
Albert-Ludwigs University of
Freiburg

MASTER THESIS

Large-Scale, Transparent
Format Migration System

Author:
Isgandar Valizada
Mtrk.Nr. 272 45 45

Supervisors:
Prof. Dr. Gerhard

Schneider

Prof. Dr. Christian
Schindelhauer

June 29, 2011

Acknowledgement

I am thankful to Dirk von Suchodoletz and Klaus Rechert for their guidance
and feedback which helped me to better structure my thesis.

I am also thankful to Roman Graf for his valuable hints concerning the
Planets Interoperability Framework.

My thank goes to Kyle Retan who spent his time helping me in the
correction of grammar and vocabulary mistakes.

Abstract

An important challenge in digital preservation is the problem of data format
obsolescence. The digital objects eventually become inaccessible when the
applications, which were properly interpreting their formats, cease to exist.
Preserving these applications is an important step in solving above-mentioned
problem. However, in order to enable the usage of the objects over time by
newly developed tools, the objects must be periodically converted to more
spread out formats. The work in this thesis is dedicated to the design of an
easily extendible, transparent and large-scale oriented system which is able
to perform such conversions. The system was designed as part of an existing
digital preservation framework in order to enrich the framework with its
migration functionality.

The interactive session replaying was chosen as the main approach in per-
forming format conversions. According to this approach, the conversion pro-
cess is carried out by computer interaction with the graphical user interface
of the original, format-native applications. Their capability of exporting the
loaded digital objects in a format other than their initial format is used. The
order and nature of the input events necessary for this task are acquired
once from the corresponding manual human interaction. The input events
are then reproduced under the same or similar conditions for arbitrary digital
objects subject to the same source-to-target format conversion.

The work in this thesis presents the structure of the system in general and fo-
cuses on the components responsible for the actual conversion. A prototype
application has been developed and deployed in an existing digital preser-
vation framework. During the experiments it has shown successful results
when converting digital objects in a completely unattended way.

Contents

1 Introduction 1
1.1 Goal and Structure . 2

2 Related Work 4
2.1 Hardware Emulation . 4
2.2 Migration in the Emulated Environment 6
2.3 Unattended Migrations in the Emulated Environment 8

3 Design 11
3.1 Requirements . 12
3.2 Use Cases . 13
3.3 Actors . 13
3.4 Usage Example . 15

4 Implementation 16
4.1 Migration Use-Case . 17

4.1.1 Scenario Bundles . 18
4.1.2 Robustness . 19
4.1.3 Path execution . 19
4.1.4 Block/Interactive Migrations 20
4.1.5 Migration Component Workflow Example 22

4.2 Replayer Service . 23
4.2.1 Container Preparation 25
4.2.2 Emulation . 27
4.2.3 Replaying . 28
4.2.4 Response Forming . 29
4.2.5 Replayer Service Workflow Example 30

4.3 Scenario Retrieval Use-Case 33
4.4 User Feedback Use-Case . 34

5 Conclusion 35
5.1 Outlook . 35

1

5.1.1 Replay Bundles . 36
5.1.2 Cyclic Regions in the Tracefile 38

5 Appendix 40
5.2 Hard Disk Creation Script . 40
5.3 Hard Disk Input/Output Script 41
5.4 Migration Component . 43
5.5 Replayer Unit . 46

6 References 53

Introduction

The importance of Digital Preservation (DP) is rooted in Humanity’s need
to preserve its information heritage over time [1, p. 1]. Preserving informa-
tion digitally was preferred to other options because digital representation of
information is easy to store, process, refresh and replicate.

The storing of information involves the usage of the digital archives located
on a media chosen according to the long-term preservation criteria [2, p. 4].
Digital Objects (DO) stored in an archive are internally structured according
to their data formats. Accessing the content of DOs after their retrieval from
the archive requires proper interpretation of their formats.

Since data formats become obsolete with time, the logical content of the
corresponding DOs from that point on becomes inaccessible [3, p. 2] The
solution to this problem lies in preserving the format-native, original appli-
cations [4, p. 4]. They are expected to have the most complete, built-in
knowledge about their own data formats, and as a result, these applications
should work more reliably with the corresponding DOs.

However, the accessibility of obsolete DOs only by their original applications
limits the scope of their usage. It might be necessary to access the logical
content of DOs with other tools non-native to their obsolete format. There-
fore, it is important to be able to convert DOs from obsolete formats to
formats of the same/similar type that are more spread out. The process of
such conversion is referred to as Migration [1, p. 6].

1

Usually original applications implicitly support migrations, since many of
them allow the saving/exporting of loaded DOs in a different format than
their initial format. Such applications can support one or multiple migration
input/output scenarios. Here input is the source format and output the
target format, to which the source format is to be migrated.

For some of the scenarios original applications which could perform migra-
tions in one step might not exist. Such scenarios would still be possible if the
corresponding Migration Path(chain of intermediate migrations) starting at
input format and ending at output format is available. Each intermediate
migration would then have to be done by its corresponding original applica-
tion.

Using the original applications, DOs can be migrated whenever they become
obsolete in order to keep their logical content constantly accessible. However,
performing migrations manually for every DO is not a feasible strategy, con-
sidering their large and constantly growing amount. Rather, the DOs have
to be (periodically) migrated in large quantities and in an unattended way,
in order to reduce the overall efforts [12, p. 155].

Original applications in most of the cases are suitable only for manual inter-
actions with the user via GUI. Implementing the control of GUI elements to
add the automation functionality to them is time-consuming and specific in
each case [12, p. 155]. Therefore, some generalized automation mechanism
is required which must function regardless of the original application used.

1.1 Goal and Structure

The purpose of this thesis is to develop a format migration system capable of
performing large scale migrations. The system must be able to form the nec-
essary migration path(-s) (if such is/are available). Afterward, using format
native original applications it must migrate the DOs from one intermediate
format to another until the output format is reached. The migration process
is to be done transparently for the user and in a feasible, generalized way.

2

The system must also be responsible for all internal tasks related to the
reliability of reaching the output format. It expects only the source DO(-
s) of the input format, the scenario information and optional parameters
to produce the resulting Migrated Object(-s) (MO). Having such a system
would imply the ability to migrate large quantities of DOs in an efficient way.

Although the system could be used as a stand-alone preservation tool, the
main scope of application for it are the existing digital preservation frame-
works like Planets [14]. Having such a component integrated in them would
contribute to the frameworks by providing the format migration functionality.
In turn much of the frameworks’ existing functionality would not need to be
implemented and could be reused to enable complex preservation workflows
involving not only migration.

The next chapter gives an overview of the basic building blocks of the system.
Afterward, the requirements are clearly defined and followed by the design
and implementation details. Further chapters contain the source code of the
developed prototype and thesis conclusion.

3

Related Work

Constantly upgrading the original applications is time-consuming. A more
suitable strategy would involve acquiring each tool once and be able to use it
at any future point in time, without making any modifications to its program
code. This requires adapting the modern environments for the application
in such a way that it can be run as reliably as in its native environment, for
which it was initially created. The term environment will refer to a com-
bination of the operating system, the hardware available to it and installed
third-party applications/libraries (if any).

Instead of adapting the real machine environment on which the application is
to be run, creating a virtual one representing some environment native to the
application can be created. The virtual environment would not require the
real run-time installation of the operating system, software and the presence
of hardware. It can therefore be formed much faster and on demand. The
approach of creating virtual environments is related to the usage of Emulation
technique in DP. [5, p. 55]

2.1 Hardware Emulation

Hardware emulators are the applications capable of creating the above-mentioned
virtual environments. Their theoretical base relies on the Church-Turing-
Thesis [6, p. 291]. On the low level they represent a software implementation
of the hardware architecture and are capable of forming the so called Virtual
Machines. For example, they implement the functionality of such computer
components as: CPU, Memory managment- and I/O device subsystems. The

4

examples of emulator applications are Qemu [7] and Dioscuri [8].

In order to run a certain operating system on a virtual machine, the latter
must be provided with a source for booting. The source could be, for exam-
ple, an image file of a hard disk drive, where this system is installed. The
operating system would run on the virtual machine by performing calls to
the emulated hardware. Any applications/libraries installed on it could then
be used as in the real environment.

The ability to run a certain operating system depends highly on the type of
the emulated hardware. For example, the same emulator application could
form two different virtual machines. One with the emulated x86 and one
with x86-64 CPU architecture. This in turn defines what operating systems
can work reliably on which of the virtual machines.

Figure 2.1: On the left: Emulating Windows 3.11 (release year 1993) on
Linux Slackware 13.1 (release year 2010) via Qemu v12.0 emulator.

Although the constant reimplementation of the original applications can be
avoided by using emulation, the deprecation of the emulators themselves
remains a problem. In order to be able to use the obsolete emulators, it
might be required to emulate the emulators themselves to eventually achieve
the goal of supporting the necessary View Path [9, p. 8,9]. The recursive
depth of such emulation would increase with time.

5

A more reasonable solution to the deprecation problem of the emulators is to
upgrade them on demand. The amount of emulators being maintained can
be reduced to several most reliable ones. Therefore, their periodic upgrade
would not constitute a problem.

