Technische Fakultat
Albert-Ludwigs-Universitat, Freiburg

Lehrstuhl fir Kommunikationsysteme
Prof. Dr. Gerhard Schneider

FREIBURG

Master thesis

Abstract Unattended Workflow Interactions
January 18, 2012

Supervisors
Dirk von Suchodoletz

Klaus Rechert
First Reviewer

Prof. Dr. Gerhard Schneider

Second Reviewer
Prof. Dr. Christian Schindelhauer

Alibek Kulzhabayev
Matr.-Nr.: 2950774

Erklarung

Hiermit erklédre ich, dass ich diese Abschlussarbeit selbsténdig verfasst habe, keine
anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die
wortlich oder sinngeméf aus verdffentlichten Schriften entnommen wurden, als solche
kenntlich gemacht habe. Dariiber hinaus erklére ich, dass diese Abschlussarbeit nicht,
auch nicht auszugsweise, bereits fiir eine andere Priifung angefertigt wurde.

Ort, Datum Unterschrift

Acknowledgment

I thank Prof. Dr. Gerhard Schneider for allowing me to write the thesis at Chair of
Communications Systems. I am thankful to Dr.Dirk von Suchodoletz and Klaus
Rechert for their guidance and feedback to better structure and improve the thesis.
My thank goes to Isgandar Valizada for giving his valuable hints throughout the work.
I am grateful to my friends Arman Janabayev, Sergio Christian Herrera Salazar and
Nathan Muwereza for reviewing the thesis and helping me with the correction of
grammar and vocabulary mistakes.

Abstract

Recent studies in the domain of digital preservation have demonstrated the princi-
ple feasibility of the migration-by-emulation approach. The migration-by-emulation
approach is a method aimed to recreate original environments of the obsolete digi-
tal objects and using such environments, to automatically convert large amounts of
digital artifacts, from obsolete formats into up-to-date formats. However, there are
some issues hindering the creation of fast and reliable migration workflows.

We studied a large number of migration workflows, and we provide an abstract de-
scription of the migration workflow based on that study. In such a description the

mechanism to automatically handle unsuccessful migration workflows is also pro-
vided.

Since we consider unattended migrations of a numerous digital objects, an approach
of an execution of the migration worfklow for each digital object that is being mi-
grated is not time-efficient. The abstract description of the migration workflow pro-
vided in this thesis, describes the process to repeat certain part of the migration
workflow, according to the number of digital objects to be migrated. That allows
to migrate large number of digital objects within one migration worfklow execution,
which would increase the speed of such an execution. Moreover, we implemented
a feature to create stages, which in this case serve as identifiers of the mentioned
repeatable part of the migration workflow.

By using the abstract description of the migration workflow and the feature to create
stages, a user can choose or rearrange certain parts of the multi-format migration
workflow, allowing the user to select the output formats needed. Such a workflow
migrates a digital object from one format to several different ones.

In this thesis, hindrances to create fast and reliable migration workflows are analyzed,
and methods to optimize them are designed and implemented. About 3,35 times
execution speed acceleration on 50 sample digital objects of such optimized migration
workflows is observed in comparison with the ones that were created without our
optimization method.

Zusammenfassung

Die jiingste Forschung im Bereich der digitale Archievirung hat die prinzipielle Re-
alisierbarkeit des "migration-by-emulation" Ansatzes gezeigt. Dieser Ansatz ist eine
emulationsbasierte Methode, die erméoglicht eine grofse Anzahl an digitalen Artifakten
automatisch von alten Formaten in zeitgeméfte Formate zu konvertieren. Allerdings
gibt es einige Probleme, die eine Erstellung von verlédsslichen und schnellen Migra-
tionsarbeitsablaufen verhindern.

Wir haben eine grofe Anzahl von Migrationsarbeitsabldufen untersucht und liefern
darauf basierend abstrakte Beschreibung von Migrationsarbeitsablaufen. In dieser
derartigen Beschreibung wird auch der Mechanismus zur automatischen Behandlung
fehlerhafter Migrationsarbeitsabléaufe bereitgestellt.

