
B A C H E L O R

T H E S I S

VNC-Interface
for

Java X86-Emulator Dioscuri

Evgeni Genev
Matr.-Nr. 2151451

advisor

Dr. Dirk von Suchodoletz

Prof. Dr. Gerhard Schneider

at the

Chair of Communication Systems
University of Freiburg

VNC-Interface for Java X86-Emulator Dioscuri

Declaration

I hereby declare, that I am the sole author and composer of my Thesis and that no other sources or
learning aids, other than those listed, have been used. Furthermore, I declare that I have acknow-
ledged the work of others by providing detailed references of said work . I hereby also declare,
that my Thesis has not been prepared for another examination or assignment, either wholly or
excerpts thereof.

place, date Signature

i

VNC-Interface for Java X86-Emulator Dioscuri

Table of Contents

1 Introduction 2

2 State of the art 4
2.1 The hardware emulator Dioscuri . 4
2.2 RFB and VNC . 6
2.3 The Java library VNCj . 8

3 Implementation 9
3.1 Updating VNCj . 9
3.2 Events . 9

3.2.1 Keyboard events . 10
3.2.2 Mouse (Pointer) events . 12

3.3 Framebuffer update requests and framebuffer updates 14
3.4 A VNC server for Dioscuri . 17

4 Testing 19

5 Conclusion 21

ii

VNC-Interface for Java X86-Emulator Dioscuri

Abstract

Dioscuri ist ein in Java geschriebener X86-Emulator für die digitale Langzeitarchivierung. Es
gab im Zuge des PLANETS Project eine Reihe von Experimenten für die Automatisierung von
typischerweise interaktiven Abläufen. Dieses wurde bisher mit dem Emulator QEMU gemacht,
der über ein eingebautes VNC-Interface verfügt. Dieser Ansatz soll verallgemeinert werden und
dafür auch Dioscuri um ein solches VNC-Interface erweitert werden. Danach soll dessen Funk-
tion getestet werden.

1

VNC-Interface for Java X86-Emulator Dioscuri

1 Introduction

In the past fifty years a real boom in the development of computer hardware and software has
been witnessed. On the one hand, this trend has a positive influence on the software develop-
ment. On the other hand, it is almost impossible to keep digital equipment older than twenty
years running, either because the spare parts are very expensive or because they are almost im-
possible to be found. As a consequence, many digital objects are loosing their natural hardware
and software environment. Literally, this could mean for some of them the end of their life. This
makes the virtual reproduction of this working environment, the emulation, an important part of
the preservation of digital objects.

The emulation is not the only possible preservation strategy; another one is the migration.
Both are rather complementary than contradictory to each other. The migration, for example,
can benefit from the emulation. The emulation makes it possible to convert digital objects in the
future, even if the particular working environment is no longer available. Another positive effect
of the emulation is that the object can stay unchanged and, as already mentioned, can be viewed
in its original environment.

The migration of software in such an emulated environment poses another question: how to
create a generalized automated migration approach that works for any combination of emulated
hardware and software? The main observation is that the most objects to be kept are objects,
which were created and managed using some text screen or a graphical user interface. Another
fact is that any user interaction can be interpreted as a sequence of mouse and keyboard events.
An automated GUI or command line sequence can be created recording these user interactions
and running them afterward, proving not only the end result but also the in-between states.

As a part of the PLANETS1 project a handful of experiments was made trying to automate
typically interactive procedures. These tests have shown that the remote control software VNC2

is a very promising solution. VNC builds upon RFB3 - a simple remote access protocol, which
works at the framebuffer level and is consequently platform independent.

The above mentioned tests were made using the QEMU4 emulator, which has an integrated
VNC interface. The resulting automation technique should be generalized and tested with other
suitable emulators. The main problem is that many of them do not have an integrated VNC inter-
face. There exists also the possibility to run a VNC server inside of the emulated environment,
but the solution with a VNC interface as a part of the emulator is the general one.

The last paragraph almost states the goal of this work: it is the implementation of an integrated
VNC server for another suitable emulator, thus help generalizing the above technique. As such

1See PLANETS [2010]
2See RealVNC [2010]
3See Richardson [2009]
4See QEMU [2010]

2

VNC-Interface for Java X86-Emulator Dioscuri

an emulator Dioscuri5 is chosen. The first two sentences from the Dioscuri’s homepage outline
the reasons for this choice:

„Dioscuri is an x86 computer hardware emulator written in Java“, and therefore platform
independent.

„It is designed by the digital preservation community to ensure documents and programs
from the past can still be accessed in the future. “

5See Dioscuri [2010]

3

VNC-Interface for Java X86-Emulator Dioscuri

2 State of the art

The aim of this chapter is to state the preconditions for the development of a VNC interface
for Dioscuri. It starts with a brief explanation of what an emulator is, then describes the current
development state of the emulator, and goes shortly into details on how it functions. Afterwards
the terms VNC and RFB will be explained and at the end an overview of the Java library VNCj6

will be supplied.