However, the newly upgraded versions of the emulators must guarantee their
backward-compatibility with the previously used operating systems. If these
systems become unusable at some point in time, then the original applications
depending on them would become unusable as well. In general, an automated
emulator testing system similar to [10] must be available to test the usability
of operating systems with emulators.

2.2 Migration in the Emulated Environment

In order to perform the migration by the original tools in their native em-
ulated environments, it is necessary to provide these tools with the digital
objects on which they are to be operated. DOs must be injected into the
emulated environment from the real one, and MOs produced by those appli-
cations must be extracted from it upon finishing.

Injection/Extraction of data into/from the emulated environments is possi-
ble via emulated data storage devices, e.g. via floppy-, hard disk- and cdrom
drives. They can be thought of as a gateway for binary data exchange be-
tween the real and emulated environments. [11, p. 93] Usually emulators
support the emulation of at least one storage device.

For example, in Qemu v12.0 it is possible to activate the emulation of a floppy
drive with a virtual floppy disk inside the drive by such argument pair: ”-fda
floppy.img”. Here floppy.img refers to a virtual floppy disk file prepared in
the real environment, which inside contains binary data subject to injection
into the emulated one.

Any modifications done to the virtual floppy disk inside the emulated en-
vironment will be reflected in the corresponding floppy.img file afterward.
The file can be afterward analyzed in order to acquire the modified data.

6

Further, in this thesis, the emulated storage devices will be referred to as
DO containers, unless their nature is otherwise indicated.

Figure 2.2: The typical workflow of migration by emulation involving DO
containers.

Another possibility for the exchange of data between the real and emulated
environments is the the usage of a network connection between them. [11,
p. 93]

7

2.3 Unattended Migrations in the Emulated

Environment

The interaction with the GUI of the original applications represents a series of
user input events, such as mouse clicks/movements and key strokes. These
events can be simulated using remote desktop control systems like VNC,
allowing them to be performed in an unattended manner [12, p. 159]. This
can be done by modified versions of remote desktop client applications, which
are able to send input events acquired not from the user by his own manual
interaction but, for example, from a binary file.

Figure 2.3: Migrating Word Perfect 6.0 document to Rich Text Format doc-
ument via GUI interaction in the emulated Windows 3.11 operating system.

Being able to simulate manual interaction with the environment opens the
possibility to perform unattended migrations by computer interaction with
the GUI of the original applications and the operating system which they run
in. This requires the order and nature of the input events for that task to be
correctly determined. Acquiring the correct order and nature of these events

8

can be done by recording corresponding manual human interaction through
remote control systems and saving it to a file.

Reproducing the same interaction programmatically in an unattended way
would then be referred to as replaying. In this thesis the applications per-
forming the recording and replaying will be referred to as Interactive Session
Recorders/Replayers respectively. An example of an application that com-
bines them both is Vncplay. [16]

Figure 2.4: Recording the interactive migration session of the dummy DO.

In order for the interactive session recorders/replayers to be able to connect
to the emulated environment, the corresponding emulator application must
support activation of remote desktop access for its underlying Virtual Ma-
chine. For example, in Qemu v12.0 this can be done by specifying ”-vnc :n”
argument pair, where n denotes the number of the opened VNC [13] desktop.

To increase a reliability of the replaying process, each input event is also to
be bound with precondition and an expected outcome. In such a case, during
replay no next input event is sent for remote processing until the expected
outcome of the previous one is observed in the environment. Therefore, each
input event can be thought of as a trigger for change to the next abstract

9

Figure 2.5: Replaying the prerecorded interactive migration session for a DO
of interest.

state of environment. In case of a VNC system, the outcome is to be analyzed
from the frame (screenshot) of the remote desktop.

The advantage of input event based interaction is that no original application
specific API must be implemented and used for this task. In many of the
cases such manipulation might be even impossible due to the proprietary
nature of the applications.

The approach of unattended migrations via interactive session recording/re-
playing in the emulated environment was discussed in [12] [15]. Its feasibility
was proven during experiments. The system suggested in the thesis is based
primarily on this approach.

10

Design

The system assumes the existence of a common information storage accessible
by its front-end and back-end components. The back-end component is used
for the contribution of the migration specific information (e.g. interactive
session recording). The front-end component uses this information in order
to perform data migration (e.g. interactive session replaying). Hereinafter,
the former will be referred to as Scenario Registration Component and the
latter as the Migration Component.

Figure 3.1: Structure of the system described on an abstract level.

The scenario registration component is not involved in the actual migration
process. It cannot be used in any preservation workflow and, therefore, its
integration into the digital preservation framework is not necessary. Further
work in the thesis is devoted to the design of the Migration Component and
the related challenges.

11

3.1 Requirements

Functional.

1. Transparency: The component must be able to perform migration pro-
cess in an unattended way. It must separate the inner workflow from
the user.

2. Large-scale: It must be able to perform migrations of large quantities
of DOs subject to the same input/output scenario in one turn.

3. Wide-Accessibility: The component must be publicly available.

4. Integration: The component must be part of the existing preservation
framework to enrich it with its format migration functionality.

5. Extensibility: Enriching the component with the support of new mi-
gration scenarios must not lead to the change of its functionality. It
must be achievable in run-time, without the need of its temporary de-
activation.

6. Robustness: An error handling mechanism must be present to increase
the robustness of the migration workflow.

Non-Functional.

1. Flexibility: The component should be designed flexible enough to pro-
vide support for any third migration related approaches.

2. User-Feedback: It should accept and analyze user-feedback (if speci-
fied) upon finishing the migration process.

3. Supported Scenario List: It should provide user with the list of sup-
ported migrations if requested, preferably according to the specified
filter.

4. Learning: A basic mechanism for run-time strategy improvement should
be present.

12

3.2 Use Cases

The migration component supports three use cases:

1. • Input: request to acquire the list of supported migration scenarios;
preference filter;

• Output: list of supported migration scenarios and the meta-information
for each of them;

2. • Input: an archive file (e.g. ZIP type) of DOs; the requested mi-
gration scenario; optional execution parameters;

• Output: an archive of corresponding MOs or null; migration meta-
information; session identifier;

3. • Input: session identifier; feedback about the migration session
corresponding to the identifier;

• Output: empty response

3.3 Actors

The potential actors accessing this component are:

1. Digital preservation interoperability framework, serving as a middle
layer between the end user and the component.

2. Third applications requiring migration functionality.

3. End users accessing the component by means of any web-service con-
suming tools.

13

Figure 3.2: Demonstration of the possible use cases of the migration compo-
nent.

14

3.4 Usage Example

In cases when the format of the obsolete DO is unknown, there is no pos-
sibility to choose the suitable migration scenario. In such cases the input
format must first be identified. This task can be performed by characteriza-
tion tools in DP. An example of such a characterization tool is Droid. [17] It
connects to the Pronom [17] format registry in order to acquire the necessary
information and identify the format of the DO.

Figure 3.3: The actor uses the migration component in a preservation work-
flow, which includes DO characterization.

The actor could incorporate both the characterization tool and the migra-
tion component in the preservation workflow. The DOs would be first iden-
tified and then migrated according to the desired scenario. In practice, the
workflow could consist of much more complex elements than the one being
described.

Although in this example the actor could be represented by the end-user, a
more realistic case is when this workflow is performed by the digital preser-
vation framework. The framework would acquire the DO(-s) as an input,
perform their characterization and migration hiding the corresponding work-
flow from the end-user.

15

Implementation

The inner workflow of this component is to be hidden from the user through
the public API used for its invocation. Implementation of the methods for
guiding the migration process in run-time are not assumed. Such design is
in accordance to the transparency requirement.

In order to ensure the wide-accessibility requirement, this component is
to be implemented in form of a web service. Its integration into existing DP
frameworks would allow its usage both as a stand-alone tool and as a part
of more sophisticated preservation workflows. The Planets Interoperability
Framework (IF) [14] is a suitable candidate for the integration requirement.

In this framework each preservation tool is invokable according to one of the
predefined code interfaces. The chosen interface depends on the tool’s role in
the scope of the DP (e.g. object migration/characterization/viewing/com-
parison). On the low level, the migration component would then represent
the implementation of Migrate1 interface of Planets IF. This interface con-
tains the following method, which is invoked for the component’s use-cases.
This method represents the above-mentioned public API of the migration
component and has the following code representation:

MigrateResult migrate (D ig i t a lOb j e c t d i g i t a lOb j e c t ,
java . net .URI inputFormat ,
java . net .URI outputFormat ,
L i s t<Parameter> parameters) ;

1Presented java code interface corresponds to Planets IF version of June 2010

16

Invocation is classified according to the previously defined use-cases. The
use-case representing the unattended migrations is of particular interest and
will be discussed first.

4.1 Migration Use-Case

The migration component queries the Scenario Database (Common Informa-
tion Storage) in order to acquire the information necessary at further steps.
This database is common to all parts of the system. The information, which
is to be retrieved from it at the current step, is the possible migration paths.

The database needs to maintain information about all atomic migration sce-
narios available to it. An atomic scenario refers to a scenario that does not
involve intermediate migrations. Depending on the user-requested migra-
tion, the corresponding complete migration paths which are formed from the
atomic migration scenarios, are to be calculated. At this step the path pref-
erences specified by the user in the parameter list can be taken into account.
After the calculation, the component receives the path in form of ordered
lists of atomic scenario identifiers.