Da wir eine unbeaufsichtige Migration vieler digitaler Objekte annehmen, ist der
Ansatz eines Migrationsarbeitsablaufs pro digitalem Objekt das migriert wird, nicht
zeiteflizient. Deswegen beschreibt die in dieser Arbeit vorgestellte abstrakte Beschrei-
bung fiir Migrationsarbeitsablaufe ein Verfahren, um bestimmte Teile des Migra-
tionsarbeitsablaufs, in Abhéngigkeit von der Anzahl der zu migrierenden digitalen
Objekte, zu iterieren. Zusétzlich, wurde ein Feature implementiert um Abschnitte zu
erstellen, die in diesem Fall als Bezeichner fiir die weiter oben erwéhnten wiederhol-
baren Teile der Migrationsarbeitsabldufe dienen. Das erlaubt die Migration einer
grofen Anzahl digitaler Objekte innerhalb einer Ausfiihrung eines Migrationsar-
beitsablaufs. Dadurch erhoht sich die Geschwindigkeit der Ausfiihrung von Migra-
tionsarbeitsablaufen.

Durch die Nutzung der abstrakten Beschreibung von Migrationsarbeitsabldufen und
dem Feature um Abschnitte zu erstellen, kann der Benutzer bestimmte Teile des Mi-
grationsarbeitsablaufs auswéhlen oder anders anordnen, um das jeweilige benotigte
Ausgabeformat auszuwéhlen. Solche Migrationsarbeitsabldufe migrieren ein digi-
tales Objekt von einem Format in verschiedene andere Formate in einer einzigen
Ausfiihrung des Migrationsarbeitsablaufs.

In dieser Arbeit, werden die Probleme bei der Erstellung von schnellen und ver-
lasslichen Ausfiihrungen von Migrationsarbeitsablaufen analysiert und Methoden en-
twickelt um solche Arbeitsablaufe zu optimieren. Ein Test mit 50 digitalen Objekten
zeigt eine 3,35 fache Beschleunigung in der Ausfiihrungszeit des optimierten Migra-
tionsarbeitsablaufs im Vergleich zu dem nicht optimierten Arbeitsablauf.

Contents

1 Introduction

4.2

2 Background
2.1 Definition of Terms oo
2.2 Hardware Emulation
2.3 Imteractive Workflow Recording
2.4 Interactive Workflow Replaying
3 Interactive Workflows Analysis
3.1 Pointer Offset
3.1.1 Effect of Time Interval of Event Generation
3.1.2 Effect of Processor Load
3.1.3 Effect of Disk I/O Load
3.1.4 Effect of Pointer Acceleration
3.1.5 Effect of Pointer Movement Distance
3.2 Workflow Level
3.2.1 Large-Scale Format Migrations
3.2.2 Failure Migrations Analysis
3.2.3 Migration Workflow Optimization
3.2.4 Multi-Format Migrations
3.3 Summary
3.4 Requirements
3.4.1 Reliability
3.4.2 Time and Interactions Optimization.
3.4.3 Integrityo
3.4.4 Ability torearrange
3.4.5 Usability
4 Design
4.1 Migration Workflow Optimization

Abstract Migration Workflow Description
4.2.1 Mechanism of Stages Repetition
4.2.2 Error-handling Mechanism

11
11
13
13
15

17
18
18
20
22
24
26
30
30
32
34
36
37
38
38
39
39
39
39

CONTENTS

4.3 Software Design Lo
4.3.1 Use Cases o v v i,
4.3.2 Actorso,

5 Implementation
5.1 Create Stage

Use-Case

5.2 Generate and Inject Stage Use-Case
5.3 Inject Optimized Pointer Movements Use-Case
5.4 Extract Stage Use-Case
5.5 Progress Information Use-Case
5.6 SyncPoints Abstraction L
5.7 Evaluation of Optimized Migration Workflows

6 Conclusion
6.1 Future Work

Bibliography

45
45
45

48
48
49
50
23
23
54
95

57
58

60

1 Introduction

"Those who forget the past are condemned to reload it"
Nick Montfort, July 2000

Most digital artifacts were created by using interactive graphical applications, that
were available at some point of time. Many national libraries, archives and orga-
nizations, whose main function is to preserve publications and records, have large
amounts of such artifacts. They need a tool to automatically process them, in order
to make these digital objects available to their users.

