
MXML Storage and the Problem of
Manipulation of Context

Nikolaos Fousteris1, Manolis Gergatsoulis1, and Yannis Stavrakas2

1 Database & Information Systems Group (DBIS),
Laboratory on Digital Libraries and Electronic Publishing,

Department of Archives and Library Science, Ionian University,
Ioannou Theotoki 72, 49100 Corfu, Greece.

{nfouster,manolis}@ionio.gr,
2 Institute for the Management of Information Systems (IMIS),

R. C. Athena,
G. Mpakou 17, 11524, Athens, Greece.
yannis@imis.athena-innovation.gr

Abstract. The problem of storing and querying XML data using re-
lational databases has been considered a lot and many techniques have
been developed. MXML is an extension of XML suitable for represent-
ing data that assume different facets, having different value and structure
under different contexts, which are determined by assigning values to a
number of dimensions. In this paper, we explore techniques for storing
MXML documents in relational databases, based on techniques previ-
ously proposed for conventional XML documents. Essential characteris-
tics of the proposed techniques are the capabilities a) to reconstruct the
original MXML document from its relational representation and b) to
express MXML context-aware queries in SQL.

1 Introduction

The problem of storing XML data in relational databases has been intensively
investigated [4, 10, 11, 13] during the past 10 years. The objective is to use an
RDBMS in order to store and query XML data. First, a relational schema is
chosen for storing the XML data, and then XML queries, produced by applica-
tions, are translated to SQL for evaluation. After the execution of SQL queries,
the results are translated back to XML and returned to the application.

Multidimensional XML (MXML) is an extension of XML which allows con-
text specifiers to qualify element and attribute values, and specify the contexts
under which the document components have meaning. MXML is therefore suit-
able for representing data that assume different facets, having different value or
structure, under different contexts. Contexts are specified by giving values to
one or more user defined dimensions. In MXML, dimensions may be applied to
elements and attributes (their values depend on the dimensions). An alterna-
tive solution would be to create a different XML document for every possible
combination, but such an approach involves excessive duplication of information.

In this paper, we present two approaches for storing MXML in relational
databases, based on XML storage approaches. We use MXML-graphs, which are
graphs using appropriate types of nodes and edges, to represent MXML docu-
ments. In the first (naive) approach, a single relational table is used to store all
information about the nodes and edges of the MXML-graph. Although simple,
this approach presents some drawbacks, like the large number of expensive self-
joins when evaluating queries. In the second approach we use several tables, each
of them storing a different type of nodes of the MXML-graph. In this way the
size of the tables involved in joins is reduced and consequently the efficiency of
query evaluation is enhanced. Both approaches use additional tables to represent
context in a way that it can be used and manipulated by SQL queries. Addi-
tionally to MXML storage, we propose techniques for context manipulation, as
context is one of the major characteristics of MXML.

2 Preliminaries

2.1 Mutidimensional XML

In MXML, data assume different facets, having different value or structure,
under different contexts according to a number of dimensions which may be
applied to elements and attributes [7, 8]. The notion of “world” is fundamental in
MXML. A world represents an environment under which data obtain a meaning.
A world is determined by assigning to every dimension a single value, taken
from the domain of the dimension. In MXML we use syntactic constructs called
context specifiers that specify sets of worlds by imposing constraints on the values
that dimensions can take. The elements/attributes that have different facets
under different contexts are called multidimensional elements/attributes. Each
multidimensional element/attribute contains one or more facets, called context
elements/attributes, accompanied with the corresponding context specifier which
denotes the set of worlds under which this facet is the holding facet of the
element/attribute. The syntax of MXML is shown in Example 1, where a MXML
document containing information about a book is presented.