Figure 4.1: User requested the WPD-to-RTF migration. Two possible migra-
tion paths have been calculated according to the information in the scenario
database. Both of them will be returned.

This problem can be represented in the form of a graph path calculation.
In this graph the nodes correspond to different data formats and directed
edges to available atomic migration scenarios. Finding the correct migration
paths corresponds to finding the paths in this graph which would connect

17

the nodes of input and output formats specified by the user. Each path also
has a certain cost associated with it, which is calculated from the costs of its
edges. The total path cost would then define its efficiency value.

4.1.1 Scenario Bundles

By querying the Preservation Database using the identifiers of atomic sce-
narios it is possible to acquire scenario specific data bundles. These bundles
represent a set of data used for invocation of the services responsible for
the actual migration. On the code level they would represent tuples in a
relational database. Their contents are the following:

• Meta-Information: This object incorporates meta description of the
scenario, e.g. input/output formats, efficiency level, single/multiple
DO support, author, timestamp. The input/output format identifiers
need to be defined according to the conventional format registry system
(e.g. Pronom).

• Service Endpoint: Network location of the service, which is able to
perform this scenario.

• Parameters: Arguments of key/value form that need to be passed to
ensure the successful scenario execution.

Depending on the endpoint of the bundle, the separate service corresponding
to it will be invoked by the migration component at later stages. The inner
representation of the parameter object depends on the service being invoked
and might be different in each case. Such design of the scenario bundles
satisfies the flexibility and extensibility requirements at the same time.

The former requirement is satisfied due to the fact that the migration exe-
cution is delegated to a separate service. Its inner working mechanism is not
important for the invoking side. This implies that in addition to the service
performing migration by interactive session replaying, services implementing
other approaches can also be easily incorporated.

18

The latter requirement is satisfied due to the fact that enriching the system
with a new migration scenario requires only the addition of the corresponding
entry in the scenario database. The registration of a new bundle is to be
done by the Scenario Registration Component. Registering a new bundle by
adding a new database entry would require neither the reimplementation of
the system’s functionality nor its temporary deactivation.

4.1.2 Robustness

Among all received migration paths the one with the lowest cost should be
chosen for execution by the migration component. However, even paths with
the lowest costs are able to fail. In simple cases the failure of some edge
can be overcome by retrying it. In each case of retry or complete failure,
the efficiency level of the corresponding edge should be decreased. This
mechanism would contribute to the learning requirement.

If the same edge fails too many times the path must be recalculated starting
from the current node. In such a case the arc cost of a failing atomic migration
scenario should be set to infinity. The path recalculation could be performed
by using real-time planning algorithms (e.g. D* Lite [18]).

Furthermore, when a certain migration path is chosen, then all scenario bun-
dles corresponding to its intermediate atomic migrations must be marked as
being executed. This would imply the write-lock request for the bundle data
and any data referenced from it. Such a mechanism would prevent poten-
tial path termination due to run-time bundle modification (or its referenced
data).

4.1.3 Path execution

At this step it is assumed that the migration path is chosen and approved
for execution. The corresponding bundles are accessible and write-locked.
The next task is to perform the actual migration through external migration
services.

19

These services need to implement the common interface similar to Migrate of
Planets IF in order to be invokable by the migration component. In such a
case they would contain a method used for their invocation by the migration
component, which would look similar to the following:

MigrateResult per formMigrat ion (D ig i t a lOb j e c t d i g i t a lOb j e c t ,
L i s t<Parameter> parameters) ;

The input/output formats are to be set in the parameter list if necessary.
The services must expect an archive of DOs with parameters and return the
archive of MOs (or null). The archiving algorithm used for DO/MO storage
is to be chosen by convention for all system and officially declared for the
system users.

If the path is longer than a single edge, then the migration will be performed
in multiple turns. Upon finishing a certain intermediate scenario, an archive
with intermediate objects is acquired. It is in turn sent to another or the
same migration service on the chain in order to perform the next scenario.
The picture below illustrates an example of complex migration.

The final result of the last scenario is prepared as a response for the end
user of the migration component. It should be accompanied by the meta
information of the performed migration. Additionally, the user must receive
an identifier, which uniquely identifies the finished migration session.

4.1.4 Block/Interactive Migrations

Until now it was assumed that the migrations performed by the services have
an atomic nature. They accept an archive of DOs and produce an archive of
MOs. However, not all migration services might be able to migrate multiple
number of files in one turn.

The data stored in the meta-information object of each bundle must include
the information about the capabilities of the corresponding service. Cases
when the service supports only single migrations must be distinguished. In
such cases the migration must be done iteratively for each DO. Therefore

20

Figure 4.2: Migration involving intermediate scenario. By an archive in this
context a package of files stored together is assumed.

passing an archive for the injection of DOs must be done only in cases when
the service used on this step supports such migrations. Regardless of the
case, block/iterative migrations ensure the system’s requirement of large-
scale migrations.

21

4.1.5 Migration Component Workflow Example

As an example, the WPD (Word Perfect 6.0) to RTF (Rich Text Format)
migration will be discussed. User invokes the migration component by pro-
viding an input: an archive of DOs, input format - WPD, output format -
RTF, parameter that denotes maximum path length of 2.

The migration component queries the Scenario Database and receives five
different migration paths. Among them only one path satisfies the maximum
migration path length condition. The path is the following: WPD to SAM;
SAM to RTF. The migration component retrieves the bundles corresponding
to these scenarios using their identifiers. When retrieved for performing the
migration, the bundles are automatically marked as being executed.

At first a WPD to SAM migration is performed. The endpoint contained in
the corresponding bundle is used to invoke the responsible migration service.
The meta-information of the bundle contains the field indicating that this
service can perform migrations of multiple DOs in one turn. Therefore, the
DOs are passed in an archive accompanied with the execution parameters of
the bundle. The WPD to SAM migration is performed, and an archive of
MOs is returned along with the success status.

An archive of acquired intermediate MOs of SAM format is sent for the
second scenario of the path. According to the meta-information in the SAM-
to-RTF bundle, the service is unable to perform the migration of multiple
DOs in one turn. Therefore, the archive of intermediate MOs is extracted to
the local storage. From there the intermediate DOs are migrated one-by-one
and the results of the migration are collected.

The resulting DOs of RTF format are packed into an archive. The unique
session identifier corresponding to this path is generated. Then the MOs
archive, the session identifier and any meta-information are returned to the
user as a final result.

22

Figure 4.3: The interaction of the migration component with other elements
of the system.

4.2 Replayer Service

This section describes the working principle of the migration service based on
the approach of interactive session replaying. As any other service invokable
by the migration component, it implements the common API. According
to the API it receives a list of key/value parameters taken from the bundle
corresponding to the desired scenario. The parameters in case of the Replayer
Service are the following:

• OS-Image: An image file of a bootable hard disk with an operating
system, original migration tool(-s) and any third applicaions/libraries
installed.

23

• Tracefile: An object containing the recorded interactive migration ses-
sion and the information about the DO container used for data injection
during recording.

• Emulator: An object containing a list of endpoints of the emulation
services, supporting the OS-Image. For each service it contains another
list with identifiers of emulator applications, which are compatible with
this image. It could also contain image specific information and/or
secondary objects [19, p. 6] necessary for the successful generation of
the View Path (e.g. bios file location, specific emulator directives).

The retrieval of the bundles corresponding to this type of service is depicted
below. The objects stored in the parameter list represent only the references
to the real locations. The real objects will be retrieved at different stages of
the replayer service workflow.

Figure 4.4: Retrieving the desired scenario bundle corresponding to the re-
player service.

24

The filenames of the DOs play an important role in the case of migration in
the emulated environment. The reason for this is that not all operating sys-
tems are able to handle long file names and/or special characters. Therefore,
the DOs received in the archive must be first renamed using some conven-
tional and safe naming scheme. For example do{N}.{fmt}, where N denotes
their id (incremental) and fmt the format extension.

4.2.1 Container Preparation

Further sections describe the workflow of the replayer service starting from
the container preparation. The creation of a DO container and injection/ex-
traction of DOs into/from it is delegated to a separate subunit. It is crucial
that the filenames of the DOs do not change after injection/extraction.

There are different possibilities for DO container creation. Optical devices
are either read-only or require additional software for burning data to them.
Floppy disks are a relatively easy solution, but they are limited in size. In
this thesis the task of data injection/extraction is performed through the
usage of hard disk drives. They are modifiable and their size can be adjusted
to the desired degree. This allows for injection of the large-quantities of DOs
into the emulated environment.

The procedure for empty hard disk creation can be summarized with the
following steps:

1. Allocating the desired amount of space for the disk image.

2. Making only a single partition in the disk. The first partition in the
hard disk starts at 32256 byte offset. This offset value is a crucial
information, which later allows to identify the location of the data in
the image file.

3. Formatting the single partition starting from the above-mentioned off-
set. Selection of the file system type is an important step. Its type
defines, which operating systems could use it for the emulation of their
data storage.

25

The size and the filesystem of the hard disk must be chosen wisely by the
replayer service. The size would depend on the DOs being injected. The
filesystem type should be retrieved from the tracefile object of the corre-
sponding scenario bundle.