2.1 The hardware emulator Dioscuri

There are many definitions of the emulator term. One of them can be found in Rothenberg [2000]:

„The computer science term ’emulation’ denotes a process in which one computer is used
to reproduce the behavior of another computer with such fidelity that the emulation can be
used in place of the original computer...“

From the digital preservation point of view an emulator is a tool used to keep an obsoleted soft-
ware running, without needing the respective hardware. Not the performance but the flexibility
and the durability of the emulator are important:

„As Moore’s law is still applicable today, it is likely that computer systems in the future will
turn out to be faster. Speculating on this line of thought, building an emulator for digital
preservation doesn’t have to be focused on performance too much.“ 7

These specific requirements led the National Library of the Netherlands8 and the Nationaal
Archief of the Netherlands9 to the idea of the creation of Dioscuri, a new emulator to suite
exactly the needs of the long time preservation of digital objects.

Dioscuri is a relatively young project. Its development started in 2006 and was led by the soft-
ware company Tessella Support Services plc.10 „From 2008 onwards, Dioscuri is being further
developed by the National Library of the Netherlands within the European project PLANETS
and later on also the European project KEEP.“11 The main goal is the creation of a full 32-bit
emulator, but, as stated on the project’s homepage, the intermediate result is focused on the crea-
tion of a „16-bit emulator capable of executing MS DOS and earlier versions of MS Windows
(3.x).“

6See Liron [2002]
7See van der Hoeven [2007]
8The homepage of the library http://www.kb.nl/
9The homepage of the archive http://www.nationaalarchief.nl/

10The homepage of the Tessella company http://www.tessella.com/
11Dioscuri [2010]

4

http://www.kb.nl/
http://www.nationaalarchief.nl/
http://www.tessella.com/

VNC-Interface for Java X86-Emulator Dioscuri

Figure 1: The Dioscuri design12

Dioscuri is an open source software published under the GNU General Public License (GPL).13

It is written in Java, hence it can be moved to any computer platform which supports the Java
Virtual Machine (JVM). It is the portability that is crucial for the long-term availability of the
emulator. Software already running on multiple platforms is supposed to continue running in the
future too.

Dioscuri is completely component-based. From the users point of view this is a very conve-
nient characterization; they can put different hardware modules together building a very specific
virtual machine suiting their needs. This flexibility eases the life of the developers too, making
the development of new or updated future modules simpler.

The structure of the emulator’s GUI is quite simple. It consists of three main components –
the menu, the screen panel (with its underlying emulation screen) and the status bar. The GUI is
built using the Swing API, which is a part of the Java Foundation Classes.14

Of major importance for this work the screen panel plus the underlying emulation screen as
well as the GUI itself are. The entire output of the underlying emulation is redirected to the

12Source: http://www.kb.nl/hrd/dd/dd_projecten/projecten_emulatieproject-en.html
13The GNU General Public License http://www.gnu.de/documents/gpl.en.html
14A good start using JFC/Swing is „The Swing Tutorial“ at http://download.oracle.com/javase/

tutorial/uiswing/

5

http://www.kb.nl/hrd/dd/dd_projecten/projecten_emulatieproject-en.html
http://www.gnu.de/documents/gpl.en.html
http://download.oracle.com/javase/tutorial/uiswing/
http://download.oracle.com/javase/tutorial/uiswing/

VNC-Interface for Java X86-Emulator Dioscuri

screen panel. In other words, the content of the screen panel represents the output to be carried
over the network. The input is composed of keyboard and pointer events. The pointer events are
handled in the emulation screen whereas the keyboard input is handled in the GUI. The protocol
which takes care of how the input and the output are to be transported over the network is the
Remote Framebuffer protocol.

2.2 RFB and VNC

„RFB („remote framebuffer“) is a simple protocol for remote access to graphical user inter-
faces. Because it works at the framebuffer level, it is applicable to all windowing systems
and applications, including X11, Windows and Macintosh. RFB is the protocol used in VNC
(Virtual Network Computing). “15

The first important feature of RFB is its simplicity, which makes the creation of a new client or
the porting of an existing one an easy process. The next distinguishing marks, which make RFB
a good tool for the uses of the digital preservation are its portability and flexibility. RFB can be
used to supply access to any windowing system or to a single application. This turns RFB and
partly VNC to a very usable tool, when the intention is to allow remote access to the graphical
user interface of particular desktop application.

Handshaking

Initialisation

Normal Interaction

Protocol Version

Security Negotiation

ClientInit

ServerInit

Client to server messages

shared-flag framebuffer-height

name-length

server-pixel-format

name-string

framebuffer-width

Server to client messages

SetEncodings

KeyEvent

FramebufferUpdateRequest

PointerEvent

SetPixelFormat

ClientCutText

...

SetColourMapEntries

ServerCutText

Bell

...

FramebufferUpdate

Figure 2: The RFB phases

Two communication endpoints can be distinguished: the RFB server and the RFB client or
viewer. The RFB server is the machine where the changes to the framebuffer originate, i.e. where
the accessed GUI application runs. The RFB client is the other endpoint, where the keyboard and
the pointer input are generated.16

15The most citations in this work are from RFB 3.8 because of the better explanation of the terms and the not so
huge differences between the versions.

16The client and the server can be a single machine like in the case, where the VNC is only used to create an extra
abstraction level between the user interface and the real GUI hidden behind the VNC interface.