Example 1. The MXML document shown below represents a book in a book
store. Two dimensions are used namely edition whose domain is {greek,
english}, and customer type whose domain is {student, library, teacher}.
<book isbn=[edition=english]"0-13-110362-8"[/]

[edition=greek]"0-13-110370-9"[/]>

<title>The C programming language</title>

<authors>

<author>Brian W. Kernighan</author>

<author>Dennis M. Ritchie</author>

</authors>

<@publisher>

[edition = english] <publisher>Prentice Hall</publisher>[/]

[edition = greek] <publisher>Klidarithmos</publisher>[/]

</@publisher>

<@translator>

[edition = greek] <translator>Thomas Moraitis</translator>[/]

</@translator>

<@price>

[edition=english]<price>15</price>[/]

[edition=greek,customer_type in {student, teacher}]<price>9</price>[/]

[edition=greek,customer_type=library]<price>12</price>[/]

</@price>

<@cover>

[edition=english]<cover><material>leather</material></cover>[/]

[edition=greek]

<cover>

<material>paper</material >

<@picture>

[customer_type=student]<picture>student.bmp</picture>[/]

[customer_type=library]<picture>library.bmp</picture>[/]

</@picture>

</cover>

[/]

</@cover>

</book>

Notice that multidimensional elements (see for example the element price)
are the elements whose name is preceded by the symbol @ while the corresponding
context elements have the same element name but without the symbol @.

A MXML document can be considered as a compact representation of a set of
(conventional) XML documents, each of them holding under a specific world. For
the extraction of XML documents holding under specific worlds the interested
reader may refer to [7] where a related process called reduction is presented.

2.2 Storing XML data in relational databases

Many researchers have investigated how an RDBMS can be used to store and
query XML data. Work has also been directed towards the storage of temporal
extensions of XML [16, 1, 2]. The techniques proposed for XML storage can be
divided in two categories, depending on the presence or absence of a schema:

1. Schema-Based XML Storage techniques: the objective here is to find a re-
lational schema for storing a XML document, guided by the structure of a
schema for that document [9, 13, 5, 15, 10, 3, 11].

2. Schema-Oblivious XML Storage techniques: the objective is to find a rela-
tional schema for storing XML documents independent of the presence or
absence of a schema [13, 5, 15, 17, 10, 6, 4].

The approaches that we propose in this paper do not take schema information
into account, and therefore belong to the Schema-Oblivious category.

3 Properties of MXML documents

3.1 A graphical model for MXML

In this section we present a graphical model for MXML called MXML-graph. The
proposed model is node-based and each node is characterized by a unique “id”.
In MXML-graph, except from a special node called root node, there are the
following node types: multidimensional element nodes, context element nodes,
multidimensional attribute nodes, context attribute nodes, and value nodes. The
context element nodes, context attribute nodes, and value nodes correspond to
the element nodes, attribute nodes and value nodes in a conventional XML
graph. Each multidimensional/context element node is labelled with the corre-
sponding element name, while each multidimensional/context attribute node is
labelled with the corresponding attribute name. As in conventional XML, value
nodes are leaf nodes and carry the corresponding value. The facets (context ele-
ment/attribute nodes) of a multidimensional node are connected to that node by
edges labelled with context specifiers denoting the conditions under which each
facet holds. These edges are called element/attribute context edges respectively.
Context elements/attributes are connected to their child elements/attribute or
value nodes by edges called element/attribute/value edges respectively. Finally,
the context attributes of type IDREF(S) are connected to the element nodes
that they point to by edges called attribute reference edges.

Example 2. In Fig. 1, we see the representation of the MXML document of Ex-

“The C
programming

language”

“Brian W.K.”

“Dennis M.R.”

author

“Pr.Hall”
“klidaritmos”

publisher
publisher

“Th. Moraitis”

translator

[ed=gr]

“15"

“12”

price

“9”

price

cover

“lather”
“paper”

“student.bmp”

“library.bmp”

picture

picture

“0-13-11
0370-9”

“0-13-11
0362-8”

translator

book

material material

title

E
A

V

E

A A

V

E

V

E

E

E

V

V

title

E

E

E E

E
E

V
V

E

E

V

E

EE

E

V

E
material

E

V

E

E

E

V

V

E
material

E

E

E

E

isbn

[ed=gr][ed=en]

publisher

isbn isbn

authors

author

picture

[c_type=lib]
[c_type=stud]

cover

cover

[ed=gr][ed=en]

V V

V

price

[ed=en]

[ed=gr,
c_type=lib]

[ed=gr,
c_type in
{stud,te}]

[ed=en] [ed=gr]

price
[]

[]

[]

[]

[]
[]

E multidimensional element node

E

element/attribute context edge

element/attribute/value edge

V value node

A

multidimensional attribute nodeA

Symbol Table
root node

authors

author

author

0

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

context attribute node

context element node

attribute reference edge

Fig. 1. Graphical representation of MXML (MXML tree)

ample 1 as a MXML-graph. Note that some additional multidimensional nodes
(e.g. nodes 7 and 10) have been added to ensure that the types of the edges alter-
nate consistently in every path of the graph. This does not affect the information
contained in the document, but facilitates the navigation in the graph and the
formulation of queries. For saving space, in Fig. 1 we use obvious abbreviations
for dimension names and values that appear in the MXML document.