In the Appendix of this thesis there are two related code listings. The first
one is used for the creation of virtual hard disks and the second for data
transportation. Future implementations of the system would need to contain
this functionality in the form of code libraries.

The creation of DO container can be done in the following way:

ArrayList<Str ing> cmd = new ArrayList<Str ing >() ;
cmd . add (muProps . m hddCreate) ;
cmd . add (fSys) ;
cmd . add (dataS ize) ;
cmd . add (tmpDisk . getAbsolutePath ()) ;
(new ProcessRunner (cmd)) . run () ;
cmd . c l e a r () ;

In this code the ”hdd create.sh” script is being invoked. It is provided with
the desired filesystem and size of the disk. The last argument denotes the
disk’s absolute path, i.e. the location and the name of the resulting disk
image.

Injection of the DOs using the script is done according to the following code:

ArrayList<Str ing> cmd = new ArrayList<Str ing >() ;
cmd . add (muProps . m hddIo) ;
cmd . add (” i ”) ;
cmd . add (tmpDisk . getAbsolutePath ()) ;
cmd . add (tmpDob . getAbsolutePath ()) ;
(new ProcessRunner (cmd)) . run () ;
cmd . c l e a r () ;

The script ”hdd io.sh” is being invoked and provided with the ”i“ argument,
denoting data injection. The arguments after, refer to the absolute path of
the disk image and the DOs for injection.

26

4.2.2 Emulation

The next step is to start the emulated environment and enable the remote
desktop control in it. This task is performed by one of the emulation services
listed in the emulator object of the corresponding scenario bundle.

When the emulation service is chosen, it is provided with all the necessary
information contained in the emulator object of the bundle. The service is
also provided with the DO container file for its injection into the emulated
environment. If the emulation was started successfully, DO container injected
and the remote desktop control enabled, then the service replies with success
response. Additionally it returns the port for remote control clients and the
unique session id. In case of failure a different emulation service or a different
emulator of the same service (if any) could be tried.

Figure 4.5: Request for activation of the emulated environment and connec-
tion to it via interactive session replayer.

The port handling mechanism must be present. The service should not pro-
vide remote control access for multiple different environments, using the same
port. The port handling method used in the current implementation of the
service is enclosed in the Appendix.

27

Depending on the emulator identifier, chosen by the replayer service accord-
ing to the data in the emulator object, the corresponding executable location
is retrieved by the service. This information could be taken from an XML
configuration file containing such correspondence on the emulation service
side. The invocation of the emulator with remote control support can be
demonstrated by this sample code listing:

I n t eg e r freeVncPort = getFreeVncPort () ;
cmd . add (muProps . m qemuExec) ;
cmd . add (”−vnc”) ;
cmd . add (” : ” + new I n t eg e r (freeVncPort − portMin)) ;
cmd . add (”−dr ive ”) ;
cmd . add (” f i l e=” + sc ena r i o . m image + ” , snapshot=on”) ;
cmd . add (”−hdb”) ;
cmd . add (tmpDisk . getAbsolutePath ()) ;
qemu = new ProcessRunner (new ArrayList<Str ing >(cmd)) ;
qemuThread = new Thread (qemu) ;
qemuThread . s t a r t () ;

In this code the emulator is being invoked and provided with the instruction
to enable VNC support for its emulated environment. The VNC desktop
number is formed from the value returned by the function, which is guaran-
teed to return a free port.

Upon request and using the session id, this service must terminate the em-
ulated environment, detach the DO container and return it to the replayer
service. In order to avoid the resource leakage this service should also expect
the consumer to send ”keep-alive messages”. If no message has arrived within
the predefined timeout then the emulated environment must be terminated
and all resources freed.

4.2.3 Replaying

If the replayer service receives the success response from the emulation service
and the opened port information, it can then invoke its interactive session
replayer to perform the migration. As an input the replayer must receive the
tracefile with the previously recorded interactive session, the endpoint of the
emulated environment and the port for connection.

cmd . add (” java ”) ;

28

cmd . add(”− j a r ”) ;
cmd . add (muProps . m vncplay) ;
cmd . add (”HOST”) ;
cmd . add (InetAddress . getLocalHost () . getHostAddress ()) ;
cmd . add (”PORT”) ;
cmd . add ((new In t eg e r (freeVncPort)) . t oS t r i ng ()) ;
cmd . add (” autoplay ”) ;
cmd . add (” true ”) ;
cmd . add (” t r a c e f i l e ”) ;
cmd . add (s c ena r i o . m t r a c e f i l e) ;
ProcessRunner vncplay = new ProcessRunner (cmd) ;
vncplay . run () ;

In this code the interactive session replayer connects to the emulated envi-
ronment on the specified port. The replaying process starts and the DOs are
being migrated from the input to output format according to the migration
scenario. Inside the emulated environment the produced MOs are placed on
the DO container. The interactive session replayer finishes its work and the
replayer service requests emulation termination. The emulation service final-
izes the environment and returns the DO container with migrated objects.

4.2.4 Response Forming

This step requires the replayer service to extract the objects from the received
DO container. For this task the DO container subunit is invoked and the
contents are extracted to the local storage of the replayer service.

cmd . add (muProps . m hddIo) ;
cmd . add (” e ”) ;
cmd . add (tmpDisk . getAbsolutePath ()) ;
cmd . add (tmpIoDir . getAbsolutePath ()) ;
(new ProcessRunner (cmd)) . run () ;
cmd . c l e a r () ;

The MOs must be identified by the matching of their filenames. By con-
vention all produced MOs must be named according to a predefined naming
scheme. An example of such could be mo{N}.{fmt}, where N denotes its
number and fmt the format.

29

The naming scheme must be taken into consideration during the interactive
session recording as well. This implies that, the contributor performing the
recording of the migration session for its later usage should produce MOs ac-
cording to the conventional sheme. Otherwise, the MOs will not be identified
when the corresponding session is reproduced for other DOs by the replayer
service.

When MOs are identified among all contents of the container, they are then
renamed to their initial file names but with an output format extension. The
resulting objects are packed to an archive file and returned to the migration
component.

4.2.5 Replayer Service Workflow Example

In this section the sample workflow involving the WPD to RTF migration
will be discussed. The operating system and the original tool used, in this
case are Windows 3.11 and WordPerfect 6.0 installed on it. According to the
workflow, the migration component invokes the replay service by providing
it with the archived DOs and the parameters. It will be assumed that the
prerecorded WPD-to-RTF migration scenario is able to migrate the desired
number of DOs in one turn.

The replay service parses the parameter list and acquires the references to the
three necessary objects: OS-Image, Tracefile and Emulator. It then extracts
the received DOs from the archive to the local storage, while calculating
their total size. The DOs are renamed according to the predefined naming
scheme and the correspondence between the real and virtual names is stored
separately. The next step is the DO container creation and injection of data.

The DO container subunit is invoked and provided with the information
about the desired filesystem of the hard disk drive and its size. The size
is set to a value big enough to hold the DOs and the MOs, which will be
produced in the emulated environment. The DO container subunit acquires
the input data and produces the hard disk image file. It then injects the
DOs, without changing their filenames. After the operation is completed, it
returns the prepared container to the replay service.

30

When the DO container is prepared, the emulated environment can be started.
The replay service acquires one of the emulation service endpoints stored in
the scenario bundle and one of the suitable emulator ids associated with it.
It then invokes the respective emulation service by providing the following:
the emulator id, the operating system image of OS-Image object, any sec-
ondary objects and/or directives necessary for the emulation of this operating
system, and the prepared container, with DOs in it.

The emulation service receives the input data and starts the emulated Win-
dows 3.11 with Word Perfect 6.0 installed in it. It also attaches the the hard
disk container with the DOs. The remote desktop control is being enabled.
It then sends a success response with a port number for connection as well as
the session identifier. The replay service acquires the response and initiates
the periodic sending of keep-alive messages each time specifying the session
identifier.

The replay service then starts its interactive session replayer. It is provided
with the network locaton of the emulator service and the port for connection.
The interactive session replayer acquires the input events from the tracefile
object and automatically passes them on to the emulated environment.

These events correspond to a manually prerecorded WPD-to-RTF migration
using WordPerfect 6.0 original application in the emulated Windows 3.11.
The input events lead to the following actions in the emulated environment:

1. The WordPerfect 6.0 is executed via mouse click on its icon.

2. The ”Open” menu of Word Perfect 6.0 is chosen.

3. In the opened dialog box, the DO on the attached hard disk drive is
chosen and loaded.

4. The ”Save As” menu of Word Perfect 6.0 is chosen.

5. In the opened dialog box the new file name is chosen according to the
conventional naming scheme and the DO is saved under RTF format
on the same hard disk. Thus the MO is produced at this point.

This set of actions is performed for each DO automatically. (For the questions

31

regarding migration cycles in execution of the replay process, please refer to
the Outlook section of the Conclusion chapter.) After sending the last input
event and observing its expected outcome, the interactive session replayer
finishes its work. The replay service sends a request for the termination of
the emulated environment, using the session identifier. The emulation service
frees all resources, detaches the hard disk image with the newly produced
RTF format MOs and returns it to the replay service.