6

VNC-Interface for Java X86-Emulator Dioscuri

As shown in Figure 2, the protocol has three subsequent stages. In the Negotiation Phase the
protocol version and the security are negotiated. If and only if both sides agree about them, the
Initialization Phase happens. It is about setting the standards for the further communication. The
third and last stage is the communication itself or the Normal Interaction Phase.

The steps inside the Communication Phase look in general as follows (see also Figure 3):

1. The user generates input typing on his keyboard or moving his mouse.

2. The input is sent from the RFB client to the server whenever the user presses a key or a
button or whenever he moves a pointing device

3. The server software registers the events and relays them to the windowing system.

4. The windowing system updates its framebuffer if necessary.

5. On client request the server sends the framebuffer updates to the client.

In the Implementation chapter it will be accentuated on the Normal Interaction Phase, especi-
ally on the way the key and pointer events are translated to the underlying application layer and
on the different ways the framebuffer updates are generated and encoded.

framebuffer

keyboard

mouse

Client Server
FramebufferUpdateRequest

FramebufferUpdate

PointerEvents

KeyEvent

incremental,x-pos,y-pos,
width,height

1: x-pos, y-pos, width, height, encoding, Data

2: x-pos, y-pos, width, height, encoding, Data

n: x-pos, y-pos, width, height, encoding, Data
.......

button-mask, x-pos, y-pos

down-flag, padding, key

framebuffer

Figure 3: the RFB’s communication phase

7

VNC-Interface for Java X86-Emulator Dioscuri

2.3 The Java library VNCj

VNCj17 is a Java library, created in the late 2000, lastly updated in 2002 (despite some small
changes in 2003) and published under the LGPL18. At the present day the development of the
library is discontinued. Its latest release is designed for JDK 1.4 and the standard today is JDK
6.19

According to its homepage VNCj is a Java library „for developing VNC servers“. The library
implements the first version of the RFB, namely the version 3.3 from January 1998. However,
the differences between RFB 3.3 and 3.8 are not so immense. For example, some new pixel en-
codings were added, but the manner the client and the server communicate is almost unchanged.

The library allows six different models of use: „Swing“, „AWT“, „Lightweight“, „Pixel“,
„Console“ and the most general of all – the one that all others implement – the „RFB“ mo-
del. For every model a small example of use exists. As shown in the Implementation phase, the
„Swing Model“ and the underlying „RFB Model“ are highly important for the purposes of this
work.

The library has also a tiny integrated web server, which can serve the Java applet to any Java-
enabled browser.

Another benefit of the library is its uniqueness. Java is mainly used on the client-side to supply
a platform independent RFB Viewers. The server side applications are developed using compiled
languages like C++ for example.20 This strategy leads to speed advantages but at the same time
limits the portability of the implemented VNC server software. As already stated, not the speed
but the portability is of greater importance for the long time preservation of digital objects.

The project’s homepage claims that „using VNCj, you can create a full graphical user interface
in Java [...] and immediately export it to anyone on the network with a VNC viewer“. The next
chapter demonstrates that an updated version of the library can also be used to export an already
existing Java GUI.

17See Liron [2002]
18The GNU Lesser General Public License http://www.gnu.org/licenses/lgpl.html
19JDK 6 is sometimes also referred as JDK 1.6. In this thesis the Oracle notation is used, namely JDK 6 Update 21
20See http://libvncserver.sourceforge.net/

8

http://www.gnu.org/licenses/lgpl.html
http://libvncserver.sourceforge.net/

VNC-Interface for Java X86-Emulator Dioscuri

3 Implementation

The goal of this chapter is to show the development of a fully functional VNC interface for the
modular emulator Dioscuri. A brief look inside the source code of Dioscuri and of VNCj helps
outlining the rough implementation idea.

On the one hand, Dioscuri is a Java Swing application and his top level container, the Dios-
curiFrame, is an extended JFrame. The DioscuriFrame also registers the mouse and keyboard
events and redirects them to the emulation module. The emulation’s screen output occurs inside
the GUI’s screenPane which is an instance of the JScrollPane class.

On the other hand, the VNCj’s VNCJFrame is also an extension of the JFrame. Creating an
instance of the VNCJFrame and adding the already instantiated screenPane as a contentPane of
it solves the output problem. The solution of the input problem is also straightforward – capture
the keyboard and the mouse events in the top level VNCJFrame and send them to the Dioscuri’s
event manager.

In the first part of this chapter the update of the VNCj library is briefly represented. An ex-
planation of the event translation and the framebuffer update implementation follow. The last
subpart covers the creation of the VNC interface.

The development and the testing were made under JDK 6 Update 2121 using the free IDE
Eclipse Galileo.22

3.1 Updating VNCj

The latest version of VNCj requires JDK 1.4.0, the actual version of the JDK is JDK 6 Update
21. Initial tests under JDK 6 have shown, that the Swing and AWT parts of the library are not
working correctly. The main problems were caused by interface changes. Fortunately, the most
missing methods were almost automatically added by Eclipse.

Another problem was that the gnu.awt.virtual.VirtualLightweightPeer, needed both from the
Swing and the AWT part, was not a Swing Container. Adding an extra „implements Container-
Peer“-directive and the corresponding methods solves this problem too.