Recent studies (e.g., [1] [2]) in the digital preservation domain have shown the ad-
vantages and feasibility of the migration-by-emulation approach. The migration-by-
emulation - is an approach to migrate digital objects (DOs), that is, to convert DOs
from an obsolete format into a currently accessible one, within emulated original
environments (hardware, operating system, drivers and other third-party libraries).
Since DOs can be best rendered by the application where they were produced, pro-
viding the original environment is necessary to use those applications. As the original
environment is not always available due to obsolescence, emulation of such kind of
environment is crucial to render obsolete DOs.

Migrating DOs manually is tedious and an error-prone task. Additionally, the knowl-
edge on how to use such applications is vanishing. Since most of DOs are being
created by GUI (graphical user interface) applications, there exist the same sequence
of interactions, that allows to migrate almost every DO of the same format. We call
the mentioned sequence of interactions migration workflow. For that reason, those
interactions in the migration workflow can be recorded once, and replayed, according
to the number of DOs that are being migrated.

The Interactive Workflow Recorder (IWRec) is a tool for transferring human inter-
actions to the emulated system and also registering them in a log-file - Interactive
Workflow Description (IWD). User uses IWRec to migrate a sample object of an ob-
solete format to the format of interest. DO can be injected into the emulated system
and extracted from it by using certain virtual storage device.

Subsequently, the Interactive Workflow Replayer (IWRep) can replay recorded user
actions from IWD over any DO of the same format. As previously, DOs can be
injected and extracted into the emulated system by utilizing certain virtual storage
device. As soon as migration is performed, the DOs become recognizable by at least
one currently available application.

Although, the migration of DOs is feasible, the execution of the migration workflows
of the migration-by-emulation approach, in the following denoted as EMWs, is not
sufficiently fast and reliable. The EMW is reliable if every interaction of the migration
workflow (MW) is processed in the target system and an expected outcome of such
interaction is obtained.

Several reasons why some EMWs fail are described in |3, ch. 3]. However, such reasons
are not fully studied, hence neither their complete consequences on the migration of
DOs. Most of the failures may be related to the following reasons: properties (e.g.,
event processing time) of the operating systems (OSs); properties (e.g., unexpected
modal windows) of the applications that renders DOs; settings of the IWRep. There-
upon, we analyze the reasons of the failures and their consequences in the EMWs.

If large quantities of DOs have to be migrated, time of the EMWs becomes a crucial
parameter. Since IWD is replayed with the same speed at which a user recorded it,
delays from the user interaction are replayed too. Such delays are unnecessary to
be replayed in the EMWs and they just increase the overall duration of the EMW.
Therefore, the ways to eliminate them has to be considered.

Additionally, the MWs, that we study, consist of a numerous of pointer movements,
but some of them are not necessary to be replayed within the EMWs, because they do
not play a role in the migration. Therefore, they may be omitted. One approach that
considers not to record pointer movements at all, is presented in [3]. However such
an approach does not work in some OSs (e.g., Windows 95, Windows 98). Therefore,
the properties of some OSs to be tested, that is, the ways that such OSs process
pointer movements have to be analyzed in order to improve the EMWs.

If it is necessary to migrate DO not only to one format but to several ones, then it is
easier and faster to make that in one MW, that produces several DOs of the required
formats. In that case, it should be possible for the user to rearrange or delete some
parts (stages) from an IWD in order to obtain the migration of the DO to preferred
format(s). Those parts are the sequences of the descriptions of the interactions, where
the conversion of a DO to the required formats takes place. Overall integrity of the
MWs in any case, has to be preserved. With the current MWs it is not possible to
perform the mentioned operations, because a user is not able to mark the stages of

1 INTRODUCTION

the MWs. Hence, it is not possible to rearrange or delete them. Furthermore, there
is no abstract description of the MW, which specifies how to modify the MWs.

Additionally, since a certain part of the MWs is related to migrate a DO, such a
part may be repeated a given number of times, according to the number of DOs to
be migrated (cf. |2, ch.5.1.2]). Therefore, within one MW it could be possible to
migrate a set of DOs. The parts of the MWs that can be repeated should be specified.

During the execution of some MWs, unexpected warning or error modal windows may
appear. This kind of modal windows disrupt the consecutive order of interactions
within the mentioned MWs. A user should create different additional MWs, which
deal with different types of errors. In that case, the user has to be able to mark the
part of the additional MWs, which corresponds to the interactions, performed to get
rid of the unexpected modal windows. Moreover, a mechanism to handle such type
of the errors should be designed.

