online reserve modules to

bibliographic tools, current awareness programs, and customized

knowledge environments for libraries (Chudnov, 2000a). In addition, the

OSS4LIB web site summarizes the recent news from other open source and

library science web sites; these include Library and Information

Science News (LISNews.COM), Slashdot (Slashdot.ORG), and Freshmeat

(Freshmeat.NET), among others.

34

The OSS4LIB web site also houses a fledgling collection of

articles relating to open source software and the library community.

Readers of the OSS4LIB web page and subscribers to the email discussion

list are encouraged by Chudnov to submit their own. In addition to

running the OSS4LIB web site, Daniel Chudnov has created several open

source packages for use by libraries: the EDD (Electronic Document

Delivery) project, the Librarians Guide to Free Software project (based

on DocBook), and JAKE (a Jointly Administered Knowledge Environment for

libraries). Of these, JAKE is the most actively developed at this time.

JAKE supports the management and linking of online resources and

their locally created descriptions. Chudnov says, “Jake consists of a

database containing information about e-resources (including online

journals, databases, search interfaces, and textbooks) and how they

relate to each other” (Chudnov, 2000). Currently there are 193

databases linked and managed by JAKE. Chudnov, who contacts online

vendors about inclusion in JAKE has, for the most part, received a

positive response. This is noteworthy because the publishers’ content

lists, as a result of being in the JAKE database, would be released

under the GNU GPL license. This means anyone could use that data in any

manner. Chudnov (2000) says, “The providers we have contacted have

mostly been very interested in the project and agreeable to its terms;

some have even expressed interest in writing their content lists to a

specific format to facilitate JAKE inclusion, and some expressed

interest in the potential of using JAKE in their own services.”

One of the benefits to the JAKE project is that integrating

various related and unrelated online databases allows for a certain

level of authority control of the contents to be implemented. A result

of this is that patron searches can succeed regardless of the form of

the search term. In the past, this has been a problem with cross-

35

database searching. JAKE also incorporates a database comparison

feature. This allows patrons to determine which databases index a

particular article and which might have that article in full-text. To

measure the growing popularity of JAKE, Chudnov keeps a graph of patron

use, measured by hits; this graph can be accessed from the JAKE web

page (Chudnov, 2000). Also on the web page are links to other libraries

that are using the JAKE program.

There are many other types of free software projects available on

the OSS4LIB web site. There are programs written to solve specific

problems, conversion programs, information management programs, and

many others. Often, librarians will create their own software to solve

their own particular needs. Since libraries share many of the same

problems, releasing home grown software to the library community allows

for a collaboration that fosters the development of a solution, or

solutions, to a shared problem. One example of this is the FreeReserves

project. There is another open source, electronic reserve programs

available on OSS4LIB but, since FreeReserves was the first (Nakerud,

Dawson-Schmidt, and Van Cleave, 1999), this paper will focus on it.

FreeReserves started as a “proof of concept” for a paper written

to explore the strengths and weaknesses of a hypothetical home grown

electronic reserves system versus a turnkey one. The paper was written

from the perspectives of two libraries: one that implemented a home

grown solution and one that chose a turnkey system. The paper does a

good job at describing the strengths and weaknesses of each approach.

It is interesting to note, however, that the library that chose to

develop their own electronic reserves system has modified the system to

correct many of the weaknesses noted in the paper. The ability to do

this is, obviously, one of the biggest benefits of open source

software. Shane Nakerud (1999), author of the paper, says:

36

Finally, the biggest difference between
homegrown and turnkey systems lies in the
customizability of the end product. Libraries
developing homegrown systems can conduct
usability testing to determine the most
appropriate web interface, or use existing
graphics and web site appearance to create a
satisfactory e-reserves site. Anything from
graphics, to screen layout, to navigation can
all be customized to meet library web page
standards or the desires of your library’s
webmaster or web committee. By creating a
homegrown site, SIUC was not only able to
customize the patron interface, but also the
backend database in order to create a system
which totally catered to the needs of their
reserve unit.

This was not the only difference, though. Price was eleven thousand for

the turnkey system while only around three thousand for the home grown

system’s hardware, plus an indeterminate amount for the labor involved

(Nakerud, 1999). Overall, including the total cost of labor and

management, the home grown, open source, solution was more cost

effective.

This is not to say that open source software does not have its

weaknesses. The University of Minnesota, the library that decided to go

with the turnkey system, says that the lack of technical skills among

library staff members was the main reason for the decision (Nakerud,

1999). The fear that libraries do not have the technical staff to

maintain or create an home grown system can be discouraging to

libraries considering an open source product. For this reason, though,

the University of Minnesota is now dependent on a proprietary system’s

software vendor for any changes that need to be made. Nakerud (1999)

says:

The most obvious limitation concerning the ERes
product is the ability to customize the
interface or the overall system. The ERes
license agreement prohibits any modification of
the code without the prior approval of Docutek
… Docutek does promise that it will develop an
ERes system that meets the wants and needs of

37

the school. This may require extra software
engineer hours, and possibly an extra fee
attached to the overall price.

As of April 9, 2000, both schools are still using the electronic

reserves system they selected in March of 1999.

One of the most ambitious new library-related open source

projects on the Internet today is the Open Source Digital Library

System (OSDLS Community, 1999). The OSDLS, an attempt by a relatively

small group of librarians to build a next-generation integrated library

system, is, like many other Internet-based open source projects,

maintained through an email discussion list and online web site.

Founded in March 1999 by Jeremy Frumkin, a meta-data librarian at the

University of Arizona, the OSDLS project emphasizes its community-based

orientation. The project’s white paper (OSDLS Community, 1999a) states:

“[The OSDLS] will only succeed if a sufficient number of library

programmers, librarians, and library staff are involved in the

development of the system.” By emphasizing the intrinsically communal

nature of open source software, the OSDLS project attempts to ensure

that “development doesn’t define the functionality and use of the

product” (OSDLS Community, 1999a).