3.2 Events

From the RFB point of view the key events are part of the Client to server messages and build
the server-side input. This input is generated on the client side. It reaches the server in the form
21See http://www.oracle.com/technetwork/java/javase/overview/index.html
22See http://www.eclipse.org/galileo/

9

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.eclipse.org/galileo/

VNC-Interface for Java X86-Emulator Dioscuri

of machine-independent byte stream. To ease the decoding every message begins with a single
byte, holding its unique identity number. The message-specific data follows.

From Java’s point of view this messages form a Data Stream. The part of VNCj, that breaks this
input data stream into useful data chunks is the gnu.rfb.server.RFBSocket class. Every message
is afterwards resend for processing to the respective part of the library. The postprocessing of the
key and the pointer events, for example, is done in the gnu.vnc.awt.VNCEvents class.

3.2.1 Keyboard events

The key events as defined in the RFB Protocol are „A key press or release“. A key event generates
an 8 byte long message where the second byte is non-zero, if the key was pressed, and zero on
key released. The identity of the key is coded in the last 4 bytes using the key’s keysym value.23

Pressing the left Shift key, for example, followed by the ’a’ key generates two key pressed events
- one with keysym value 0xffe1 and another with 0x0041 – the keysym of the Latin capital letter
’A’(the keysym for ’a’ is 0x0061). The simple observation is, that the pressing of a capital ’A’ can
be identified only by its keysym. According to RFB a „shift state“ is only to be used as a hint and
„the difference between upper and lower case keysyms is significant“. Vice versa, the modifier
keys like Control and Alt „should be taken as modifying the interpretation of other keysyms“.

Java’s interpretation of the key events looks a little bit different. Java distinguishes between
three types of key events: key-pressed, key-released and key-typed. There are also three key types:

1. Character keys – letters, numbers and all symbols

2. Action keys – the function keys (F1, F2,...), Page Up, Page Down,...

3. Modifiers – Shift, Control, Alt etc.

The character keys generate all three event types. According to the KeyEvent documentation
the key-typed event is the preferred way to find out about character input. The action keys and
the modifiers generate only key-pressed and key-released events. The modifiers also modify the
way the character and action keys are interpreted.

Typing for example the ’a’ key in a Java GUI produces the following event sequence:
j a v a . awt . e v e n t . KeyEvent [KEY_PRESSED , keyCode =65 ,

keyText =A, keyChar='a' , k e y L o c a t i o n =KEY_LOCATION_STANDARD,
rawCode =65 , p r i m a r y L e v e l U n i c o d e =97 , s c a n c o d e =30] on frame0

j a v a . awt . e v e n t . KeyEvent [KEY_TYPED, keyCode =0 ,
keyText =Unknown keyCode : 0x0 , keyChar='a' , k e y L o c a t i o n =KEY_LOCATION_UNKNOWN,
rawCode =0 , p r i m a r y L e v e l U n i c o d e =0 , s c a n c o d e =0] on frame0

23A list of the keysym values can be found under http://cgit.freedesktop.org/xorg/proto/x11proto/
plain/keysymdef.h

10

http://cgit.freedesktop.org/xorg/proto/x11proto/plain/keysymdef.h
http://cgit.freedesktop.org/xorg/proto/x11proto/plain/keysymdef.h

VNC-Interface for Java X86-Emulator Dioscuri

key press A (after Shift)
keysym = 0x0041

key press Shift
keysym = 0xFFE1

key release A
keysym = 0x0041

key release Shift
keysym = 0xFFE1

key pressed Shift
keyCode=0x10
keyChar=Undefined

keyModifier=0x0001

key pressed A
keyCode=0x0041
keyChar='A'

keyModifier=0x0001

key released Shift
keyCode=0x10
keyChar=Undefined

keyModifier=0x0001

key typed A
keyCode=0x0041
keyChar='A'

keyModifier=0x0001

key released A
keyCode=0x0041
keyChar='A'

keyModifier=0x0001

key press a
keysym = 0x0061

key release a
keysym =0x0061

key pressed A
keyCode=0x0041
keyChar='a'

keyModifier=0x0

key typed A
keyCode=0x0041
keyChar='a'

keyModifier=0x0

key pressed A
keyCode=0x0041
keyChar='a'

keyModifier=0x0

timeline

RFB key events

RFB key events

Java key events

Java key events

Figure 4: The difference between a Latin capital letter ’A’ and a Latin small letter ’a’

j a v a . awt . e v e n t . KeyEvent [KEY_RELEASED, keyCode =65 ,
keyText =A, keyChar='a' , k e y L o c a t i o n =KEY_LOCATION_STANDARD,
rawCode =65 , p r i m a r y L e v e l U n i c o d e =97 , s c a n c o d e =30] on frame0

For the key-pressed and key-released events the values of keyCode and keyChar are sufficient
to determine which key was pressed or released. The things are getting even simpler with the
key-typed event – it only needs a valid keyChar.

It is quite interesting how the capital letters are interpreted. They have the same keyCode as the
small letters, only the keyChar is different. Another difference is the registration of the pressed
Shift as a modifier (keyModifier=0x1). The other modifiers are similarly registered – the left
Alt key results in keyModifier=0x8, the left Control in keyModifier=0x2, and the combination
Shift+Control in keyModifier=0x3 (0x1+0x2).