3.2 Properties of contexts

Context specifiers qualifying element/attribute context edges give the explicit
contexts of the nodes to which these edges lead. The explicit context of all the
other nodes of the MXML-graph is considered to be the universal context [],
denoting the set of all possible worlds. The explicit context can be considered
as the true context only within the boundaries of a single multidimensional ele-
ment/attribute. When elements and attributes are combined to form a MXML
document, the explicit context of each element/attribute does not alone de-
termine the worlds under which that element/attribute holds, since when an
element/attribute e2 is part of another element e1, then e2 have substance only
under the worlds that e1 has substance. This can be conceived as if the context
under which e1 holds is inherited to e2. The context propagated in that way is
combined with (constraint by) the explicit context of a node to give the inherited
context for that node. Formally, the inherited context ic(q) of a node q is defined
as ic(q) = ic(p) ∩c ec(q), where ic(p) is the inherited context of its parent node
p. ∩c is an operator called context intersection defined in [12] which combines
two context specifiers and computes a new context specifier which represents
the intersection of the worlds specified by the original context specifiers. The
evaluation of the inherited context starts from the root of the MXML-graph. By
definition, the inherited context of the root of the graph is the universal context
[]. Note that contexts are not inherited through attribute reference edges.

As in conventional XML, the leaf nodes of MXML-graphs must be value
nodes. The inherited context coverage of a node further constraints its inherited
context, so as to contain only the worlds under which the node has access to
some value node. This property is important for navigation and querying, but
also for the reduction process [7]. The inherited context coverage icc(n) of a
node n is defined as follows: if n is a leaf node then icc(n) = ic(n); otherwise
icc(n) = icc(n1)∪c icc(n2)∪c ...∪c icc(nk), where n1, . . . , nk are the child element
nodes of n. ∪c is an operator called context union defined in [12] which combines
two context specifiers and computes a new one which represents the union of the
worlds specified by the original context specifiers. The inherited context coverage
gives the true context of a node in a MXML-graph.

4 Storing MXML in relational databases

In this section we present two approaches for storing MXML documents using
relational databases.

4.1 Naive Approach

The first approach, called naive approach, uses a single table (Node Table), to
store all information contained in a MXML document. Node Table contains all
the information which is necessary to reconstruct the MXML document(graph).
Each row of the table represents a MXML node. The attributes of Node Table
are: node id stores the id of the node, parent id stores the id of the parent node,
ordinal stores a number denoting the order of the node among its siblings, tag
stores the label (tag) of the node or NULL (denoted by “-”) if it is a value node,
value stores the value of the node if it is a value node or NULL otherwise, type
stores a code denoting the node type (CE for context element, CA for context
attribute, ME for multidimensional element, MA for multidimensional attribute,
and VN for value node), and explicit context stores the explicit context of the
node (as a string). Noted that the explicit context is kept here for completeness,
and does not serve any retrieval purposes. In the following we will see how the
correspondence of nodes to the worlds under which they hold is encoded.

Example 3. Fig. 2 shows how the MXML Graph of Fig. 1 is stored in the Node
Table. Some of the nodes have been omitted, denoted by “....”, for brevity.

Node Table

node id parent id ordinal tag value type explicit context

1 0 1 book - CE -
2 1 1 isbn - MA -
3 2 1 isbn - CA [ed=en]
4 3 1 - 0-13-110362-8 VN -
5 2 2 isbn - CA [ed=gr]
6 5 1 - 0-13-110370-9 VN -
7 1 2 title - ME -
8 7 1 title - CE []
9 8 1 - The C progr. lang. VN -
....
43 42 1 picture - CE [c type=stud]
....

Fig. 2. Storing the MXML-graph of Fig. 1 in a Node Table.