Instead of letting development needs shape the evolution of the

product, the OSDLS project emphasizes community and end-user

participation in an attempt to create and promote a process that is

responsive to the needs of its intended user base. By providing access

to the OSDLS through the group’s web site, FTP server, and email

discussion list, the project’s development community gives potential

users a chance to interact with the OSDLS before the finished product

is ever shipped. This attempt to engage software users, who may or may

not have any development experience, or knowledge of the development

process, has proven essential to the successful development of many

38

other open source projects (Raymond, 1999d). OSDLS project members hope

that, by modeling their processes after the successes of other open

source projects, they will be able to capitalize on the strengths of

open source software development.

While the OSDLS community is still relatively small, there seems

to be a growing interest in the project and in the development of other

open source software alternatives for the library community. For

instance, after recent announcements about the existence of the OSDLS

project to other library and information science-related mailing lists

(ASIS-L, Web4Lib, and DIGLIB), the number of subscribers to the OSDLS

mailing list, as reported by Jeremy Frumkin (1999d), experienced a

noticeable surge. Whether the growing interest in projects like the

OSDLS will, in fact, help produce a marketable product that can be used

and further developed by the library community, however, remains to be

seen. Given the project’s brief history, its newly formed partnerships

with other open source library groups, and its articulated vision of

the future of library systems, I believe the OSDLS' prospects are good.

This is not to say that the path to a marketable product will be easy.

Library systems are complex programs, often containing over a million

lines of code (Summerhill, 1999). Whether the OSDLS project will be

able to grow from its humble beginnings, as an offshoot of the Linux-

in-Libraries email discussion list, to become “a robust alternative to

what many perceive as inferior, over-priced products (OSDLS Community,

1999a),” produced by closed-source proprietary library system vendors,

still remains to be seen. This paper argues that such an evolution is,

at the very least, possible based on the dynamic nature of open source

software development.

One of the most obvious benefits of open source development is

that one project tends to spawn other complementary projects; the

39

result of this is that new ideas, code and project participants are

often shared among several open source projects. The genesis of the

OSDLS is a good example of how these types of cooperative efforts

happen. The idea for an “open source digital library system” originated

in a brainstorming session on the Linux-in-Libraries (LIL) email

discussion list. This list was formed to discuss libraries’ use of

another open source project, Linux. The discussion on the current state

of library systems started on the Linux-in-Libraries listserv when one

list member asked about currently available library software for a

Linux server. After the idea of an open source digital library system

was entertained by several members of the discussion list, Jeremy

Frumkin (1999b), a meta-data librarian at the University of Arizona,

took the lead in an attempt to map out what such a project would need

to do to organize itself. The first step was to create a white paper

that would detail the project’s goals; once this was done, he suggested

that grant money could be obtained to further develop the project.

Frumkin also recommended that the OSDLS group model its organization

and development after two other well-known open source software

projects, Linux and Mozilla.

In The Cathedral and the Bazaar, Eric Raymond suggests that open

source projects must, by necessity, always be initiated by a small

group of people, if not by individuals. This is true for the OSDLS

project just like it is for the many other library open source projects

that I have mentioned. At this early stage in the Open Source Digital

Library System’s development, Art Rhyno, a systems librarian at the

Leddy Library of the University of Windsor, has done most of the coding

and database design. As a result, his particular contributions are, as

they should be, officially recognized on the OSDLS web site (OSDLS

Community, 1999). This is not to say that others haven’t made

40

suggestions or posted code with alternate ways of accomplishing a

particular task, or that Art Rhyno hasn’t encouraged others to

contribute, but the bulk of the work that is maintained on the OSDLS’

FTP site was created by Art Rhyno. This is not necessarily a bad thing.

Raymond (1999e) says, “It's fairly clear that one cannot code from the

ground up in bazaar style. One can test, debug and improve in bazaar

style, but it would be very hard to originate a project in bazaar

mode.” The strength of open source development lies in its ability to

refine existing code. All software projects, Raymond believes,

originate through the inspiration and initial hard work of an

individual. This is true of all projects regardless of whether they are

developed using an open source or proprietary style of development

(Raymond, 1999b).

How then does one make the leap from an individual’s initial

effort to a full-scale open source project? To attract participants to

a new open source project, Raymond suggests a charismatic person is

needed to organize the initial stages of development. He says, “In

order to build a development community, you need to attract people,

interest them in what you're doing, and keep them happy about the

amount of work they're doing. Technical sizzle will go a long way

towards accomplishing this, but it's far from the whole story. The

personality you project matters, too” (Raymond, 1999e).

As the founder of the OSDLS project, Frumkin has managed to

generate interest in the OSDLS through a variety of methods. He has

coordinated his efforts with other prominent open source proponents, of

which Dan Chudnov of the Open Source Software for Libraries (OSS4LIB)

web page is probably the most well known to the library community.

Frumkin is also in the process of publishing an article on the Open

Source Digital Library System for a pan-European e-journal funded by

41

the European Commision’s Telemetrics for Libraries Programme (Frumkin,

1999). As already mentioned, he has promoted the OSDLS through other

email discussion lists (ASIS-L, Web4Lib, and DIGLIB) and has created

and manages a machine dedicated to running the OSDLS web server, FTP

server and, eventually, an operating version of the OSDLS (Frumkin,

1999c). The interest Frumkin has created in the OSDLS not only extends

to the project’s participants, but also to potential distributors of

the OSDLS package. Despite the fact that the project’s code is still in

its infancy, the OSDLS community has already been contacted by

OpenClassroom, an independent company interested in distributing the

OSDLS product to the educational sector (Lacal, 1999). For the relative

newness of the OSDLS project, it has managed to garner a good deal of

publicity. The question is, will the OSDLS group be able to produce an

integrated library system that libraries want to use?

One thing that the OSDLS project has in its favor is that the

programmers do not intend to write all the system’s code from scratch.

Building a complete integrated library system without using any

existing code may seem like an impossible task when one takes into

consideration that many current library systems contain well over a

million lines of code. There is no reason, however, for an open source

project to write that many lines of new code; there are existing

library and non-library open source products that can be incorporated

into the Open Source Digital Library System with relative ease. One

such project is the MySQL database. Ideally, the OSDLS project will not

be dependent on a particular database backend, but could just as easily

be used with PostreSQL as Oracle 8i. For the time being, however, some

of the code used to load MARC records into the system is MySQL-

dependant.

42

Building a free software project around existing open source

tools is a popular approach for new projects. Another library project

that was just published under the GNU GPL license is the MyLibrary@NCSU

project. Unlike the OSDLS, MyLibrary@NCSU has been around for several

years as a developmental project at North Carolina State University.