All these differences make clear, that the key events cannot be consumed from the underlying
Java application as they are received from the RFB server. The translation function implemented
in VNCj can be described as follows:

Starting with a keysym and down-flag, first check if the key is a modifier. If the key is a modifier
and if it is pressed, increment the keyModifier with its value, if it is a modifier and is released
– decrease the keyModifier. Translate the keysym into a keyCode.24 Finally, if the down-flag is
non-zero, i.e. the key is being pressed, generate a key-pressed event:
new KeyEvent (c o n t a i n e r , KeyEvent . KEY_PRESSED ,

System . c u r r e n t T i m e M i l l i s () , keyModi f i e r ,
keyCode , keyChar , KeyEvent .KEY_LOCATION_UNKNOWN) ;

If the down-flag is zero, generate a key-released event and a key-typed event only for character
keys.
new KeyEvent (c o n t a i n e r , KeyEvent . KEY_RELEASED,

System . c u r r e n t T i m e M i l l i s () , keyModi f i e r ,
keyCode , keyChar , KeyEvent .KEY_LOCATION_UNKNOWN) ;

24For a list of the virtual keys see the Java KeyEvent Documentation http://download-llnw.oracle.com/

javase/6/docs/api/java/awt/event/KeyEvent.html

11

http://download-llnw.oracle.com/javase/6/docs/api/java/awt/event/KeyEvent.html
http://download-llnw.oracle.com/javase/6/docs/api/java/awt/event/KeyEvent.html

VNC-Interface for Java X86-Emulator Dioscuri

new KeyEvent (c o n t a i n e r , KeyEvent . KEY_TYPED,
System . c u r r e n t T i m e M i l l i s () , keyModi f i e r ,
0x0 , keyChar , KeyEvent .KEY_LOCATION_UNKNOWN) ;

The keyboard event translation was one of the main areas for improvement. For instance, the
event translation in the original version assumed that a character key only generates a key-typed
event, whereas the modifiers themselves fire no events at all.

3.2.2 Mouse (Pointer) events

The next form of client to server messages are the pointer events. The RFB Protocol distinguis-
hes between two types of pointer events – pointer movement and pointer button press or release.
Figure 5 shows how a single pointer event message looks like. It is 6 bytes long and the value
of the first byte, its message-type, equals 5. The next byte holds information about which button
was pressed or released. The mapping between the single bits and the respective mouse buttons is
also shown in Figure 5. Special attention requires the interpretation of the mouse wheel – every
pressed-released sequence of the fourth/fifth mouse button results in a single upwards/down-
wards step of the mouse wheel. The last two message bytes are holding the current position of
the pointer.

By contrast, Java distinguishes between three different pointer events:

1. Mouse events – the cursor enters/exits component’s onscreen area or a mouse button was
pressed/released

2. Mouse-motion events – take notion of the onscreen cursor movement

3. Mouse-wheel events – wheel up/down

Every type of pointer event has its own Java interface – a subinteface of the EventListener. To
track mouse events, the MouseListener should be registered, for the mouse-motion events – the
MouseMotionListener, and for the mouse-wheel events – the MouseWheelListener. The first two
are also combined in the MouseInputListener.

Position X Position Y
0 1
4

32
65 7

1 2 43

5 76 8

Mouse Button Number

Mouse Button Number

Mouse Button

Mouse Button

left middle right wheel up

wheel down

Message
type

Figure 5: PointerEvent message format

12

VNC-Interface for Java X86-Emulator Dioscuri

MouseEvent PointerEvent or Pointer Event combination
mouse moved pointer movement
mouse entered t -1 : pointer was outside component

t 0 : pointer is inside component
mouse exited t -1 : pointer was inside component

t 0 : pointer is outside component
mouse pressed button 1 - 3 press
mouse released button 1 - 3 release
mouse clicked t -1 : button 1 - 3 press

t 0 : button 1 - 3 release
mouse dragged t 0 : button press at position (x 0, y 0)

t 1 : pointer movement - position (x 1, y 1)
...
t n : button release at position (x n, y n)

mouse wheel button 4 / 5 press
button 4 / 5 release

Table 1: Relation Mouse-Pointer events

The table above displays the dependance between the PointerEvents as received from the RFB
server and the MouseEvents as expected from the underlying Java application.

An invisible fact from the above table is that the key modifiers also affect the way a mouse
click is interpreted. A key modifier reflects in changing the value of the modifiers variable of
every pointer event.