4.2 Limitations of the Naive Approach

The naive approach is straightforward, but it has some drawbacks mainly be-
cause of the use of a single table. As the different types of nodes are stored in
the table, many NULL values appear in the fields explicit context, tag, and
value. Those NULL values could be avoided if we used different tables for dif-
ferent node types. Moreover, as we showed in Subsection 4.1, queries on MXML

documents involve a large number of self-joins of the Node Table, which is an-
ticipated to be a very long table since it contains the whole tree. Splitting the
Node Table would reduce the size of the tables involved in joins, and enhance
the overall performance of queries. Finally, notice that the context representation
scheme we introduced leads to a number of joins in the nested query. Probably
a better scheme could be introduced that reduces the number of joins.

4.3 A Better Approach

In the Type Approach presented here, MXML nodes are divided into groups ac-
cording to their type. Each group is stored in a separate table named after the
type of the nodes. In particular ME Table stores multidimensional element nodes,
CE Table stores context element nodes, MA Table stores multidimensional at-
tribute nodes, CA Table stores context attribute nodes, and Value Table stores
value nodes. The schema of these tables is shown in Fig. 3. Each row in these

ME Table

node id parent id ordinal tag

7 1 2 title
10 1 3 authors
....

CE Table

node id parent id ordinal tag explicit context

1 0 1 book -
8 7 1 title []
....
19 18 1 publisher [ed=en]
21 18 2 publisher [ed=gr]
....

MA Table

node id parent id ordinal tag

2 1 1 isbn

CA Table

node d parent id ordinal tag explicit context

3 2 1 isbn [ed=en]
5 2 2 isbn [ed=gr]

Value Table

node id parent id value

4 3 0-13-110362-8
6 5 0-13-110362-9
9 8 The C programming language
....

Fig. 3. The Type tables.

tables represents a MXML node. The attributes in the tables have the same
meaning as the respective attributes of the Node Table. Using this approach we
tackle some of the problems identified in the previous section. Namely, we elim-
inate NULL values and irrelevant attributes, while at the same time we reduce
the size of the tables involved in joins when navigating the MXML-Graph.

5 Context Representation

In this section we present techniques that help us to store the context in such a
way so as to facilitate the formulation of context-aware queries. Two approaches,
for storing context in a Relational Database, are presented. The first, is a naive
representation and the second one is called the Ordered-Based representation.

5.1 Naive Context Representation

For the Naive Context Representation technique, we introduce three additional
tables, as shown in Fig. 4. The Possible Worlds Table which assigns a unique ID
(attribute word id) to each possible combination of dimension values. Each di-
mension in the MXML document has a corresponding attribute in this table. The
Explicit Context Table keeps the correspondence of each node with the worlds
represented by its explicit context. Finally, the Inherited Coverage Table keeps
the correspondence of each node with the worlds represented by its inherited
context coverage.

Example 4. Fig. 4, depicts (parts of) the Possible Worlds Table, the Explicit
Context Table, and the Inherited Coverage Table obtained by encoding the con-
text information appearing in the MXML-graph of Fig. 1. For example, the

Possible Worlds Table

world id edition customer type

1 gr stud
2 gr lib
3 gr te
4 en stud
5 en lib
6 en te

Explicit Context Table

node id world id

1 1
1 2
1 3
1 4
1 5
1 6
....
5 1
5 2
5 3
6 1
6 2
6 3
6 4
6 5
6 6
....

Inherited Coverage Table

node id world id

1 1
1 2
1 3
1 4
1 5
1 6
....
5 1
5 2
5 3
6 1
6 2
6 3
....

Fig. 4. Mapping MXML nodes to worlds.

inherited context coverage of the node with node id=6 includes the worlds:

w1 = {(edition, greek), (customer type, student)},
w2 = {(edition, greek), (customer type, library)} and
w3 = {(edition, greek), (customer type, teacher)}

This is encoded in the Inherited Coverage Table as three rows with node id=6
and the world ids 1, 2 and 3. In the Explicit Context Table the same node
corresponds to all possible worlds (ids 1, 2, 3, 4, 5 and 6).