The MyLibrary project, created by Eric Morgan, a NCSU Digital

Initiatives librarian, is a customizable knowledge environment for the

academic library. It was started in 1997 in response to focus group

interviews conducted by the NCSU Department of Digital Libraries

Initiative (Morgan, 1998). Around that time, Internet sites like Yahoo,

Excite, and DejaNews were creating portals to the World Wide Web.

MyLibrary@NCSU does this, but it also adds a human component to the

environment by allowing MyLibrary users to interact with a real live

librarian who can assist them with their information needs.

Eric Morgan, who has created many freeware tools for librarians

and computer users in general, believes this type of interaction is

essential for library-based open source projects. He says:

Human interactions are a necessary part of the
mixture in both librarianship and open source
development. Open source development requires
people skills by source code maintainers. It
requires an understanding of the problem the
computer application is trying to solve, and
the maintainer must assimilate patches with the
application. Similarly, librarians understand
that information seeking behavior is a human
process. While databases and many ‘digital
libraries’ house information, these collections
are really ‘data stores’ and are only
manifested as information after the assignment
of value are given to the data and inter-
relations between datum are created.2

2 Morgan, Eric (eric_morgan@ncsu.edu). (2000, February 9). Subject: Gift
cultures, librarianship, and open source software development. Email from
author to crivers@clatsop.cc.or.us, arhyno@server.uwindsor.ca, and
kevin_clarke@unc.edu.

mailto:MyLibrary@NCSU
mailto:MyLibrary@NCSU
mailto:MyLibrary@NCSU
mailto:eric_morgan@ncsu.edu
mailto:crivers@clatsop.cc.or.us
mailto:arhyno@server.uwindsor.ca
mailto:kevin_clarke@unc.edu

43

By adding an opportunity to interact with a trained information

services librarian, MyLibrary draws from the strength of the

traditional library community emphasis on service and links it with the

advantages of open source software.

The response to MyLibrary@NCSU has been impressive. In the first

seven days after its release was announced on a few library related

email discussion lists, the MyLibrary project was downloaded eighty-one

times. Sixty-nine of those downloaders registered their copy of the

program and 41 people subscribed to the email discussion list. In

addition to those that downloaded the program, one hundred thirty-seven

people registered to test out the online version of the program; the

online version was visited one thousand nine hundred twenty-six times

(Morgan, 2000). That the MyLibrary idea is a good idea also seems to be

supported by the fact that many other libraries around the country have

also implemented or are researching similar projects; MyLibrary@Cornell

(Cornell University, 2000), MyLibrary@CalPoly (California Polytechnic

State University, 2000) and VCU’s ‘My Library’ (Virginia Commonwealth

University, 2000) are just a few examples.

What distinguishes the North Carolina State Project from the

others is that the librarians at NCSU have released the project as open

source software. The MyLibrary project is too new, as open source

software, for us to predict whether it will be adopted by many other

libraries (e.g. whether the open source model will work and other

libraries will contribute to its development), but it looks promising.

MyLibrary’s email discussion list has had many librarians from a

variety of library types posting suggestions or possible improvements

to the system. Many ask whether the list thinks that MyLibrary can be

applied to their particular situation.

mailto:MyLibrary@NCSU
mailto:MyLibrary@Cornell
mailto:MyLibrary@CalPoly

44

Eric Morgan, the NCSU Digital Initiatives librarian responsible

for the management and development of MyLibrary@NCSU has posted a

development plan on the MyLibrary web site that, he hopes, will help

drive the development and adoption of the MyLibrary project. The plan

divides the growth of MyLibrary into three main sections: phase one,

the initial adoption by power users, phase two, the stage for beta-

testers, and phase three, MyLibrary’s general release (Morgan, 1999b).

MyLibrary is currently in its initial phase. Since its release,

MyLibrary@NCSU has generated many suggestions for improvements, many of

which are a result of trying out the system in a variety of

environments. This diversity of testing environments would not have

been possible if the project was not open sourced.

Also contained in the page that maps out the development of

MyLibrary@NCSU is a proposal for a licensing plan under which the

MyLibrary project is to be released. The licensing plan calls for

MyLibrary to be released under one of two licenses (at the option of

the licensee). The first would give libraries permission to use

MyLibrary without the promise of any support from NCSU. The second,

which is a co-development license, gives permission for other libraries

to obtain the source code and contribute to the project. Under this

second license, NCSU would supply support for the product because the

licensing library would be collaborating with NCSU in the development

of the project (Morgan, 1999b).

On January 27, 2000, Eric Morgan posted an email to the OSS4LIB

mailing list to discuss the possibility of releasing MyLibrary@NCSU

under the GNU GPL license. He says:

I have just finished reading Eric S. Raymond,
The Cathedral And The Bazaar, … and I believe
the principles of the open source movement are
similar to the principles of librarianship.
What do you think? In the NCSU Libraries we

mailto:MyLibrary@NCSU
mailto:MyLibrary@NCSU
mailto:MyLibrary@NCSU
mailto:MyLibrary@NCSU

45

are seriously considering sharing the source
code to MyLibrary@NCState under the GPL.
Hopefully we will improve upon the MyLibrary by
using the open source development model
(Morgan, 2000a).

Morgan continues by asking what the list thinks of open source software

and its potential for use in the library setting. He then summarizes

three characteristics that he believes are similar to the open source

and library communities. Both are gift cultures; both depend on human

interactions for their success; and both are experiencing an increased

demand for capable practitioners (in part because of the abundance of

resources within the community, a characteristic of a gift culture).

MyLibrary@NCSU is unique because, unlike the other open source

library specific projects mentioned in this paper, it was not created

as an open source project, but became one as the library began to

investigate different licensing options. This suggests that open source

software model offers certain tangible benefits in addition to the

ideological ones that often motivate programmers to create open source

projects. This suggestion is supported by a newly released study,

Strategies for the Knowledge Economy: From Rhetoric to Reality. Though

the study refers to businesses, it acknowledges that the times are

being shaped by the Internet/open source community’s culture.