The need of pointer event translation is obvious. It resides in the same module as the key-event-
translation, namely in the gnu.vnc.awt.VNCEvents and can be basically outlined as follows:

Starting with a buttonMask and x- and y-position, determine if and which button was pressed
and save it as a modifier in the variable mouseModifiers. An initial state of zero indicates that
no button is down at the time. The press of the fourth or fifth button indicates a mouse-wheel
rotation. In this case fire a mouse-wheel event:
new MouseWheelEvent (component , MouseEvent .MOUSE_WHEEL,

System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
x , y , c l i c k s , f a l s e ,
MouseWheelEvent . WHEEL_UNIT_SCROLL, 3 , r o t a t i o n D i r e c t i o n) ;

If the last state of the variable mouseModifiers is unchanged and if it is non-zero, i.e. a mouse
button stays pressed, then it is a dragging:
new MouseEvent (component , MouseEvent .MOUSE_DRAGGED,

System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
x , y , 0 , f a l s e) ;

13

VNC-Interface for Java X86-Emulator Dioscuri

else fire a mouse-moved event:
new MouseEvent (component , MouseEvent .MOUSE_MOVED,

System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
x , y , 0 , f a l s e) ;

If the value of mouseModifiers has changed, it indicates a mouse-pressed plus mouse-clicked
event or a mouse-released event. The difference makes the pressed state. If pressed is true:
new MouseEvent (component , MouseEvent . MOUSE_PRESSED,

System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
x , y , numClicks , f a l s e) ;

new MouseEvent (component , MouseEvent . MOUSE_CLICKED,
System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
x , y , numClicks , f a l s e) ;

otherwise:
new MouseEvent (component , MouseEvent . MOUSE_RELEASED,

System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
x , y , 0 , f a l s e) ;

And lastly, when the current component is not the same as from the last time period, fire a
mouse-exited and mouse-entered events:
new MouseEvent (component , MouseEvent . MOUSE_EXITED,

System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
o ldx , oldy , 0 , f a l s e) ;

new MouseEvent (component , MouseEvent .MOUSE_ENTERED,
System . c u r r e n t T i m e M i l l i s () , k e y M o d i f i e r s | mouseModi f i e r s ,
x , y , 0 , f a l s e) ;

To the changes in this area the adding of the mouse-wheel events and some other fine adjust-
ments count.

3.3 Framebu�er update requests and framebu�er updates

Another part of the RFB client-server communication are the framebuffer update requests and
the framebuffer updates. A framebuffer update request is a 10 byte long message consisting of
message-type, incremental flag, the position of the upper left corner of the region of interest and
its width and length. The incremental flag tells the server, if the client needs only an incremental
update of the pixel data in the region or the pixel data itself.

The framebuffer update is not so trivial. It consists of a sequence of rectangles of pixel area
encoded in some way. It starts with a header message, holding the number of the rectangles
followed by a rectangle array in a specific from the RFB protocol defined encoding.25

25See Richardson [2009] for complete list of the supported encodings

14

VNC-Interface for Java X86-Emulator Dioscuri

The framebuffer update, especially the encodings, constitutes the region, where the difference
between RFB 3.3 and RFB 3.8 gets very clear. RFB 3.3 defines five encoding types and RFB 3.8
seven. RFB 3.8 contains an extra list of registered encoding, whose use is also permitted.

As already mentioned, the current version of VNCj is built upon the version 3.3 of the protocol.
In the following a brief overview of the five from RFB 3.3 defined encodings will be presented.
These are Raw, CopyRect, RRE, CoRRE and Hextile.

Raw is the simplest encoding and also the default one. Every server should be able to send raw
data, and every client should accept it. Raw means that the server sends every pixel value from
the rectangle area in left-to-right scan-line order. Therefore, the size of the update depends on
the size of the rectangle and on the color depth.

CopyRect is possibly the most network efficient encoding. It consists of 4 bytes, holding the
position of the framebuffer region, wherefrom the client can copy the pixel data. It can be used
for example by text typing or by redrawing regions affected by mouse scrolling.

RRE stands for rise-and-run-length-encoding. Its layout can be easily explained using the very
basic example from the figure below:

A
B

C

D

E

F

The main region is subdivided in subregions. The first protocol message holds the number
of the subrectangles in the region, in this case 6, and its background color value, black. This
message header is followed by 6 consequent messages holding the color, the position and the
dimensions of each subrectangle from A to F.

CoRRE is a minor variation of RRE, which limits the size of the largest rectangle to 255x255
pixels. This allows using a single byte for the dimensions of the subrectangles.

„Hextile is a variation on the RRE idea. The rectangles are split up into 16x16 tiles, allowing
the dimensions of the subrectangles to be specified in 4 bits each, 16 bits in total.“26 The structure
of framebuffer update using only the hextile encoding can be synthesized as follows:

The Tile Header is a one byte field. Every Tile Header bit indicates if property of the tile is
set. The most significant bit is the first from right to left, namely the Raw bit.

26Richardson [2009]

15

VNC-Interface for Java X86-Emulator Dioscuri

Header Rectangle
Tile
Header

Tile Extra
Header

Raw
Data

Sub-
Rectangles

Rectangle
Tile
Header

Tile Extra
Header

Raw
Data

Sub-
Rectangles

Rectangle
Tile
Header

Tile Extra
Header

Raw
Data

Sub-
Rectangles

Rectangle 1

Rectangle 2

Rectangle n

..

If the Raw bit is non-zero, the other bits are neglected, the Tile Extra Header is not set, and
the raw pixel data follows.

The next bit is the BackgroundSpecified bit. If it is set, the first part of the Tile Extra Header is
a bits-per-pixel long field which holds the background color. If it is not set, the current tile gets
the last defined background color.

If the next switch, ForegroundSpecified, is set, then the last one, SubrectColoured, must be
zero. The subsequent part of the Tile Extra Header is then the foreground color for every subrec-
tangle in the tile.