5.2 Ordered-Based Context Representation

According to the Ordered-Based Context Representation technique, we propose
a scheme that reduces the size of tables and the number of joins in context-driven
queries. The basic idea of this technique is that we achieve the total ordering
of all possible worlds based on a) a total ordering of dimensions and b) a total
ordering of dimension possible values. So, for k dimensions with each dimension
i having mi possible values, we may have n = m1 ∗m2 ∗ . . .∗mk possible ordered
worlds. Each of these worlds is assigned a unique integer value between 1 and n.

Example 5. In Fig. 5, we present how it is possible to order all possible worlds
according to the dimensions and the dimension values of Example 1. In order

Level1 (Edition)

Level2 (C_type)
te stud libte

possible
worlds

ordering

1 2

1 2 3 1 2 3

w1={(ed, gr), (c_type, stud)}

w2={(ed, gr), (c_type, te)}

w3={(ed, gr), (c_type, lib)}

w4={(ed, en), (c_type, stud)}

w5={(ed, en), (c_type, te)}

w6={(ed, en), (c_type, lib)}

dimensions ordering
dimension values

ordering

stud lib

gr en

Fig. 5. Possible Worlds Ordering

to show this ordering, we use a forest of trees. As we can see, each dimension of
the MXML document corresponds to a level in the forest. The ordering of these
levels represents the ordering of dimensions. Also, for each level we can see the
ordering of all possible values of the related dimension, under each node of the
previous level. Each possible world can be produced by traversing a path from
a root node of the forest to a leaf node of the corresponding tree. Finally, the
order of the forest’s leaves represents the total ordering of all possible worlds
assigning a unique integer to each world (w1, w2, . . . , w6).

Assuming that all possible worlds of a MXML document are totaly ordered,
we define a vector of binary digits called World Vector.

Definition 1. Given a total ordering of worlds W = (w1, w2, . . . , wn), where n
is the number of possible worlds, we define as V (c) = (a1, a2, . . . , an) the World
Vector of a context specifier c, where ai with i = 1, 2, . . . , n, is a one bit value
containing 1 if the world wi is between the worlds represented by c or 0 if wi is
not included in the worlds represented by c.

In Fig. 6 we can see how in general we can store dimensions’ information
to the Relational Database. One table (Table D) is used for storing ordered
dimensions and one separate table Di with i = 1, 2, . . . , k is used for storing the
ordered values di,j with j = 1, 2, . . . , mi and mi is the number of the different
values of dimension Di.

d1,1

d1,2

d1,m1

D1 Table

…...

…...

d2,1

d2,2

d2,m2

D2 Table

…...

…...

…...

…...

dimensions ordering

possible
values

ordering

X1,p1

X2,p2…...

…...

dk,1

dk,2

dk,mk

Dk Table

…...

…...

Xk,pk

…...

world wi = {(D1, X1,p1), (D2, X2,p2),…,(Dk, Xk,pk)}

d1,3 d2,3 dk,3

D Table D1 D2 ……... Dk

Fig. 6. Ordered-Based Representation in Relational Schema

5.2.1 Finding the position of a world in a World Vector A problem
which arise when using the Ordered-Based Representation to represent worlds,
is the problem of defining the position corresponding to a specific world in a
world vector. Assuming that a context specifier contains the world wi, shown in
Fig. 6, we can find the bit-position i corresponding to this world in the world

D Table

dimension id dimention name

1 edition
2 customer type

D1 Table

value id value

1 greek
2 english

D2 Table

value id value

1 student
2 teacher
3 library

Inherited Coverage Table

node id world vector

1 111111
2 111111
3 000111
4 000111
5 111000
6 111000
....

Explicit Context Table

node id world vector

1 111111
2 111111
3 000111
....
31 001000
....
43 100100
....

Fig. 7. Context Tables.

vector of the context specifier, using the following formula:

i = pk +
∑k

j=2[(pj−1 − 1) ∗ (
∏k

w=j mw)]

Example 6. Fig. 7, depicts (parts of) the Explicit Context Table, and the Inher-
ited Coverage Table obtained by encoding the context information appearing in
the MXML-graph of Fig. 1. Also, we can see the contents of the tables D,D1

and D2 containing the ordering information for all possible worlds. For example,
the explicit context of the node with node id=3 includes the worlds:

w1 = {(edition, english), (customer type, student)},
w2 = {(edition, english), (customer type, teacher)} and
w3 = {(edition, english), (customer type, library)}

According to the ordering of Fig. 5, the bit-positions of these worlds in the
world vector are 4, 5 and 6 respectively. As a result, the explicit context specifier
of the node is encoded in the Explicit Context Table as one row with node id=3
and the world vector 000111.