The study prepared by the executive search firm Korn/Ferry

International, in cooperation with the University of Southern

California's Center for Effective Organizations at the Marshall School

of Business, says that for businesses to stay viable in the current

information market they must adopt some form of information sharing.

The study explains that the old “cloak and dagger” style of information

management is no longer successful and that an open, fast paced

“Internet-style” of information sharing is the only way for businesses

to stay competitive (Sharett, 2000). If this is true, one wonders

mailto:MyLibrary@NCState
mailto:MyLibrary@NCSU

46

whether library software vendors will adopt this tactic in an attempt

to remain relevant to the library community.

One major library software company already has. It is not

producing open source software, but it has designed its integrated

library system to run on GNU/Linux, an extremely popular open source

operating system. About their decision to be the first automation

vendor in North America to support the GNU/Linux operating system, they

say:

In evaluating the available technology for
these types of libraries, we carefully
considered various operating systems. Our
studies, using the current versions of these
operating systems, showed that Linux
could best address performance, scalability,
and affordability at this point in time.
Furthermore, the level of functionality was an
important consideration, and it was found that
no loss of functionality occurred as a result
of using Linux (Ex Libris, 2000).

It is unlikely that Ex-Libris will be the last library software vendor

to support GNU/Linux, given its rapid growth in the server market, but

whether existing library software companies will produce their own open

source software remains to be seen.

This paper has given examples of software companies, like Cygnus

Solutions, that have succeeded by developing open source software but

for current library software companies to do this would require a

change in the structure and purpose of these companies. It would

require them to view themselves as service providers, like the

libraries they sell to, rather than as manufacturers of library

software. It may be more likely, as the Keystone Principles have

suggested, that libraries will build their own open source solutions to

the problems that plague the proprietary software of today. These

solutions could then be improved and promoted by the library community

47

itself, removing the middlemen and with them a large portion of the

cost of maintaining an integrated library system.

The Future of Library Specific, Open Source Software

At this time, there is a great deal of possibility for library

specific, open source software. There is community support and support

at the national level. There are also individual projects that are

doing well and attracting the attention of many in the library

community. There is no evidence, though, that library specific, open

source software will succeed in the long run. Library specific, open

source software will, without a doubt, always exist, because librarians

will always be creating solutions to their software problems (what

Raymond calls “scratching their own itches”), but whether open source

software will replace the proprietary, closed-source software that

libraries currently use remains to be seen. Daniel Chudnov, author and

maintainer of the Open Source Systems for Libraries web page, says,

“For now, open source software has not made major inroads in the

library market, but some projects suggest great possibility” (Chudnov,

1999). The question becomes do librarians, as a community, support the

effort to create open source software because it spawns from a

tradition similar to our own and offers us economic advantages that our

current proprietary software does not?

This paper has suggested that we should. There is support at the

national level and there are individual projects underway. Open source

software would allow for a peer-review process that would ensure that

the library systems of the future are not co-opted by commercial

interests that skew the results of a patron’s search based on

advertising revenue. Open source software would allow for libraries to

48

customize their system software to match their patrons’ information

needs unlike proprietary software that specifically forbids this. As

Raymond and others have documented, open source software also offers

more security and a rapid evolution cycle because of the collaboration

that occurs between a variety of programmers from different

institutions and locations around the world. Lastly, as Shane Nakerud

observed, the total cost of owning open source software is lower than

that of proprietary software, though “free software” is not free from

cost.

Libraries that accept open source software will experience a

shift in their budgeting. Where once they bought integrated library

systems from offsite vendors, now they will spend money on librarians

trained to integrate the library’s needs into freely available shared

software. The thought of hiring more librarians has discouraged some

from accepting open source solutions to their problems; instead, they

preferred to pay larger sums to software companies in exchange for

turnkey systems that must be maintained through a contractual vendor

relationship, year after year. Some library administrators are

concerned they will not be able to get support for a system that does

not cost the library any money. These and other concerns have been

answered by Eric Raymond (1998a) in response to an internal Microsoft

document that was leaked from the company. In addition, the existence

of the Internet, with its reliance on BIND, Perl, Sendmail, and Apache

is proof that open source software works and has a well-supported user

base.

Though the success of open source software is not a new

development, its potential has recently reached the awareness of the

mainstream media and public. Given the recent meteoric rise in use and

popularity of open source software, it seems just a matter of time

49

before library specific, open source projects attract more attention in

the library community. At this juncture, librarians and library

administrators have the choice whether to officially support the

development of library specific open source software, like the library

administrators who met in Keystone Colorado have suggested, or to let

these projects develop on their own. If the decision is made to reap

the benefits of this collective movement, libraries will; if the choice

is made not to encourage their growth, it is likely that individual

projects will remain just individual librarians’ solutions to their

libraries’ problems.

This paper suggests that libraries encourage the growth of

library specific, open source software in the library community and

then, once it reaches a mature state, study it. Open it up to review

and compare the results of library specific, open source projects with

the results of the proprietary software written for libraries. Which is

more responsive to the needs of librarians? Which has a lower total

cost? Which evolves based on a particular library’s patron feedback?

Which is more customizable? These are all, in the opinion of the

author, directions for future research that would help document the

success of community based software development.

50

Bibliography

American Library Association (1995). Code of ethics of the American Library
Association. Office for Intellectual Freedom Documents [Online].
Available: http://www.ala.org/alaorg/oif/ethics.html [2000, March 27].

American Library Association (1997). Questions and answers: Access to
electronic information, services, and networks: An interpretation of the
Library Bill of Rights. Interpretations of the Library Bill of Rights
[Online]. Available: http://www.ala.org/alaorg/oif/oif_q&a.html [2000,
March 27].

American Library Association (1999). Libraries, an American value. Office for
Intellectual Freedom Documents [Online]. Available:
http://www.ala.org/alaorg/oif/lib_val.html [2000, March 27].

American Library Association (2000). Equity of the information superhighway.
Library Advocacy Now! Action Pack [Online]. Available:
http://www.ala.org/advocacy/action/act1.html [2000, March 27].

Apache Software Foundation (1998). Apache webserver serves over half the
Internet. Apache Home Page [Online]. Available:
http://www.apache.org/press/05Jan98.txt [2000, April 16].