AnySubrects shows if there are subrectangles at all; if it is not set, neither the Raw Data nor
the SubRectangles data follows. If it is set, a number-of-subrectangles value is put into the Tile
Extra Header, and a number of subrectangles follows it.

If the last Tile Header bit is non-zero, then each subrectangle should define its own foreground
color. A single subrectangle field non specifying its own foreground color is 2 bytes long; by
declaring a foreground color the size of the field grows by the color depth value.

A very detailed explanation of the framebuffer update implementation would make this chapter
unnecessary large. For this reason, only a brief overview follows. The text below treats mainly
the Swing part of VNCj.

To be able to send the draw data over the wire, a custom RepaintManager must be implemented
which resides in gnu.vnc.awt.swing.VNCRepaintManager. This manager holds a queue of all
clients, declares regions as dirty (i.e. needing a repaint), invalidates components and executes
the framebuffer updates. The queue management and the further proceeding of the encoding are
done in the gnu.vnc.VNCQueue. The namespace, where the encodings reside, is gnu.rfb. The part
translating the encoding requests to the according encoding class is gnu.rfb.Rect. At the time only
the RFB 3.3 encodings are implemented. The structure of the library indeed, leaves the door for
future encodings wide open.27 28

27See http://www.couchpotato.net/vcm-source/ for example implementation of the ZRLE encoding
28This is also the part of VNCj where almost no changes were made during this work.

16

VNC-Interface for Java X86-Emulator Dioscuri

3.4 A VNC server for Dioscuri

The last part of the implementation chapter is the building of the internal Dioscuri’s VNC server
itself. As visualized in the last subchapter, VNCj already implements all the mechanisms and
functions of a working VNC server. The creation of an integrated VNC server reduces to the
integration of the library into the Dioscuri project.

The first question about the integrated server is, where to position it in the class structure of
Dioscuri. It is not important what such a server is, but what it is not. It is not a hardware module,
therefore it will be by all means false putting him among the hardware modules. It is also not
a GUI, even though they are very similar in some particular aspects. It is an interface, allowing
the export of a GUI or a part of it over the network. Therefore, it should be either positioned in
the namespace of the GUI itself or in its own namespace. The second alternative makes the later
extension of the VNC handier and by some means it is the better one.

The next question is about the configuration options. The emulator’s configuration menu re-
sides in the main menu under „configure⇒ edit config“. The configuration classes itself are all
put into the dioscuri.config namespace. Adding the VncPanel module to the same namespace
contradicts a little with the initial idea to keep the VNC apart from the existing module structure
of the emulator. Besides, all the Dioscuri’s configuration resides there. Another fact in favor of
this alternative is the usage of the already existing configuration mechanisms, resulting in an
enormous time saving during the implementation process.

The redirection of the emulator’s in- and output was already outlined at the beginning of this
chapter. The first step is to create an extra class in the dioscuri.vnc namespace, namely the VNC-
TopFrame, which extends the already existing gnu.vnc.awt.swing.VNCJFrame.

To start and stop the server, two new methods were added to the top level DioscuriFrame:
startVncServer and stopVncServer. The first method reads the VNC configuration parameters,
starts a new RFBHost29, moves the DioscuriFrame.screenPane to the created VncTopFrame in-
stance and attaches the emulator’s KeyListener and MouseInputListener to the VNCTopFrame’s
GlassPane. The reason for the use of GlassPane needs a short explanation.

Usually all the key and pointer events are delegated to the last component in the GUI’s hier-
archy. This makes the control of what happens slightly complicated. Adding a GlassPane to the
VNCTopFrame breaks the event propagation and eases the event control. To correctly redirect
the mouse and keyboard events to the underlying emulation module, the GlassPane should be
the same size as the emulation screen and both must overlap perfectly.

The last paragraph gives an idea of when the server should be started. It makes sense to move
the screen as soon as its dimensions are defined. This happens normally on emulation start.
This is why startVncServer is executed when the emulation starts and stopVncServer when the
emulation stops.
29The RFBHost constructor creates a VNCTopFrame instance

17

VNC-Interface for Java X86-Emulator Dioscuri

A message appears in the emulation screen area of the emulator showing that Dioscuri is
running in VNC mode on a specific port.

Figure 6: Dioscuri running in VNC mode

18

VNC-Interface for Java X86-Emulator Dioscuri

4 Testing

The main idea behind the testing is to demonstrate that the implemented internal VNC server
for Dioscuri is a fully functional VNC server. The accent is put on the same modules as in the
implementation chapter: the keyboard and pointer events, and the framebuffer updates.

The potential extra CPU or memory overload caused from the server constructs another test
area. It is to be shown that these overloads are not so immense and do not impact the functionality
of the underlying emulation module.

The tests were made under Windows XP SP3 using the TightVNC viewer30 and the test sce-
nario looks as follows:

I: Run Dioscuri in non VNC mode

1. Start Dioscuri on node A
2. Test the keyboard and the mouse
3. Take screenshots
4. Take notion of CPU and memory usage

II: Run Dioscuri in VNC mode

1. Start Dioscuri on node A
2. Connect to the VNC server from the same node
3. Test the keyboard and the mouse
4. Take screenshots
5. Take notion of CPU and memory usage on node A

6. Connect to the VNC server from node B
7. Test the keyboard and the mouse
8. Take screenshots
9. Take notion of CPU and memory usage on node A

10. Connect simultaneously from node C and repeat steps 7, 8 and 9
11. Compare the display of the RFB viewer on node B with the output on node A and C

III: Compare the results from phase I and II.