5.2.2 Finding the world corresponding to a bit in a World Vector
The opposite problem of finding the position of a world in a world vector is the
problem of finding which world corresponds to a bit-position i of a world vector.
In order to achieve this, we can use the algorithm represented by the flowchart
shown in Fig. 8, using the notation of Fig. 5. The algorithm of Fig. 8 takes as
input the i position of a world in a world vector. The output of the algorithm is
a sequence of numbers (p1, p2, . . . , pk). Each number pi represents the position
of a value among the ordered values of dimension Di. Using this position, it is

Input: position i

start

If i>1NO

k'=1

YES

i'=i-1

If k’<k

ak'=i' DIV (mk’+1*mk’+2*…*mk)

YES

If ak'=0 pk'=1 k'=k’+1

i'=uk'

pk'=ak'+1

YES

NO

If i'=0

pk=1
pk=ik+1

Output:
p1,p2,…,pk

END

NO

YES

NO

p1=p2=…=pk=1

uk'=i' MOD (mk’+1*mk’+2*…*mk)

Fig. 8. Converting bit-position i of world vector to world

possible to find the value Xi,pi of the dimension Di from the appropriate table
Di of Fig. 5. A The set of pairs (Di, Xi,pi) represents the resulting world.

6 Querying MXML with Multidimensional XPath

In this section we present Multidimensional XPath (MXPath) as an extension
of XPath used to navigate through MXML-graphs. In addition to the conven-
tional XPath functionality, MXPath uses the inherited context coverage and the
explicit context of MXML in order to select nodes in the MXML document.
Similarly to XPath, MXPath uses path expressions as a sequence of steps to get
from one MXML node to another node, or set of nodes.

In a MXPath, selection criteria concerning the explicit context are expressed
through explicit context qualifiers. Selection criteria concerning the inherited
context coverage are expressed through the inherited context coverage qualifier,
which is placed at the beginning of the expression.

6.1 MXPath Syntax

An MXPath expression contains an inherited context coverage qualifier (or icc
qualifier for short) followed by the MXPath expression body. The inherited con-
text coverage qualifier is placed at the beginning of the expression and filters the

resulting nodes according to their inherited context coverage. The syntax of an
MXPath expression is:

[inherited context coverage qualifier],MXPath expression body

An MXPath expression may return either multidimensional nodes or context
nodes. In what follows we brake down MXPath expressions, and specify each
part separately.

6.1.1 Inherited context coverage qualifier The syntax of the inherited
context coverage qualifier is:

icc() comparison op context specifier expression

where comparison op is one of the operators =, !=, <, >, <=, or >=. Note that
it is easy to prove that for the inherited context coverages of the nodes in a
path r, n1, . . . , nk, from the root r of the MXML tree to a node nk, it holds that
icc(nk) ⊆ icc(nk−1) ⊆ . . . ⊆ icc(r). Thus icc(nk) denotes the worlds under which
the complete path holds. The function icc() returns the icc of the current node,
and, consequently of the currently evaluated path in MXML. This icc is then
compared against the context specifier, according to the comparison operator.
The operator = tests for equality, < tests for proper subset, > for proper superset,
etc. Note that it is actually the sets of worlds represented by the contexts that
are compared. In case the comparison returns false, the current path is rejected
and not considered further. If the inherited context coverage qualifier is omitted
in an MXPath expression, the default is implied: icc() >= "-", which evaluates
always to true.