Figure 4.6: Typical workflow of the replayer service.

The replay service invokes its DO container subunit to extract the contents
of the hard disk image. The contents are extracted to a local storage. After-
ward the MOs are identified according to the conventional naming scheme.
They are renamed to their initial file names but with RTF extension and
packed into an archive file. The archive file is then returned to the migration

32

component. At this point the execution of the replay service is completed.

4.3 Scenario Retrieval Use-Case

The second use-case to be discussed is the request for returning the list
of supported atomic scenarios. Upon receiving the request in the form of
a corresponding parameter, the migration component queries the Scenario
Database and returns the meta-information object of each scenario bundle to
the user. Furthermore, a predefined filter could be specified as an additional
parameter during invocation. This filter would correspond to a desire of
acquiring only those scenarios which satisfy the supplied conditions. For
example, in case of the replayer service type bundles, the usage of only certain
operating systems/applications/emulators could be specified.

On the code level returning the list of supported migrations could be done
by an implementation of describe method of Planets IF Migrate interface.
Its code representation is the following:

@WebMethod(operationName = Plane t sSe rv i c e .NAME + ” Descr ibe ” ,
a c t i on = P lane t sS e rv i c e s .NS

+ ”/” + Plane t sSe rv i c e .NAME + ”/” + ” Descr ibe ”)
@WebResult (name = Plane t sSe rv i c e .NAME + ” Desc r ip t i on ” ,

targetNamespace = P lane t sS e rv i c e s .NS
+ ”/” + Plane t sSe rv i c e .NAME, partName = Plane t sSe rv i c e .

NAME
+ ” Desc r ip t i on ”)

@ResponseWrapper (className = ”eu . p l a n e t s p r o j e c t . s e r v i c e s . ”
+ P lane t sSe rv i c e .NAME + ”Descr ibeResponse ”)

S e rv i c eDe s c r i p t i on de s c r i b e () ;

This method is used for providing a brief description of the deployed preser-
vation tools, including their supported migration scenarios. Inside it could
encapsulate the access to the scenario database in order to acquire the nec-
essary information and form the response. However, it should be taken into
account that the method accepts no parameters. Thus it is not possible to
specify a desired filter. If the presence of filter functionality is important
then a workaround could be the usage of the migrate method for the sce-
nario retrieval as well. In such a case no digital object and no input/output

33

formats would be specified. The only input data would be the information
in the parameter list indicating scenario retrieval request.

MigrateResult migrate (D ig i t a lOb j e c t d i g i t a lOb j e c t ,
java . net .URI inputFormat ,
java . net .URI outputFormat ,
L i s t<Parameter> parameters) ;

4.4 User Feedback Use-Case

Another use-case is the request for accepting feedback about the performed
migration. The migration component is unable to judge the quality of the
MOs produced by the migration services. Only their presence or absence
determine success or failure at that stage.

Therefore, it is important to receive feedback from the user, denoting the
quality of the produced MOs. The feedback could contain the rating value
ranging from 0 to 10. Additionally, the user could specify the text descrip-
tion of the feedback, which could be later analyzed by the DP staff. Cases in
which the feedback indicates total success could be used in order to increase
the efficiency value of each migration service involved in the correspond-
ing migration path. Such a mechanism is in accordance with the learning
requirement. However, in cases when the migration failed, there is no possi-
bility to identify the failing edge other than by testing each of them.

On the code level the feedback use-case is similar to that of scenario retrieval.
The first parameter for the migrate method should indicate the feedback
request and the following ones its content in the form of ranking and text
description. Additional parameter in the list should correspond to a session
identifier. Although this use-case can be performed manually by the user, in
practice the Planets IF could provide means for accomplishing this task in a
convenient way via web-interface.

34

Conclusion

The work in the thesis presented the format migration system which is be able
to perform migrations of large-quantities of DO transparently for the user.
It was designed primarily for the task of being integrated into an existing
DP Framework. By deploying the system withing the Planets IF the frame-
work would be enriched by the format migration functionality. The following
sections describe open questions which would need further attention.

5.1 Outlook

Additional work must be dedicated to the methods of creating and adding
the scenario bundles to the database. The task of bundle registration is per-
formed by the Scenario Registration Component. Through this component’s
public API, contributors should be able to request the adding of their own
scenario bundles. This step would involve specifying the endpoint of the
migration performing service, the meta-information of the scenario and the
parameters. Additional use-cases of such a component could be temporary
deactivation, modification or deletion of the bundles upon request.

The creation of the bundles’ contents depends on the type of the approach
used by the corresponding migration services. This section will further focus
on the bundles corresponding to the Replay Service.

35

5.1.1 Replay Bundles

Creation of the replay bundles involves specifying the location of the OS-
Image, Tracefile and Emulator objects in the parameter list. These values
should be formed during the migration scenario recording. Scenario recording
would involve the steps similar to the ones described in the Replay Service
section of the thesis. The major difference would be the usage of the inter-
active session recorder instead of the replayer.

During the session recording, the contributors should be able to choose the
operating system image (depending on the desired original application(-s)),
the DO container type and the corresponding emulator. The contributors
would perform the migrations manually, and their input events would be
saved to file.

After the recording is finished, the objects could be automatically packed
into the parameter list. They would also be accompanied with the endpoint
of the replay service. The meta-information should be formed according to
the contributors description of the migration session. After all parts of the
replay bundle are ready, it can be automatically registered by a call to the
Scenario Registration Component. After its registration, the corresponding
scenario would be available for the Migration Component as one of the edges
of the migration path graph.

The user-friendliness is a crucial aspect of the application performing the
creation of replay bundles. Recording of the session should be available to a
wide-range of contributors with no in-depth knowledge of computer science.
By connecting to the replay archives through the Replay Bundle Creator
Component, the web-based/graphical user interface would provide users with
a list of available image files, emulators and any other secondary objects. It
should also provide a means of entering brief description of the session, in-
cluding the input/output formats, according to conventional format registry.

One of the important issues concerning session recording is the formation of
the initial efficiency factor and its addition to the meta-information object.
It may be formed, depending on the duration of the session, number of input
events and value manually assigned by the contributor. Basing the factor
on duration only might give false results due to varying system performance

36

Figure 5.1: Connection between the contributors, replay bundle creation and
registration process.

during recording and replaying. Duration value should then be accompanied
by the average CPU/RAM statistic acquired periodically during recording.

The prototype of the replay bundle creator with web-based UI was developed
in the scope of [15] and is depicted below.

37

Figure 5.2: Contributor specified the name of the scenario and its description
and chose the image file. The dummy DO was injected in order to produce
the dummy MO manually and save the corresponding input events to a file.

5.1.2 Cyclic Regions in the Tracefile

If a certain tracefile represents the recorded migration session of a single
DO, then it contains an exact region of input events, which is responsible for
the production of the MO. This region could be repeated depending on the
number of DOs injected for migration. On the low level it would represent
the markers in the tracefile, which denote the existance of a cycle. In such
a case these markers should be specified during the session recording by the
contributor.

9 id=503 button=0 when=1307637076988 mod i f i e r s=0 type=java . awt .
event . MouseEvent y=93 x=469

14 id=503 button=0 when=1307637077002 mod i f i e r s=0 type=java . awt .
event . MouseEvent y=93 x=469

/∗ REPEAT SECTION BEGIN∗/
415 id=501 button=1 when=1307637077417 mod i f i e r s=16 type=java .

awt . event . MouseEvent y=93 x=469

38

19 id=502 button=1 when=1307637077436 mod i f i e r s=16 type=java . awt
. event . MouseEvent y=93 x=469

710 id=401 when=1307637078146 keycode=10 keychar=10 mod i f i e r s=0
type=java . awt . event . KeyEvent

. .

. .

. .
74 id=402 when=1307637078220 keycode=10 keychar=10 mod i f i e r s=0

type=java . awt . event . KeyEvent
516 id=503 button=0 when=1307637078736 mod i f i e r s=0 type=java . awt

. event . MouseEvent y=93 x=469
72 id=503 button=0 when=1307637078808 mod i f i e r s=0 type=java . awt .

event . MouseEvent y=93 x=469
/∗ REPEAT SECTION END∗/
37 id=503 button=0 when=1307637078845 mod i f i e r s=0 type=java . awt .

event . MouseEvent y=93 x=469
10 id=503 button=0 when=1307637078855 mod i f i e r s=0 type=java . awt .

event . MouseEvent y=93 x=469
13 id=503 button=0 when=1307637078868 mod i f i e r s=0 type=java . awt .

event . MouseEvent y=94 x=469
10 id=503 button=0 when=1307637078878 mod i f i e r s=0 type=java . awt .

event . MouseEvent y=94 x=471
13 id=503 button=0 when=1307637078891 mod i f i e r s=0 type=java . awt .

event . MouseEvent y=94 x=472

If the interactive session replayer processing this tracefile encounters the
markers, it repeats the inner region for the specified number of times. The
number of iterations would depend on the number of DOs. The corresponding
value could be passed on to the interactive session replayer as an execution
parameter.

However, such a strategy would require proper automatic file naming by the
cyclic region of input events. Since the region is being repeated, then it would
always produce the MOs under the same file name and location. In such a
case each MO would be constantly overwritten by its successor.