2 Background

The chapter gives an overview on how and using which tools migration workflows are
created.

2.1 Definition of Terms

In order to proceed further, the following concepts should be clear:

e Interactions — events such as pointer movements, pointer clicks, pointer drags,
key strokes and synchronization conditions (e.g., SyncPoints), workflow struc-
turing means (e.g., stages).

e SyncPoint — a screenshot serving as synchronization condition between screen
states of a host system and an emulated system. It is used as precondition to
invoke next interactions of the migration workflow.

e Workflow — an ordered list of interactions.
e Primary objects — an obsolete format digital objects of interest.

e Secondary objects — applications, helper programs and drivers [4], necessary
to migrate primary objects to the digital objects of the currently accessible
format.

e Migration Workflow — an ordered list of interactions, aimed to migrate partic-
ularly digital objects of an obsolete format to the format accessible by at least
one current application.

e Interactive Workflow Description — a digital object containing the workflow
with the description of each interaction, contributor had invoked. For example,
for pointer click it could be a position of the pointer, button pressed, timestamp,
modifier; for SyncPoint - position and color of each pixel.

2 BACKGROUND

e Interactive Workflow Recorder! — a tool to connect to the host system by using
network address of the mentioned system and to transfer interactions to an
emulated system through certain network port. Additionally, this tool registers
interactions that are being sent into the interactive workflow description.

e Interactive Workflow Replayer? — a tool to read interactions from an interactive
workflow description and to transmit them to the emulated system through
certain network port and by using the network address of the host system.

e Container — virtual equivalent of a hard drive or other media that stores the
content used by the emulator [5]. The content used in migration-by-emulation
approach may be an operating system with secondary objects [4] or the obsolete
digital objects and digital objects migrated to the format accessible by at least
one current application.

e Workflow Registration Component® — a back-end component that is used for
the contribution of the migration specific information |[2].

e Migration Component — a front-end component that uses the migration specific
information in order to perform data migration |2].

e Contributor — a user that utilizes workflow registration component, interactive
workflow recorder to create certain interactive workflow description for further
unattended migration of obsolete digital objects.

e End User — a user that works with the migration component or directly with
the interactive workflow replayer and migrates obsolete digital objects. End
user should specify the format of the obsolete digital object and the resulting
migrated digital objects, upload the obsolete digital object and download the
migrated digital object. Container in this case, serves as the media to save
necessary operating system with secondary objects, and as a storage to inject
and extract the digital objects in and from the mentioned operating system.

e Guest System — an emulated operating system with the secondary objects.
Mainly saved in the container and run by the emulator.

e Host System — an operating system that starts an emulator with mainly two
containers: one with operating system with secondary objects, and second with
the digital objects to be migrated or already migrated ones. Additionally, em-
ulator is passed parameters to enable network port, through which interactive
workflow recorder or interactive workflow replayer can access a guest system.

Lin [2] referred as Interactive Session Recorder
2in [2] referred as Interactive Session Replayer
3in |2] referred as Scenario Registration Component

2.2 HARDWARE EMULATION

e Remote System — an operating system that end user uses to migrate digital
objects. Abstract notion that maybe identified as host system or other remote
operating system that have migration component and/or interactive workflow
recorder, that accesses the guest system through specified network port and
certain network address of the host system.

2.2 Hardware Emulation

The term emulation is used in computer science to denote a range of techniques,
which use some software in place of a different software and/or hardware to achieve
the same effect as using the original. "The theory behind emulation is that the only
way to ensure the authenticity and integrity of the record over the long term is to
continue to provide access to it in its original environment..." [6].

One type of the emulators considered in the thesis are hardware emulators. This
kind of emulators can emulate an environment, that is, OS and corresponding hard-
ware. Hence, they can emulate obsolete OSs and implement the functionality of such
devices as CPU, I/O devices, and memory components. Some examples of hardware
emulators are: QEMU [7] and Dioscuri [8]. The mentioned type of emulators provide
an access to the obsolete DOs by emulating certain OS with the secondary objects
and corresponding hardware. The secondary objects have to contain appropriate
application to access and migrate the DOs.