6.1.2 MXPath expression body MXPath expression body corresponds to
(conventional) XPath expressions. As in XPath, in MXPath we also have two
types of expression bodies, namely the absolute and the relative. An absolute
MXPath expression body is a relative one preceded by the symbol “/” which
denotes the root of the MXML tree. MXPath expression body is composed by
one of more MXPath steps separated by “/”. Thus, the syntax of a relative
MXPath expression body is of the form:

MXPath step 1/MXPath step 2/.../MXPath step n

6.1.3 MXPath steps There are two types of MXPath steps, namely, the
Context MXPath steps which return context nodes, and the Multidimensional
MXPath steps which return multidimensional nodes. The syntax of a Context
MXPath step is as follows:

axis::node test[pred 1][pred 2]...[pred n]

while the syntax of a Multidimensional MXPath step is as follows:
axis->node test[pred 1][pred 2]...[pred n]

Notice that, both types of MXPath steps contain an axis, a node test and
zero or more predicates. The only difference is that in a context MXPath step
the axis is followed by the symbol “::” which denotes that the step evaluates to

context nodes, while in a Multidimensional MXPath step axis is followed by the
symbol “->” which denotes that the step evaluates to multidimensional nodes.

6.1.4 MXPath predicates In MXPath a predicate consists of an expression,
called a MXPath predicate expression, enclosed in square brackets. A predicate
serves to filter a sequence, retaining some items and discarding others. Multiple
predicates are allowed in MXPath expressions. In the case of multiple adjacent
predicates, the predicates are applied from left to right, and the result of applying
each predicate serves as the input sequence for the following predicate. For each
item in the input sequence, the predicate expression is evaluated and a truth
value is returned. The items for which the truth value of the predicate is true
are retained, while those for which the predicate evaluates to false are discarded.
The operators (logical operators, comparison operators, etc.) used in MXPath
predicates are those used in conventional XPath. MXPath predicates may also
contain MXPath expression bodies in the same way as XPath expressions are
allowed in conventional XPath predicates. Besides these syntactic constructs,
explicit context qualifiers (or ec qualifiers) are also used in MXPath predicates.
An ec qualifier may be applied in every step of a MXPath expression and filter
the resulting nodes of the corresponding step according to their explicit context.
Explicit context qualifiers are of the form:

ec() comparison op context specifier expression

The function ec() returns the explicit context of the current node. Note that,
the predicates assigned to a context MXPath step are applied to the context
nodes obtained from the evaluation of this step. In the same way, if a MXPath
step is a multidimensional MXPath step, predicates are applied to the resulting
multidimensional nodes.

7 Ordered-Based Context Operations and Comparison

In this section we define how we can apply set operations and comparison among
context specifiers when they are represented in Ordered-Based Context Repre-
sentation.

We first demonstrate how the intersection and union of context specifiers is
performed at the level of World Vectors.

Lemma 1. Let c1, c2 be two context specifiers and b1, b2 the world vectors of
c1, c2 respectively. Then the world vector b3 of the context intersection c1 ∩c c2

is obtained by applying the AND operation3 to the corresponding bits of b1 and
b2. Respectively, the world vector b4 of the context union c1 ∪c c2 is obtained by
applying the OR operation4 to the corresponding bits of b1 and b2.

Example 7. Consider the context specifiers:
c1 = [edition = english], and
3 For this bit-wise AND operation we will use the abbreviation ANDb.
4 For the bit-wise OR operation we will use the abbreviation ORb.

c2 = [edition = english, customer type = student].
As we have shown in Example 6 the world vector of the context specifier c1 is
V (c1)=000111. Similarly, it is derived that V (c2)=000100. Then we have:
b3 = V (c1 ∩c c2) = 000111 ANDb 000100 = 000100
and
b4 = V (c1 ∪c c2) = 000111 ORb 000100 = 000111

It is also possible to compare two context specifiers using their world vectors.
This is very useful when we are trying to transform MXML queries containing
relevant conditions to SQL queries over a Relational Database. These conditions
imply comparisons between the context specifiers which are stored with the
MXML document in the relational schema, and the context specifiers which are
used in the MXML queries. Similarly to ANDb and ORb, in Lemma 2 we use
the abbreviation XORb for the bit-wise XOR operation.

Lemma 2. Let c1, c2 be two context specifiers and b1, b2 the world vectors of
c1, c2 respectively. Then

1. c1 = c2 iff b1 = b2, alternatively c1 = c2 iff (b1 XORb b2) = 0
2. c1 6= c2 iff NOT(b1 = b2)
3. c1 ≥ c2 iff (b1 ANDb b2) = b2

4. c1 > c2 iff ((b1 ANDb b2) = b2) and (b1 6= b2).