Further studies should investigate this possibility. If this strategy were con-
sidered unreliable for large-scale migrations, then the session recording would
assume future migrations to consist of only single DOs. In this case the mi-
grations of large number of DOs could be done via iterative invocations of
the replayer service.

39

Appendix

5.2 Hard Disk Creation Script

#!/usr /bin /bash
s e t −o e r r e x i t
s e t −o noc lobber

PARAM/VAR HANDLING:
usage=’ hdd create . sh f s y s s i z e hdd ’
i f [”$#” −eq 0] ; then echo −e ” $usage ” ; e x i t 0 ; f i
f s y s=”$1”
s i z e=”$2”
hdd=”$3”
dev= ’ ’
fd = ’ ’
ok=0

CLEANUP HANDLING
cleanup ()
{

code=$?

s e t +e
sync ; l o s e tup −d ”$dev ” ; sync ;
exec { fd}>&−
i f [”$ok” −ne 1] ; then rm −f ”$hdd ” ; f i
s e t −e

e x i t $code
}

GET FREE LOOP DEVICE
getdev ()
{

40

s e c s=60

s e t +e
f o r ((i =0; i<$ s e c s ; ++i))
do

dev=$ (l o s e tup ”$@”)
i f [−b ”$dev”] ; then return 0 ; f i
s l e e p 1

done
s e t −e

f a l s e
}

CREATING HDD FILE :
exec { fd}>”$hdd”
trap cleanup ERR INT KILL TERM QUIT
dd i f =/dev/ zero o f=/dev/ fd /” $fd ” bs=256K count=$ (($ s i z e ∗4))

MAKING PARTITION:
getdev −−show −f ”$hdd”
s f d i s k −D ”$dev” << EOF
, , $ f s y s

EOF

FORMATTING PARTITION:
sync ; l o s e tup −d ”$dev ” ; sync ;
getdev −−show −f −o 32256 ”$hdd”

fmt=””
case $ f s y s in

6) fmt=”mkdosfs $dev ” ; ;
b) fmt=”mkdosfs −F 32 $dev ” ; ;
∗) f a l s e

e sac
$fmt

ok=1
echo ”HDD CREATED”
cleanup

5.3 Hard Disk Input/Output Script

#!/usr /bin /bash
s e t −o e r r e x i t

41

PARAMS/VARS HANDLING:
usage=’hdd io . sh op hdd io ’
i f [”$#” −eq 0] ; then echo −e ” $usage ” ; e x i t 0 ; f i
op=”$1”
hdd=”$2”
s h i f t 2
mpt= ’ ’
dev= ’ ’

CLEANUP HANDLING
trap cleanup ERR INT KILL TERM QUIT
cleanup ()
{

code=$?

s e t +e
sync
pumount ”$dev”
sync
l o s e tup −d ”$dev”
sync
rm −r −f ”$mpt”
s e t −e

e x i t $code
}

GET FREE LOOP DEVICE
getdev ()
{

s e c s=60

s e t +e
f o r ((i =0; i<$ s e c s ; ++i))
do

dev=$ (l o s e tup ”$@”)
i f [−b ”$dev”] ; then return 0 ; f i
s l e e p 1

done
s e t −e

f a l s e

42

}

BIND AND MOUNT HDD
i f [! −e ”$hdd”] ; then f a l s e ; f i
getdev −−show −f −o 32256 ”$hdd”
mpt=”/media / . ${$}${RANDOM} . tmp”
pmount ”$dev” $ (basename ”$mpt”) ;

DATA INPUT/OUTPUT
i f [”$op” = ’ i ’] ; then cp −r −n ”$@” ”$mpt ” ;
e l i f [”$op” = ’ e ’] ; then cp −r −n ”$mpt”/∗ ”$1 ” ;
e l s e f a l s e ; f i
echo ” I /O SUCCESS”
cleanup

5.4 Migration Component

package eu . p l a n e t s p r o j e c t . s e r v i c e s . migrat ion . u fcmigrate ;

import java . i o . IOException ;
import java . lang . Inter ruptedExcept ion ;
import java . i o . F i l e ;
import java . net . URISyntaxException ;
import java . net .URI ;
import java . net .URL;
import java . lang . In t eg e r ;
import java . lang . Long ;
import java . lang . Process ;
import java . u t i l . ArrayList ;
import java . u t i l .Random ;
import java . u t i l . L i s t ;
import java . u t i l . TreeSet ;
import java . u t i l . P rope r t i e s ;
import java . u t i l . l o gg ing . Logger ;
import javax . e jb . S t a t e l e s s ;
import javax . jws . WebService ;
import javax . annotat ion . Resource ;
import javax . xml . ws . WebServiceContext ;
import javax . xml . ws . soap .MTOM;
import com . sun . xml . ws . deve loper . StreamingAttachment ;

43

import eu . p l a n e t s p r o j e c t . i f r . core . t e chreg . formats .
FormatRegistryFactory ;

import eu . p l a n e t s p r o j e c t . i f r . core . t e chreg . formats .
FormatRegistry ;

import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . MigrationPath ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . P l an e t sS e rv i c e s ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . Content ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . D ig i t a lOb j e c t ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . Parameter ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . S e r v i c eDe s c r i p t i on ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . Serv iceReport ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . Serv iceReport . Type ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . Serv iceReport .

Status ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . migrate . Migrate ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . migrate . MigrateResult ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . u t i l s . ProcessRunner ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . u t i l s . S e r v i c eU t i l s ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . u t i l s . Z i pUt i l s ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . migrat ion . u fcmigrate .

Migrat ionUnit ;

/∗∗
∗ @author Isgandar Val izada
∗/

@State l e s s
@MTOM
@StreamingAttachment (parseEager ly=true , memoryThreshold=

Se r v i c eU t i l s .JAXWS SIZE THRESHOLD)
@WebService (name = UfcMigrate .NAME, serviceName = Migrate .NAME,

targetNamespace = P lane t sS e rv i c e s .NS, endpo in t In t e r f a c e = ”eu
. p l a n e t s p r o j e c t . s e r v i c e s . migrate . Migrate ”)

pub l i c c l a s s UfcMigrate implements Migrate
{

/∗∗ The s e r v i c e name . ∗/
pub l i c s t a t i c f i n a l S t r ing NAME = ”UfcMigrate ” ;

/∗∗ p lane t s format r e g i s t r y ∗/
pub l i c s t a t i c f i n a l FormatRegistry fmtReg =

FormatRegistryFactory . getFormatRegistry () ;

/∗∗ l o gg ing per forming ob j e c t ∗/
p r i va t e s t a t i c f i n a l Logger l og = Logger . getLogger (

UfcMigrate . c l a s s . getName ()) ;

44

/∗∗ l o gg ing per forming ob j e c t ∗/
p r i va t e s t a t i c f i n a l Migrat ionUnit migrUnit = new

Migrat ionUnit () ;

/∗∗
∗ {@inheritDoc }
∗ @see eu . p l a n e t s p r o j e c t . s e r v i c e s . migrate . Migrate#migrate (

eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . D ig i ta lObjec t ,
∗ java . net .URI , java . net .URI , eu . p l a n e t s p r o j e c t .

s e r v i c e s . datatypes . Parameter)
∗/

pub l i c MigrateResult migrate (D ig i t a lOb j e c t d i g i t a lOb j e c t , URI
inputFormat , URI outputFormat , L i s t<Parameter> parameters)

{
Dig i t a lOb j e c t migratedObject = nu l l ;
Serv iceReport migrat ionReport = nu l l ;

t ry
{

migratedObject = migrUnit . doMigration (d i g i t a lOb j e c t ,
inputFormat , outputFormat) ;

migrat ionReport = new Serv iceReport (Type . INFO, Status .
SUCCESS, ” migrat ion performed , s u c c e s s f u l execut ion ”) ;

}
catch (Exception e)
{

e . pr intStackTrace () ;
migrat ionReport = new Serv iceReport (Type .ERROR, Status .

SUCCESS, ” e r r o r occured , d e t a i l s in s e r v e r l og ”) ;
}

re turn new MigrateResult (migratedObject , migrat ionReport) ;
}

/∗∗
∗ {@inheritDoc }
∗ @see eu . p l a n e t s p r o j e c t . s e r v i c e s . P l ane t sSe rv i c e#de s c r i b e

()
∗/

pub l i c S e rv i c eDe s c r i p t i on de s c r i b e ()
{

Se rv i c eDe s c r i p t i on . Bui lder mds = new Se rv i c eDe s c r i p t i on .
Bui lder (NAME, Migrate . c l a s s . getCanonicalName ()) ;

mds . c lassname (t h i s . g e tC la s s () . getCanonicalName ()) ;

45

mds . author (” Isgandar Val izada <I . Val izada@googlemai l . com
>”) ;

mds . d e s c r i p t i o n (” UfcMigrate s e r v i c e . ”) ;

FormatRegistry fmtRegis try = FormatRegistryFactory .
getFormatRegistry () ;

L i s t<MigrationPath> mgPaths = new ArrayList<MigrationPath >()
;

mgPaths . add (new MigrationPath (fmtReg . c r ea teExtens ionUr i (”ANY
”) , fmtReg . c r ea teExtens ionUr i (”ANY”) , nu l l)) ;

mds . paths (mgPaths . toArray (new MigrationPath [] {})) ;

r e turn mds . bu i ld () ;
}

}

5.5 Replayer Unit

package eu . p l a n e t s p r o j e c t . s e r v i c e s . migrat ion . u fcmigrate ;

import java . i o . IOException ;
import java . i o . F i l e ;
import java . i o . ∗ ;
import java . net . ∗ ;
import javax . xml . pa r s e r s . ∗ ;
import javax . xml . xpath . ∗ ;
import javax . xml . xpath . XPathExpressionException ;
import org . w3c .dom . ∗ ;
import org . xml . sax . ∗ ;
import org . apache . commons . i o . ∗ ;
import java . lang . In t eg e r ;
import java . lang . Runtime ;
import java . lang . Process ;
import java . u t i l . P rope r t i e s ;
import java . u t i l . ArrayList ;
import java . u t i l .UUID;
import java . u t i l . z ip . ∗ ;
import eu . p l a n e t s p r o j e c t . i f r . core . t e chreg . formats .