Association for Research Libraries and Online Computer Library Center (1999).
The Keystone Principles. OCLC Institute News [Online]. Available:
http://www.oclc.org/institute/keystoneprinciples.htm [2000, April 15].

Belkin, N., Oddy, R., & Brooks, H. (1982). ASK for information retrieval. Part
1: Background and theory. Journal of Documentation, 38(2).

Buckland, M. (1983). Library Services in Theory and Context. New York:
Pergamon.

California Polytechnic State University (2000). MyLibrary research page. Robert
Kennedy Library [Online]. Available:
http://www.lib.calpoly.edu/mylib/cgi-bin/index.cgi [2000, April 15].

Clarke, K.S. (1999). PyAdd.java hack. Open Source Digital Library System
Listserv [Online]. Available: http://listserv.arizona.edu/cgi-
bin/wa?A2=ind9909&L=osdls&P=R2&D=0 [2000, April 16].

Cornell University (2000). CU's MyLibrary is personalized web interface to
networked resources. Cornell Chronicle [Online]. Available:
http://www.news.cornell.edu//Chronicles/2.10.00/MyLibrary.html [2000,
April 15].

Chudnov, D. (1999). Open source software: The future of library systems?
Library Journal, 124(13).

Chudnov, D. (2000). Jointly Administered Knowledge Environment (JAKE) [Online].
Available: http://jake.med.yale.edu/docs/about.html [2000, April 9].

Chudnov, D. (2000a). Projects. Open Source Systems for Libraries (OSS4LIB)
[Online]. Available: http://www.oss4lib.org/projects/welcome.php [2000,
April 8].

Corcoran, C. (1997). Are we ready for the library of the future? Salon
[Online]. Available:
http://www.salon.com/21st/feature/1997/12/02feature.html [2000, April 15].

Danton, J. (1975). Plea for a philosophy of librarianship. American Library
Philosophy: An Anthology, ed. B. McCrimmon. Hamden, CN: Shoe String Press,
Inc.

DiBona, C., Ockman, S. & Stone, M. (1999). Contributors. Open sources: voices
from the Open Source revolution [Online]. Available:
http://www.oreilly.com/catalog/opensources/book/authors.html [2000, March
22].

http://www.ala.org/alaorg/oif/ethics.html
http://www.ala.org/alaorg/oif/oif_q&a.html
http://www.ala.org/alaorg/oif/lib_val.html
http://www.ala.org/advocacy/action/act1.html
http://www.oclc.org/institute/keystoneprinciples.htm
http://www.lib.calpoly.edu/mylib/cgi-bin/index.cgi
http://listserv.arizona.edu/cgi-
http://www.news.cornell.edu//Chronicles/2.10.00/MyLibrary.html
http://jake.med.yale.edu/docs/about.html
http://www.oss4lib.org/projects/welcome.php
http://www.salon.com/21st/feature/1997/12/02feature.html
http://www.oreilly.com/catalog/opensources/book/authors.html

51

Dougherty, D. & Sims, D. (2000). Will money spoil Open Source? Linux DevCenter
[Online]. Available:
http://oreilly.linux.com/pub/a/linux/2000/01/31/interview/index.html
[2000, March 21].

Encyclopedia of Library and Information Science: Vol. 25. (1968). New York:
Marcel Dekker, Inc.

Ex Libris (2000). Aleph 500 to run on Linux! Press Releases
[Online]. Available: http://www.aleph.co.il/news1.asp?categoryId=61&admin=
[2000, April 16].

Frumkin, J. (1999). ALA open source gathering. Open Source Digital Library
System [Online]. Available: http://osdls.library.arizona.edu/ALA/ [1999,
October 20].

Frumkin, J. (1999b). LIL--Open Source Digital Library System. Linux-in-
Libraries Listserv [Online]. Available: http://edvmix3.ub.tu-
berlin.de/lists/linux-in-libraries/199903/19990306.html#3 [1999, October
20].

Frumkin, J. (1999c). OSDLS: Open Source Digital Library System. Open Source
Digital Library System [Online]. Available:
http://osdls.library.arizona.edu/ [1999, October 20].

Frumkin, J. (1999d). OSDLS update. Open Source Digital Library System Listserv
[Online]. Available: http://listserv.arizona.edu/cgi-
bin/wa?A2=ind9905&L=osdls&P=R154 [1999, October 19].

Hildreth, C. (1982). The concept and mechanics of browsing in an online library
catalog. Proceedings of the 3rd National Online Meeting. Medford, NJ:
Learned Information, Inc.

Indiana University (1998). IU School of Information and Library Science
[Online]. Available: http://www.iupui.edu/home/libinf.html [2000, April
14].

Kilpatrick, T. (1997). ALA reports--San Francisco, June 26 - July 3, 1997
Social Responsibilities Round Table. Southern Exposure: The Newsletter of
Morris Library [Online]. Available:
http://www.lib.siu.edu/southex/1997/jul17.html [2000, April 16].

Kochen, M. (1993). Information and society. Annual Review of Information
Science and Technology, 18. White Plains, NY: Knowledge Industry
Publications.

Lacal, J. (1999). Re: Thoughts on making the OSDLS a distribution. Open Source
Digital Library System Listserv [Online]. Available:
http://listserv.arizona.edu/cgi-bin/wa?A2=ind9909&L=osdls&P=R269 [1999,
October, 20].

Lehey, G. (1999). The path ahead. The Daemon News: Bringing BSD Together
[Online]. Available: http://www.daemonnews.org/199912/d-advocate.html
[2000, March 25].

Leonard, A. (1998). Let my software go. Salon [Online]. Available:
http://www.salon.com/21st/feature/1998/04/cov_14feature.html [2000, April
16].

LinuxDevices.Com (1999). Red Hat + Cygnus merger creates Open Source
powerhouse. LinuxDevices.Com: the Embedded Linux Portal [Online].
Available: http://www.linuxdevices.com/cgi-
bin/news_view.cgi?newsid=NS6531911783 [2000, March 21].

Lyman, P. (1997). Digital documents and the future of the academic community.
Scholarly Communication and Technology [Online]. Available:
http://arl.cni.org/scomm/scat/lyman.html [2000, March 26].

Merriam-Webster (2000). Potlatch. Merriam-Webster Online Dictionary [Online].
Available: http://search.eb.com/cgi-bin/dictionary?va=potlatch [2000,
March 27].