Example 8. Consider the context specifiers:
c1 = [edition = english] and
c2 = [edition = english, customer type = student].
Calculating the world vectors of those two context specifiers we have V (c1)=000111=b1

and V (c2)=000100=b2. Then the expression c1 ≥ c2 is true, as (b1 ANDb b2) =
(000111 ANDb 000100) = 000100 = b2 (see Case 3 of Lemma 2).

8 Discussion and motivation for future work

Two techniques to store MXML documents in relational databases are presented
in this paper. The first one is straightforward and uses a single table to store
MXML. The second divides MXML information according to node types in the
MXML-graph and, although it is more complex than the first one, it performs
better during querying. Additionally, we presented context representation tech-
niques for storing context in a RDB. We also presented MXPath, which is an
extension of XPath, in order to query MXML documents and finally, it was shown
how we can perform operations and comparisons between context specifiers. Fu-
ture work will focus on (a) algorithms for SQL translation of MXPath queries
giving as the ability for experimental evaluation of the querying performance
and (b) optimization of MXML storage using alternative indexing techniques
for improving relational schema and query performance.

References

1. T. Amagasa, M. Yoshikawa, and S. Uemura. A Data Model for Temporal XML
Documents. In Proc. of DEXA 2000, pages 334–344. Springer, 2000.

2. T. Amagasa, M. Yoshikawa, and S. Uemura. Realizing Temporal XML Repositories
using Temporal Relational Databases. In Proc. of the 3rd Int. Symp. on Cooperative
Database Systems and Applications, Beijing, China, pages 63–68, 2001.

3. P. Bohannon, J. Freire, P. Roy, and J. Simon. From XML Schema to Relations: A
Cost-Based Approach to XML Storage. In Proc. of ICDE 2002.

4. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistructured Data with
STORED. In Proc. of ACM SIGMOD Int. Conf. on Management of Data, pages
431–442. ACM Press, 1999.

5. F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML Documents in Rela-
tional Databases. In Proc. of VLDB’ 04, pages 1297–1300. Morgan Kaufmann.

6. D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDBMS.
Bulletin of the IEEE Comp. Soc. Tech. Com. on Data Eng., 22(3):27–34, 1999.

7. M. Gergatsoulis, Y. Stavrakas, and D. Karteris. Incorporating Dimensions in XML
and DTD. In Proc. of DEXA’ 01, LNCS Vol. 2113, pages 646–656. Springer, 2001.

8. M. Gergatsoulis, Y. Stavrakas, D. Karteris, A. Mouzaki, and D. Sterpis. A Web-
based System for Handling Multidimensional Information through MXML. In
Proc. of ADBIS’ 01, LNCS, Vol. 2151, pages 352–365. Springer-Verlag, 2001.

9. M. Ramanath, J. Freire, J. R. Haritsa, and P. Roy. Searching for Efficient XML-
to-Relational Mappings. In Proc. of XSym 2003, pages 19–36. Springer, 2003.

10. J. Shanmugasundaram, E. J. Shekita, J. Kiernan, R. Krishnamurthy, S. Viglas,
J. F. Naughton, and I. Tatarinov. A General Technique for Querying XML Docu-
ments using a Relational Database System. SIGMOD Record, 30(3):20–26, 2001.

11. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In Proc. of VLDB’99, pages 302–314. Morgan Kaufmann, 1999.

12. Y. Stavrakas and M. Gergatsoulis. Multidimensional Semistructured Data: Rep-
resenting Context-Dependent Information on the Web. In Proc. of CAiSE 2002,
LNCS Vol. 2348, pages 183–199. Springer, 2002.

13. I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and
C. Zhang. Storing and querying ordered XML using a relational database system.
In Proc. of the 2002 ACM SIGMOD Int. Conf. on Management of Data, pages
204–215. ACM, 2002.

14. W3C CONSORTIUM. XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20/, January 2007.

15. F. Tian, D. J. DeWitt, J. Chen, and C. Zhang. The Design and Performance
Evaluation of Alternative XML Storage Strategies. SIGMOD Record, 31(1):5–10,
2002.

16. F. Wang, X. Zhou, and C. Zaniolo. Using XML to Build Efficient Transaction-Time
Temporal Database Systems on Relational Databases. In Proc. of ICDE 2006.

17. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based
approach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technology, 1(1):110–141, 2001.