FormatRegistryFactory ;
import eu . p l a n e t s p r o j e c t . i f r . core . t e chreg . formats .

FormatRegistry ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . D ig i t a lOb j e c t ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . u t i l s . ProcessRunner ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . u t i l s . D i g i t a lOb j e c tU t i l s ;

46

import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes .
Dig i ta lObjectContent ;

import eu . p l a n e t s p r o j e c t . s e r v i c e s . datatypes . Content ;
import eu . p l a n e t s p r o j e c t . s e r v i c e s . u t i l s . Z i pUt i l s ;

/∗∗
∗ @author Isgandar Val izada
∗/

pub l i c c l a s s Migrat ionUnit
{

pr i va t e s t a t i c f i n a l i n t portMin = 5900 ;
p r i va t e s t a t i c f i n a l i n t portMax = 6000 ;
p r i va t e s t a t i c i n t vncPort = portMin ;

p r i va t e c l a s s MUProperties
{

pub l i c S t r ing m qemuExec ;
pub l i c S t r ing m qemuBios ;
pub l i c S t r ing m hddDisk ;
pub l i c S t r ing m hddIo ;
pub l i c S t r ing m vncplay ;
pub l i c S t r ing m scenar io s ;

pub l i c MUProperties () throws IOException
{

Prope r t i e s props = new Prope r t i e s () ;
props . load (t h i s . g e tC la s s () . getResourceAsStream (”/ eu/

p l a n e t s p r o j e c t / s e r v i c e s / migrat ion / ufcmigrate /
u fcmigrate . p r op e r t i e s ”)) ;

m qemuExec = props . getProperty (”mu. qemu . exec ”) ;
m qemuBios = props . getProperty (”mu. qemu . b i o s ”) ;
m hddDisk = props . getProperty (”mu. hdd . d i sk ”) ;
m hddIo = props . getProperty (”mu. hdd . i o ”) ;
m vncplay = props . getProperty (”mu. vncplay ”) ;
m scenar io s = props . getProperty (”mu. s c e na r i o s ”) ;

}
}

pr i va t e c l a s s Scenar io
{

47

pub l i c S t r ing m image ;
pub l i c S t r ing m t r a c e f i l e ;

pub l i c Scenar io (S t r ing s c ena r i o s , S t r ing inputFormat , S t r ing
outputFormat) throws SAXException ,

ParserConf igurat ionExcept ion , IOException ,
XPathExpressionException

{
DocumentBuilderFactory docBuildFact =

DocumentBuilderFactory . newInstance () ;
docBuildFact . setNamespaceAware (t rue) ;
DocumentBuilder docBuild = docBuildFact . newDocumentBuilder

() ;
Document doc = docBuild . parse (s c e na r i o s) ;

XPathFactory xpathFact = XPathFactory . newInstance () ;
XPath xpath = xpathFact . newXPath () ;
XPathExpression xpathExpr = xpath . compi le (”/xml/

s c e na r i o s / s c ena r i o ”) ;

Object exprRes = xpathExpr . eva luate (doc , XPathConstants .
NODESET) ;

NodeList nodeList = (NodeList) exprRes ;

f o r (i n t i = 0 ; i < nodeList . getLength () ; ++i)
{

NamedNodeMap nodeAttrs = nodeList . item (i) . g e tAt t r i bu t e s
() ;

S t r ing in = nodeAttrs . getNamedItem (” in ”) . getNodeValue () ;
S t r ing out = nodeAttrs . getNamedItem (” out ”) . getNodeValue

() ;

i f (in . equa l s IgnoreCase (inputFormat) && out .
equa l s IgnoreCase (outputFormat))

{
m image = nodeAttrs . getNamedItem (” image ”) . getNodeValue

() ;
m t r a c e f i l e = nodeAttrs . getNamedItem (” t r a c e f i l e ”) .

getNodeValue () ;
}

}
}

}

synchronized p r i va t e In t eg e r getFreeVncPort () throws Exception
{

i f (portMin >= portMax)

48

re turn nu l l ;

S t r ing l o c a l I p = nu l l ;
t ry
{

l o c a l I p = InetAddress . getLocalHost () . getHostAddress () ;
}
catch (UnknownHostException e)
{

e . pr intStackTrace () ;
r e turn nu l l ;

}

f i n a l i n t TRIES = 50 ;
f o r (i n t i = 0 ; i < TRIES ; ++i)
{

Socket vncSocket = nu l l ;
t ry
{

vncSocket = new Socket (l o c a l I p , vncPort) ;
vncPort = ((vncPort + 1) < portMax) ? ++vncPort :

portMin ;
}
catch (IOException e)
{

re turn vncPort ;
}
f i n a l l y
{

t ry
{

i f (vncSocket != nu l l)
vncSocket . c l o s e () ;

}
catch (IOException e)
{

e . pr intStackTrace () ;
}

}
}

re turn nu l l ;
}

synchronized p r i va t e F i l e createTempDir () throws IOException
{

f i n a l i n t TRIES = 20 ;

49

f o r (i n t i = 0 ; i < TRIES ; ++i)
{

F i l e tmpDir = new F i l e (System . getProperty (” java . i o . tmpdir
”) + ”/” + (System . nanoTime () + St r ing . valueOf (UUID.
randomUUID())) . r e p l a c eA l l (” [ˆ\\p{L}\\p{N}] ” , ””) + ” .
u fcmigrate ”) ;

i f (tmpDir . mkdirs ()) re turn tmpDir ;
}

re turn nu l l ;
}

pub l i c D ig i t a lOb j e c t doMigration (D ig i t a lOb j e c t d i g i t a lOb j e c t ,
URI inputFormat , URI outputFormat)

{
Dig i t a lOb j e c t migratedObject = nu l l ;
F i l e tmpDir = nu l l ;
ProcessRunner qemu = nu l l ;
Thread qemuThread = nu l l ;
boolean created = f a l s e ;

t ry
{

// g e t t i ng the f i l e ex t en s i on s from the DOB ur i
FormatRegistry fmtReg = FormatRegistryFactory .

getFormatRegistry () ;
S t r ing fmtInExt = fmtReg . g e tF i r s tExt en s i on (inputFormat) .

toLowerCase () ;
S t r ing fmtOutExt = fmtReg . g e tF i r s tExt en s i on (outputFormat) .

toLowerCase () ;

// g e t t i ng s c ena r i o & p r op e r t i e s data
MUProperties muProps = new MUProperties () ;
Scenar io s c ena r i o = new Scenar io (muProps . m scenar ios ,

fmtInExt , fmtOutExt) ;
ArrayList<Str ing> cmd = new ArrayList<Str ing >() ;

// c r e a t i ng main temporary d i r e c t o r y
tmpDir = createTempDir () ;

// c r e a t i ng d i r e c t o r y f o r data i o
F i l e tmpIoDir = new F i l e (tmpDir . getAbsolutePath () + ”/” +

” i o d i r ”) ;
c r ea ted = tmpIoDir . mkdirs () ;

// copying empty hdd dr ive
// not to harm the o r i g i n a l

50

F i l e tmpDisk = new F i l e (tmpDir + ”/” + ”hdd”) ;
F i l eU t i l s . copyFi l e (new F i l e (muProps . m hddDisk) , tmpDisk) ;

// wr i t i ng dob to a temporary f i l e
// f o r i n j e c t i o n purpose
F i l e tmpDob = new F i l e (tmpIoDir + ”/” + ”dob . ” + fmtInExt)

;
D i g i t a lOb j e c tU t i l s . t oF i l e (d i g i t a lOb j e c t , tmpDob) ;

// i n j e c t i n g dob in to copied hdd
cmd . add (muProps . m hddIo) ;
cmd . add (” i ”) ;
cmd . add (tmpDisk . getAbsolutePath ()) ;
cmd . add (tmpDob . getAbsolutePath ()) ;
(new ProcessRunner (cmd)) . run () ;
cmd . c l e a r () ;