Morgan, E. (1998). About MyLibrary. About MyLibrary@NCSU [Online]. Available:
http://my.lib.ncsu.edu/about/about-1.1.2b/ [2000, April 9].

http://oreilly.linux.com/pub/a/linux/2000/01/31/interview/index.html
http://www.aleph.co.il/news1.asp?categoryId=61&admin=
http://osdls.library.arizona.edu/ALA/
http://edvmix3.ub.tu-
http://osdls.library.arizona.edu/
http://listserv.arizona.edu/cgi-
http://www.iupui.edu/home/libinf.html
http://www.lib.siu.edu/southex/1997/jul17.html
http://listserv.arizona.edu/cgi-bin/wa?A2=ind9909&L=osdls&P=R269
http://www.daemonnew
http://www.salon.com/21st/feature/1998/04/cov_14feature.html
http://www.linuxdevices.com/cgi-
http://arl.cni.org/scomm/scat/lyman.html
http://search.eb.com/cgi-bin/dictiona
mailto:MyLibrary@NCSU
http://my.lib.ncsu.edu/about/about-1.1.2b/

52

Morgan, E. (1999). Marketing future libraries. Publications [Online].
Available: http://www.lib.ncsu.edu/staff/morgan/cil/marketing/index.html
[2000, March 27].

Morgan, E. (1999a). Marketing through usability. Publications [Online].
Available: http://www.lib.ncsu.edu/staff/morgan/cil/usability/index.html
[2000, March 27].

Morgan, E. (1999b). MyLibrary co-development and source code distribution plan.
About MyLibrary@NCSU [Online]. Available: http://hegel.lib.ncsu.edu
/development/mylibrary/about/distribution-plan.html [2000,
April 15].

Morgan, E. (2000). Just for the record. MyLib-Dev Mailing List [Online].
Available: http://hegel.lib.ncsu.edu/development/mylibrary/support
/mailing-list/0031.html [2000, April 15].

Morgan, E. (2000a). Open Source and librarianship. Open Source Systems for
Libraries Listserv [Online]. Available:
http://www.oss4lib.org/listserv/msg00122.php [2000, March 27].

Morgan, E. (2000b). Personalized library interfaces. MyLib-Dev Mailing List
[Online]. Available: http://hegel.lib.ncsu.edu/development/mylibrary
/support/mailing-list/0087.html [2000, April 14].

Mukherjee, A. (1966). Librarianship: Its Philosophy and History. Bombay: Asia
Publishing House.

McHugh, J. (1998). For the love of hacking. Forbes Magazine [Online].
Available: http://www.forbes.com/forbesglobal/98/0810/0109044a.htm [2000,
March 20].

Nakerud, S. (1999). E-Reserves: Home grown vs. turnkey. The Paper—FreeReserves
[Online]. Available: http://www.lib.umn.edu/san/freereserves/paper.html
[2000, April 9].

Nakerud, S., Dawson-Schmidt, P. & Van Cleave, K. (1999). FreeReserves
[Online]. Available: http://www.lib.umn.edu/san/freereserves/ [2000, April
9].

NetBSD Community (1999). BSD community welcomes Apple's new Open Source
operating system.” News Release [Online]. Available:
http://www.netbsd.org/gallery/press/19990607a.html [2000, March 26].

OCLC (2000). OCLC Access Suite [Online]. Available:
http://www.oclc.org/oclc/menu/suite/index.htm [2000, April 24]

Open Source Initiative (1999). Approved licenses. Open Source Software Gets
Honest [Online]. Available: http://www.opensource.org/licenses/ [2000,
March 26].

Open Source Initiative. (1999a). Open Source Products. Open Source Initiative
Home Page [Online]. Available: http://www.opensource.org/products [2000,
April 16].

OSDLS Community (1999). OSDLS: About the OSDLS. Open Source Digital Library
System [Online]. Available: http://osdls.library.arizona.edu/about.html
[1999, October 24].

OSDLS Community (1999a). The OSDLS white paper. Open Source Digital Library
System [Online]. Available: http://osdls.library.arizona.edu/OSDLSW.html
[1999, October 19].

Perl Mongers (2000). Fast perl facts. Perl Mongers Press Room [Online].
Available: http://www.perl.org/press/fast_facts.html [2000, April 16].

Rauch, E. (1998). Mentions of ‘Open Source’ counted by Lexis/Nexis Search.
History of the Open Source Initiative [Online]. Available:
http://www.opensource.org/graphics/mentions.png [2000, March 15].

Raymond, E. (1998). The hacker milieu as a gift culture. Homesteading the
Noosphere [Online]. Available:
http://www.tuxedo.org/~esr/writings/homesteading/homesteading-6.html
[2000, April 22]

http://www.lib.ncsu.edu/staff/morgan/cil/marketing/index.html
http://www.lib.ncsu.edu/staff/morgan/cil/usability/index.html
mailto:MyLibrary@NCSU
http://hegel.lib.ncsu.edu
http://hegel.lib.ncsu.edu/development/mylibrary/support
http://www.oss4lib.org/listserv/msg00122.php
http://hegel.lib.ncsu.edu/development/mylibrary
http://www.forbes.com/forbesglobal/98/0810/0109044a.h
http://www.lib.umn.edu/san/freereserves/paper.html
http://www.lib.umn.edu/san/freereserves/
http://www.netbsd.org/gallery/press
http://www.oclc.org/oclc/menu/suite/index.htm
http://www.opensource.org/licenses/
http://www.opensource.org/products
http://osdls.library.arizona.edu/about.html
http://osdls.library.arizona.edu/OSDLSW.html
http://www.perl.org/press/fast_facts.html
http://www.opensource.org/graphics/mentions.png
http://www.tuxedo.org/~esr/writings/homesteading/homesteading-6.html

53

Raymond, E. (1998a). Open source software: A (new?) developmental methodology.
The Halloween Documents [Online]. Available:
http://www.opensource.org/halloween/halloween1.html [2000, April 16].

Raymond, E. (1998b). Varieties of hacker ideology. Homesteading the Noosphere
[Online]. Available:
http://www.tuxedo.org/~esr/writings/homesteading/homesteading-2.html
[2000, March 26].