2.3 Interactive Workflow Recording

The contributor is a user that performs all tasks in the interactive workflow recording
(recording) phase. This user creates a container both to inject and extract DOs and
to install OS with secondary objects. Further on, the containers can be injected into
the hardware emulator to migrate DOs and to run OS. The contributor also specifies
a network port that the hardware emulator opens to access the guest system and
network address of the host system.

IWRec connects to the guest system by using the network port and the network
address specified by the contributor. After the guest system is loaded, the contrib-
utor can start migrating the sample DO of necessary format. I[WRec transmits all
interactions of the user to the guest system for further processing and also registers
them in IWD.

2 BACKGROUND

Examples of the interactions that the contributor invokes are the pointer movements,
clicks and drags, key strokes, SyncPoints, that is, conditions to synchronize screen
states of the remote and the guest system. All these interactions with corresponding
to them information such as e.g. type of the button, key code, pixel color is registered
at the same pace as user invokes them into the IWD.

Of particular interest are the SyncPoints that synchronize a screen state of the guest
system with a remote one. Mainly it is square area of specified size (in [9, pg.3]
area of 10 by 10 pixels). IWRec registers to the IWD each pixel position and colour
in that square. The SyncPoints serve as a synchronization condition and are very
important for reliable EMWs. They stop the execution of the next interactions in MW
until they match, which means until previously invoked interaction has an expected
outcome in the guest system. In the next section, another type of the SyncPoints —
pattern-matching SyncPoints will be considered.

The pointer movements within the EMW are also important to be taken into con-
sideration, because during recording, offset between pointer in the remote and guest
system take place, in the following denoted as pointer offset. This offset plays a role
in reliable EMWs, because for an unskilled user, it may take days to record MW
where all interactions will have an expected consequences in the guest system. The
main reason why the pointer offset occurs is that the remote and the guest system are
two different and independent OSs. Additionally, the current network protocol (the
RFB protocol [10]) that is used to transmit interactions does not allow to control
the pointer of the guest system, since it is OS-independent or solution is not found.
In the future, possibility to improve the mentioned protocol or to use another one
may be investigated. One approach [3| in order to eliminate the pointer offset was to
identify pointer and its corresponding position in the guest system by using pattern-
matching and move the pointer in the guest system to the position of the pointer in
the remote system. Since, the reasons and their consequences of failing EMW are
not fully analyzed and the implementation of the mentioned approach does not work
in the replaying phase, the approach can be considered in the future work after the
analysis, that will be made in our study.

Pointer acceleration (also called mouse acceleration) also results in the pointer offset
[3]. However, the exact influence of the pointer acceleration and also existence of
other reasons consequent to the failing EMWs were still not analyzed. Heavy load
of the CPU or input and output requests to the primary drive of the host system
probably cause interruptions in the work of guest system, hence some pointer shifts
in the guest system may also take place. Those reasons and their consequences have
to be identified by performing specific test cases. That information may allow to
understand the causes of the failing EMW and ways (if any) to improve the reliability
of them.

2.4 INTERACTIVE WORKFLOW REPLAYING

As soon as a sample object is migrated, the guest system is turned off and migrated
DO is extracted from the container. The contributor can check the migrated DO and
its content. If significant properties of the migrated DO corresponds to the sample
DO, then the IWD is ready to be used for the unattended replaying.

The workflow registration component should be then supplied with the required
information on input and output format of the primary object, container name con-
taining preinstalled OS with secondary objects, name of the IWD. Other parameters
as the name of the emulator, container name that is used for injecting and extracting
primary object, network port and address are assumed to be entered.

After these operations, the recording phase finishes and primary objects can be mi-
grated in the replaying phase.

2.4 Interactive Workflow Replaying

The user who is involved in replaying phase is called an end user. The end user
can choose a migration component, special client application — UfcClient, or perform
manual migration depending on the task the end user has to carry out.

The migration component is a front-end which allows the end user to choose input
and output format of the primary object, upload the primary object and after the
migration is finished to download the migrated DO. Based on the information that
the contributor registered in the workflow registration component, the migration
component automatically starts IWRep, hardware emulator and migrates the DO.
After migration is finished, it responds either with the failure if the migration was
unsuccessful, or with the migrated DO.