By the mouse and keyboard testing the Dioscuri debug messages were very useful. The very
slight disparity in the debug messages is a clean proof that the mouse and keyboard events are
correctly transported through the VNC layer.
30TightVNC is a part of the TightVNC package, which is a free software. TightVNC Viewer is a Java application,

and therefore extremely portable. See TightVNC [2010] for more information.

19

VNC-Interface for Java X86-Emulator Dioscuri

A proof that the framebuffer update requests and the framebuffer updates reach the other side
is the update of the TightVNC viewer’s display.

The test results are as follows:

• The VNC server runs on the specified port
• RFB clients can access the server, using its IP address and the specified port
• Multiple connections are possible
• Mouse and keyboard events are transported correctly, i.e. they are not affected from the

VNC layer
• Framebuffer update requests reach the server
• Framebuffer updates reach the client
• The CPU and memory overload is not so immense as feared

Figure 7: Mouse testing in normal (top) and in VNC mode (bottom)

20

VNC-Interface for Java X86-Emulator Dioscuri

5 Conclusion

The goal of this work is the implementation of an integrated VNC-interface for the Java x86-
emulator Dioscuri.

In the first part of the current thesis a research over the state of the involved software is ma-
de. The aim is to outline the single development steps. This results in an additional attempt of
clarifying terms like RFB and VNC and in an explanation of the function of a VNC server.

The second part, the implementation, consists of two phases. The first one is the preparation of
the VNCj library for the actual development of the VNC interface. It also continues the attempt
from the first part and explains some important terms like events and framebuffer update. The
second phase is the integration of VNCj in Dioscuri. This is the part where the achievement of the
main goal is presented, namely the development of a fully functional VNC server for Dioscuri.

Despite the positive test results in the last chapter, some further improvements in different
areas are possible. The first one is the implementation of the newest RFB 3.8 protocol. This will
result in slight changes in some modules – authentication and framebuffer updates for example.

Because of the scope of this work, only parts of the VNCj library were enhanced. A lot of
future work is to be put in this direction too.

Very useful, currently not implemented feature is the GUI-less start of the emulator in VNC
mode. This arises a need of a GUI management console to facilitate the usability of the emulator
for the purposes of the long time preservation of digital objects.

21

VNC-Interface for Java X86-Emulator Dioscuri

Literature

[Dioscuri 2010] DIOSCURI: Dioscuri - the modular emulator. Online,
http://dioscuri.sourceforge.net. 2010. – URL http://dioscuri.sourceforge.net

[van der Hoeven 2007] HOEVEN, J.R. van der: Dioscuri’s Object Design Document. Online,
http://dioscuri.sourceforge.net/docs/ODD_Dioscuri_KBNA_v1_1_en.pdf. 2007

[Liron 2002] LIRON, Tal: VNCj. Online, http://emblemparade.net/projects/vncj.
2002. – URL http://emblemparade.net/projects/vncj. – Source code:
http://sourceforge.net/projects/vncjlgpl

[Philipps 2010] PHILIPPS, Mario: Entwurf und Implementierung eines Softwarearchivs für die
digitale Langzeitarchivierung, Albert-Ludwigs-Universität Freiburg, Diplomarbeit, July 2010.
– URL http://eprints.rclis.org/18994/

[PLANETS 2010] PLANETS: PLANETS - Digital Preservation Research and Technology.
Online, http://www.planets-project.eu. 2010. – URL http://www.planets-project.eu

[QEMU 2010] QEMU: QEMU - open source processor emulator. Online,
http://wiki.qemu.org. 2010. – URL http://wiki.qemu.org

[RealVNC 2010] REALVNC: RealVNC. Online, http://www.realvnc.com. 2010. – URL
http://www.realvnc.com

[Richardson 2009] RICHARDSON, Tristan: The RFB Protocol. Online,
http://www.realvnc.com/docs/rfbproto.pdf. 2009

[Rothenberg 2000] ROTHENBERG, Jeff: Using Emulation to Preserve Digital Documents.
Online, http://www.kb.nl/pr/publ/usingemulation.pdf. 2000

[TightVNC 2010] TIGHTVNC: TightVNC Software - Free, Lightweight, Fast and Reliable
Remote Control Software. Online, http://www.tightvnc.com. 2010. – URL http://www.

tightvnc.com

22

http://dioscuri.sourceforge.net
http://emblemparade.net/projects/vncj
http://eprints.rclis.org/18994/
http://www.planets-project.eu
http://wiki.qemu.org
http://www.realvnc.com
http://www.tightvnc.com
http://www.tightvnc.com

	Introduction
	State of the art
	The hardware emulator Dioscuri
	RFB and VNC
	The Java library VNCj

	Implementation
	Updating VNCj
	Events
	Keyboard events
	Mouse (Pointer) events

	Framebuffer update requests and framebuffer updates
	A VNC server for Dioscuri

	Testing
	Conclusion