Raymond, E. (1999). A brief history of hackerdom. Open Sources: Voices from the
Open Source Revolution [Online]. Available:
http://www.oreilly.com/catalog/opensources/book/raymond.html
[2000, March 12].

Raymond, E. (1999a). The cathedral and the bazaar. The Cathedral and the Bazaar
[Online]. Available: http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar-1.html [2000, March 23].

Raymond, E. (1999b). The cathedral and the bazaar: Footnotes. The Cathedral and
the Bazaar [Online]. Available:
http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar-15.html#[IN] [1999, October 24].

Raymond, E. (1999c). The History of the Open Source Initiative [Online].
Available: http://www.opensource.org/history.html [2000, March 26].

Raymond, E. (1999d). The importance of having users. The Cathedral and the
Bazaar [Online]. Available: http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar-3.html [2000, March 23].

Raymond, E. (1999e). Necessary preconditions for the bazaar style. The
Cathedral and the Bazaar [Online]. Available:
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar-
9.html [1999, October 20].

Raymond, E. (1999f). Release early, release often. The Cathedral and the Bazaar
[Online]. Available: http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar-4.html [2000, April 8].

Raymond, E. (1999g). The social context of open source software. The Cathedral
and the Bazaar [Online]. Available:
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar-
10.html [2000, April 9].

Raymond, E. (1999h). When is a rose not a rose. The Cathedral and the Bazaar
[Online]. Available: http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar-5.html [2000, March 26].

Raymond, E., ed. (2000). The jargon file. Jargon File Resources [Online].
Available: http://www.tuxedo.org/~esr/jargon/jargon.html [2000, March
13].

Richardson, E. (1975). The book and the person who knows the book. American
Library Philosophy: An Anthology, ed. B. McCrimmon. Hamden, CN: Shoe
String Press, Inc.

San Francisco Public Library (1998). Internet use policy. San Francisco Public
Library [Online]. Available: http://nora.sfpl.lib.ca.us/www/internet.html
[2000, April 15].

Sharett, K. (2000). Information sharing is key to corporate success.
SmallCapCenter.Com [Online]. Available:
http://www.smallcapcenter.com/story.asp?storytype=sccnews&component=story.
asp&storyid=6620 [2000, April 16].

Shera, J. (1970). Sociological Foundations of Librarianship. Bombay: Asia
Publishing House.

Software Magazine. (1999). The software 500. Software Magazine [Online].
Available: http://www.softwaremag.com/archive/1999/0699alpha.html [2000,
March 21].

http://www.opensource.org/halloween/halloween1.html
http://www.tuxedo.org/~esr/writings/homesteading/homesteading-2.html
http://www.oreilly.com/catalog/opensources/book/raymond.html
http://www.tuxedo.org/~esr/writings/cathedral-
http://www
http://www.opensource.org/history.html
http://www.tuxedo.org/~esr/writings/cathedral-
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar-
http:/
http://www.tuxedo.org/~esr/writings/cathedral-b
http://www.tuxedo.org/~esr/writings/cathedral-
http://www.tuxedo.org/~esr/jargon/jargon.html
http://nora.sfpl.lib.ca.us/www/internet.html
http://www.smallcapcenter.com/story.asp?storytype=sccnews&component=story
http://www.softwaremag.com/archive/1999/0699alpha.html

54

Speedie, A. (2000). Apache grabs two-thirds of new websites. Wide Open News
[Online]. Available: http://www.wideopen.com/story/670.html [2000, April
16].

Speedie, A. (2000a). What Are Linux Developers Thinking?! Wide Open News
[Online]. Available: http://www.wideopen.com/story/680.html [2000, April
22]

Stallman, R. (1991). GNU General Public License. GNU Project--Free Software
Foundation [Online]. Available: http://www.fsf.org/copyleft/gpl.html
[2000, March 20].

Stallman, R. (1998). The GNU Project. The Philosophy of the GNU Project
[Online]. Available: http://www.gnu.org/gnu/the-gnu-project.html [2000,
March 12].

Stallman, R. (1998a). Selling free software. The Philosophy of the GNU Project
[Online]. Available: http://www.fsf.org/philosophy/selling.html [2000,
March 12].

Stallman, R. (1999). Free Software Foundation. Free Software Foundation
[Online]. Available: http://www.fsf.org/fsf/fsf.html [2000, March 12].

Stallman, R. (1999a). What is the copyleft? Free Software Foundation [Online].
Available: http://www.fsf.org/copyleft/copyleft.html [2000, March 20].

Stallman, R. (1999b). Why ‘Free Software’ is better than ‘Open Source’. Free
Software Foundation [Online]. Available:
http://www.fsf.org/philosophy/free-software-for-freedom.html [2000, March
26].

Stallman, R. (2000). What is Free Software? Free Software Foundation [Online].
Available: http://www.fsf.org/philosophy/free-sw.html [2000,
April 22].

Sullivan, B. (1999). BSD a better OS than Linux? ZDNet News [Online].
Available: http://www.zdnet.com/filters/printerfriendly/0,6061,2299366-
2,00.html [2000, March 26].

Summerhill, C. (1999). Re: LIL--Electronic Card Catalog. Linux-in-Libraries
Listserv [Online]. Available: http://edvmix3.ub.tu-berlin.de/lists/linux-
in-libraries/199903/19990304.html [1999, October 24].

Taylor, R. (1968). Question negotiation and information seeking in libraries.
College & Research Libraries, 29.

Tiemann, M. (1999). Future of Cygnus Solutions: An entrepreneur’s account. Open
Sources: Voices from the Open Source Revolution [Online]. Available:
http://www.oreilly.com/catalog/opensources/book/tiemans.html [2000, March
20].

Time Magazine (2000). The Open Source revolution newsfile. Time Digital
[Online]. Available:
http://www.time.com/time/digital/reports/opensource/index.html [2000,
March 26].

Torvalds, L. (1999). The Linux edge. Open Sources: Voices from the Open Source
Revolution [Online]. Available:
http://www.oreilly.com/catalog/opensources/book/linus.html [2000, March
22].

Vaughan-Nichols, S. (1999). The oldest free OS. ZDNet Sm@rt Reseller: Opinion
[Online]. Available:
http://www.zdnet.com/sr/stories/column/0,4712,398025,00.html [2000, March
26].