// s t a r t i n g qemu with vnc enabled and
// hdd in j e c t ed , b i o s i s op t i ona l
In t eg e r freeVncPort = getFreeVncPort () ;
cmd . add (muProps . m qemuExec) ;
cmd . add(”−vnc ”) ;
cmd . add (” : ” + new In t eg e r (freeVncPort − portMin)) ;
cmd . add(”−dr ive ”) ;
cmd . add (” f i l e =” + sc ena r i o . m image + ” , snapshot=on”) ;
i f (muProps . m qemuBios != nu l l)
{

cmd . add(”−b io s ”) ;
cmd . add (muProps . m qemuBios) ;

}
cmd . add(”−hdb”) ;
cmd . add (tmpDisk . getAbsolutePath ()) ;
qemu = new ProcessRunner (new ArrayList<Str ing >(cmd)) ;
qemuThread = new Thread (qemu) ;
qemuThread . s t a r t () ;
cmd . c l e a r () ;

// running vncplay and wai t ing
// f o r i t to f i n i s h
cmd . add (” java ”) ;
cmd . add(”− j a r ”) ;
cmd . add (muProps . m vncplay) ;
cmd . add (”HOST”) ;
cmd . add (InetAddress . getLocalHost () . getHostAddress ()) ;
cmd . add (”PORT”) ;
cmd . add ((new In t eg e r (freeVncPort)) . t oS t r i ng ()) ;
cmd . add (” autoplay ”) ;
cmd . add (” true ”) ;
cmd . add (” t r a c e f i l e ”) ;

51

cmd . add (s c ena r i o . m t r a c e f i l e) ;
ProcessRunner vncplay = new ProcessRunner (cmd) ;
vncplay . run () ;
cmd . c l e a r () ;

// ex t r a c t i n g conta ine r contents
cmd . add (muProps . m hddIo) ;
cmd . add (” e ”) ;
cmd . add (tmpDisk . getAbsolutePath ()) ;
cmd . add (tmpIoDir . getAbsolutePath ()) ;
(new ProcessRunner (cmd)) . run () ;
cmd . c l e a r () ;

// i d e n t i f y i n g migrated ob j e c t (−s)
ArrayList mobs = new ArrayList<Fi l e >() ;
f o r (F i l e f l : tmpIoDir . l i s t F i l e s ())

i f (F i l enameUt i l s . removeExtension (f l . getName ()) .
equa l s IgnoreCase (”mob”))

mobs . add (f l) ;

// r e tu rn ing (i f any) s i n g l e f i l e
// or z ip a r ch ive
i f (mobs . s i z e () == 1)

migratedObject = new Dig i t a lOb j e c t . Bu i lder (Content .
byValue ((F i l e) mobs . get (0))) . format (outputFormat) .
t i t l e (”mob. ” + fmtOutExt) . bu i ld () ;

e l s e
i f (mobs . s i z e () > 1)
{

F i l e z ipRes = new F i l e (tmpIoDir . getAbsolutePath () +
”/” + ”mob . z ip ”) ;

ZipOutputStream zipData = new ZipOutputStream (new
FileOutputStream (zipRes)) ;

f o r (F i l e mob : (ArrayList<Fi l e >) mobs)
{

ZipEntry mobEntry = new ZipEntry (mob . getName ()) ;
zipData . putNextEntry (mobEntry) ;

t ry
{

CopyUtils . copy (new Fi leInputStream (mob .
getAbsolutePath ()) , zipData) ;

}
catch (IOException e)
{

e . pr intStackTrace () ;
}

52

zipData . c lo seEntry () ;
}

zipData . f l u s h () ;
zipData . c l o s e () ;

migratedObject = new Dig i t a lOb j e c t . Bu i lder (Content .
byValue ((z ipRes))) . format (fmtReg . c r ea teExtens ionUr i
(” z ip ”)) . t i t l e (”mob . z ip ”) . bu i ld () ;

}
}
catch (Exception e)
{

e . pr intStackTrace () ;
}

// cleanup i f f tmp d i r
// was c rea ted by us
i f (c r ea ted)
{

t ry
{

F i l eU t i l s . d e l e t eD i r e c t o r y (tmpDir) ;
}
catch (IOException e)
{

e . pr intStackTrace () ;
}

}

i f (qemu != nu l l)
qemu . setTimeout (0) ;

r e turn migratedObject ;
}

}

53

References

[1] John Garret et al., Preserving Digital Information: Report of the Task
Force on Archiving of Digital Information. Commissioned by the Com-
mission on Preservation and Access and the Research Libraries Group,
Inc., Washington DC: Commission on Preservation and Access, May 01,
1996

[2] Adrian Brown, Selecting storage media for long-term preservation. The
National Archives of UK, Digital Preservation Guidance Note: 2, Au-
gust, 2008

[3] Terry Kuny, A Digital Dark Ages? Challenges in the Preservation of
Electronic Information. 63RD IFLA Council and General Conference,
August 27, 1997

[4] Ken Quick and Mike Maxwell, Ending Digital Obsolescence. Affiliated
Computer Services, Inc. (ACS). Dallas, Texas, January 20, 2005

[5] Remco Verdegem and Jeffrey van der Hoeven Emulation: To be or not
to be. IS and T Conference on Archiving 2006. Ottawa, Canada, May
23-26, 2006

[6] Stewart Granger, Digital Preservation and Emulation: from theory to
practice. Cultural Heritage and Technologies in the Third Millenium:
ICHIM 2001, September, 2001

[7] Fabrice Bellard, QEMU, a Fast and Portable Dynamic Translator.
FREENIX Track: 2005 USENIX Annual Technical Conference, 2005

[8] Jeffrey van der Hoeven, Dioscuri: emulator for digital preservation. D-
Lib Magazine, 13(11/12), Corporation for National Research Initiatives
(CNRI), 2007

54

[9] Dirk von Suchodoletz Requirements towards Emulation as a Long-term
Preservation Strategy. Faculty of Engeneering, University of Freiburg,
Germany, http://hdl.handle.net/10760/14860 (last accessed: 29 June
2011) July, 2009

[10] Nana Tchayep, A, Emulatoren-Testing fuer die digitale
Langzeitarchivierung. Master Thesis, Faculty of Engeneering, Uni-
versity of Freiburg, Germany 3-Mar-2011

[11] Randolph Welte, Funktionale Langzeitarchivierung digitaler Objekte.
Entwicklung eines Demonstrators zur Internetnutzung emulierter Ablau-
fumgebungen. Dissertation zur Erlangung des Doktorgrades der Fakul-
taet fuer Angewandte Wissenschaften der Alber-Ludwigs-Universitaet
Freiburg im Breisgau July, 2008

[12] Klaus Rechert, Dirk von Suchodoletz, Randolph Welte, Maurice van
den Dobbelsteen, Bill Roberts, Jeffrey van der Hoeven et al., Novel
Workflows for Abstract Handling of Complex Interaction Processes in
Digital Preservation. iPRES 2009: the Sixth International Conference
on Preservation of Digital Objects. October 05, 2009

[13] Tristan Richardson, (James Weatherall, Andy Harter and Ken Wood
also helped in the design of the RFB protocol) The RFB Protocol. Re-
alVnc Ltd. November, 2010

[14] Ross King, Rainer Schmidt, Andrew N. Jacksonm, Carl Wilson and
Fabian Steeg The Planets Interoperability Framework Proceedings of
the 13th European Conference on Digital Libraries (ECDL09) 2009

[15] Klaus Rechert, Dirk von Suchodoletz, Randolph Welte, Felix Ruzzoli, Is-
gandar Valizada, Reliable Preservation of Interactive Environments and
Workflows. The European Conference on Research and Advanced Tech-
nology for Digital Libraries, The 14th conference, University of Glasgow.
September, 2010

[16] Nickolai Zeldovich, Ramesh Chandra Interactive Performance Measure-
ment with VNCplay. Computer Science Department, Standford Univer-
sity.

[17] The National Archives TNA The technical registry PRONOM Online re-
source. http://www.nationalarchives.gov.uk/pronom (last accessed: 29
June 2011) 2010

55

[18] Sven Koenig and Maxim Likhachev, Fast Replanning for Navigation
in Unknown Terrain., IEEE Transactions on Robotics and Automation
2002

[19] Mario Philips, Entwurf und Implementierung eines Softwarearchivs fuer
die digitale Langzeitarchieveirung. Diplomarbeit, University of Freiburg,
http://www.ks.uni-freiburg.de/download/diplomarbeit/SS10/08-sw-
arch-mphilipps/ (last accessed: 29 June 2011) 23 Juli 2010

56

	Introduction
	Goal and Structure

	Related Work
	Hardware Emulation
	Migration in the Emulated Environment
	Unattended Migrations in the Emulated Environment

	Design
	Requirements
	Use Cases
	Actors
	Usage Example

	Implementation
	Migration Use-Case
	Scenario Bundles
	Robustness
	Path execution
	Block/Interactive Migrations
	Migration Component Workflow Example

	Replayer Service
	Container Preparation
	Emulation
	Replaying
	Response Forming
	Replayer Service Workflow Example

	Scenario Retrieval Use-Case
	User Feedback Use-Case

	Conclusion
	Outlook
	Replay Bundles
	Cyclic Regions in the Tracefile

	Appendix
	Hard Disk Creation Script
	Hard Disk Input/Output Script
	Migration Component
	Replayer Unit

	References