Virginia Commonwealth University (2000). About My Library. VCU Libraries
[Online]. Available: http://www.library.vcu.edu/mylibrary/about.html
[2000, April 15].

http://www.wideopen.com/story/670.html
http://www.wideopen.com/story/680.html
http://www.fsf.org/copyleft/gpl.html
http://www.gnu.org/gnu/the-gnu-project.html
http://www.fsf.org/philosophy/selling.html
http://www.fsf.org/fsf/fsf.html
http://www.fsf.org/copyleft/copyleft.html
http://www.fsf.org/philosophy/free-software-for-freedom.html
http://www.fsf.org/philosophy/free-sw.html
http://www.zdnet.com/filters/printerfriendl
http://edvmix3.ub.tu-berlin.de/lists/linux-
http://www.oreilly.com/catalog/opensources/book/tiemans.html
http://www.time.com/time/digital/reports/opensource/index.html
http://www.oreilly.com/catalog/opensources/book/linus.html
mailto:Sm@rt
http://www.zdnet.com/sr/stories/column/0,4712,398025,00.html
http://www.library.vcu

55

Appendix A: Open Source Licenses

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass
Ave, Cambridge, MA 02139, USA. Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is
not allowed.

PREAMBLE

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the
software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make
certain that everyone understands that there is no warranty for this
free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on
the original authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the

56

program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which
contains a notice placed by the copyright holder saying it may be
distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based
on the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that
is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent
notices stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish,
that in whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

 c) If the modified program normally reads commands
interactively when run, you must cause it, when started running for
such interactive use in the most ordinary way, to print or display an

57

announcement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print
an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

 3. You may copy and distribute the Program (or a work based on
it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:

 a) Accompany it with the complete corresponding machine-
readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

 b) Accompany it with a written offer, valid for at least
three years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

 c) Accompany it with the information you received as to the
offer to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special

58

exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the
source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the
Program except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have
not signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

 6. Each time you redistribute the Program (or any work based on
the Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

 7. If, as a consequence of a court judgment or allegation of
patent infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a
consequence you may not distribute the Program at all. For example, if
a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the

59

integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that
system in reliance on consistent application of that system; it is up
to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by
the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other
free programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

60

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

61

The BSD License

 The following is a BSD license template. To generate your own
license, change the values of OWNER, ORGANIZATION and YEAR from their
original values as given here, and substitute your own.

 Note: The advertising clause in the license appearing on BSD Unix
files was officially rescinded by the Director of the Office of
Technology Licensing of the University of California on July 22 1999.
He states that clause 3 is ``hereby deleted in its entirety.''

 Note the new BSD license is thus equivalent to the MIT License,
except for the no-endorsement final clause. <OWNER> = Regents of the
University of California <ORGANIZATION> = University of California,
Berkeley <YEAR> = 1998

 In the original BSD license, the first occurrence of the phrase
"COPYRIGHT HOLDERS AND CONTRIBUTORS" in the disclaimer read "REGENTS
AND CONTRIBUTORS".

Here is the license template:

Copyright (c) <YEAR>, <OWNER> All rights reserved.

 Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

 Neither name of the <ORGANIZATION> nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

62

The "Artistic License”

Preamble

 The intent of this document is to state the conditions under
which a Package may be copied, such that the Copyright Holder maintains
some semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.

Definitions:

 "Package" refers to the collection of files distributed by the
Copyright Holder, and derivatives of that collection of files created
through textual modification.

 "Standard Version" refers to such a Package if it has not been
modified, or has been modified in accordance with the wishes of the
Copyright Holder.

 "Copyright Holder" is whoever is named in the copyright or
copyrights for the package.

 "You" is you, if you're thinking about copying or distributing
this Package.

 "Reasonable copying fee" is whatever you can justify on the basis
of media cost, duplication charges, time of people involved, and so on.
(You will not be required to justify it to the Copyright Holder, but
only to the computing community at large as a market that must bear the
fee.)

 "Freely Available" means that no fee is charged for the item
itself, though there may be fees involved in handling the item. It also
means that recipients of the item may redistribute it under the same
conditions they received it.

 1. You may make and give away verbatim copies of the source form
of the Standard Version of this Package without restriction, provided
that you duplicate all of the original copyright notices and associated
disclaimers.

 2. You may apply bug fixes, portability fixes and other
modifications derived from the Public Domain or from the Copyright
Holder. A Package modified in such a way shall still be considered the
Standard Version.

 3. You may otherwise modify your copy of this Package in any way,
provided that you insert a prominent notice in each changed file
stating how and when you changed that file, and provided that you do at
least ONE of the following:

 a) place your modifications in the Public Domain or
otherwise make them Freely Available, such as by posting said

63

modifications to Usenet or an equivalent medium, or placing the
modifications on a major archive site such as ftp.uu.net, or by
allowing the Copyright Holder to include your modifications in the
Standard Version of the Package.

 b) use the modified Package only within your corporation or
organization.

 c) rename any non-standard executables so the names do not
conflict with standard executables, which must also be provided, and
provide a separate manual page for each non-standard executable that
clearly documents how it differs from the Standard Version.

 d) make other distribution arrangements with the Copyright
Holder.

 4. You may distribute the programs of this Package in object code
or executable form, provided that you do at least ONE of the following:

 a) distribute a Standard Version of the executables and
library files, together with instructions (in the manual page or
equivalent) on where to get the Standard Version.

 b) accompany the distribution with the machine-readable
source of the Package with your modifications.

 c) accompany any non-standard executables with their
corresponding Standard Version executables, giving the non-standard
executables non-standard names, and clearly documenting the differences
in manual pages (or equivalent), together with instructions on where to
get the Standard Version.

 d) make other distribution arrangements with the Copyright
Holder.

 5. You may charge a reasonable copying fee for any distribution
of this Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However, you
may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own.

 6. The scripts and library files supplied as input to or produced
as output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whomever generated
them, and may be sold commercially, and may be aggregated with this
Package.

 7. C or Perl subroutines supplied by you and linked into this
Package shall not be considered part of this Package.

 8. The name of the Copyright Holder may not be used to endorse or
promote products derived from this software without specific prior
written permission.

64

 9. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