Another tool that allows to perform automatic migrations of DOs is UfcClient. This
application was implemented based on the thesis described in [2]. UfcClient can
be run from the command-line and with certain script, it is able to migrate large-
quantities of DOs automatically. Moreover, (using the short script) it is possible to
log failure and successful EMWs, their time and the DOs properties, corresponding
to the MWs. EMWs can be evaluated for success and failure rates and such migration
can help identify main error causes (if any) and error types.

The process when the end user directly uses IWRep is called a manual migration. In
this case, the end user should first inject primary object to migrate in the appropriate
container. Afterwards, the mentioned user runs the hardware emulator with the
above-named container and the container with the necessary preinstalled OS and

2 BACKGROUND

secondary objects. Additionally, the end user indicates the network port to access
the guest system. As the next step, IWRep is started with the network address of
the host system and the network port that the hardware emulator opened to access
the guest system. Which IWD to use should be specified when starting IWRep, too.

Remote System Host System

Keyboard and Mouse event Initiator
Hardware emulator

RFB Protocol

VncPlay VNC- — Guest
RFB Protocol server System

Interactions,
IWD

— Interactive Workflow Recording
» Interactive Workflow Replaying
Figure 2.1: Interactive Workflow Recording and Replaying. Interactive Workflow
Recorder and Replayer Tool Example — VncPlay. Hardware emulator has built-in
VNC-server.

During replaying different behaviour of the interactions rather than in recording are
noticed. Particularly, pointer movements resulted in different pointer offset during
recording and within replaying. Since, the thesis is aimed to speedup and to improve
if possible reliability of the EMWs, causes and effects of the shifts have to be analyzed
and recommendations or solutions for improvement have to be devised.

Different types of SyncPoints — pattern-matching SyncPoints were proposed in the
thesis [11]. Within the recording of the MW, SyncPoints registered in the IWD as
before - pixel color and position. However, during replaying based on the pixel values
from the guest system and IWD distances are calculated. Whenever two distances
of the pictures are the same — result is zero, otherwise it is 1. In the thesis [11], the
method is considered to be more efficient than the bitmap-matching one [9]. Hence,
possibility to use either of the SyncPoint should be provided.

3 Interactive Workflows Analysis

In order to identify the reasons of why some EMWs fail, analysis of the different is-
sues such as the causes of the offset between the pointers in the host and in the guest
system, processing time and properties of the interactions, in this case, pointer move-
ments, in the guest systems (sample OSs to be tested are Windows 3.11, Windows
95 and Windows 98) have to be identified.

Afterwards, duration of the EMWs has to be evaluated as well as the methods of its
reduction. The ways to increase the speed of the EMWs have to be based on the
analysis of the mentioned processing time and properties of the interactions.

The pointer offset is one of the reasons of the failing EMWs. Therefore, its causes
and consequences should be analyzed thoroughly with the results both in the record-
ing and in the replaying phases. Related test cases are to be performed : FEvent
Generation Time, Pointer Acceleration, Pointer Movement Distance.

Furthermore, the heavy load of the primary disk and the CPU of the host system has
to be made. Effect of such load on the interactions such as the pointer movements
has to be identified. Related test cases are to be performed: Pointer Movements
Processor Load, Pointer Movements Disk 1/0 Load.

Feasibility to eliminate delays made by the contributor during MWs recording, should
be considered. Since, in the replaying phase how all types of the interactions were
processed has to be analyzed. Related test cases are: Pointer Movement Distance,
Workflow Optimization.

Results of such tests could give an understanding of how interactions in the guest
system processed. Using such results feasibility to perform more reliable and fast

EMWs should be examined.

Additionally, EMWs have to be evaluated for different parameters as time, success
and failure rates, possible reasons invoking errors and type of errors. Based on that
information, possibilities for further improvement have to be considered. Related
test cases are: Large-Scale Format Migrations, Failure Migrations Analysis, Multi-
Format Migrations.

3 INTERACTIVE WORKFLOWS ANALYSIS

3.1 Pointer Offset

Pointer offset is a hindrance to perform reliable EMWs. There are many different
reasons that can cause this problem. The main reason, however, is that the remote
and the guest systems are two different OSs and that the current network protocol
is not able to control interactions or give the result of the interactions transmitted
to the guest system. Methods to improve the network protocol or use of other one
can be considered in the future works.

Other reasons causing the pointer offset and their consequences should be evaluated.
Such reasons include: time to process the interactions (e.g., pointer movements) in
the guest system; heavy load of the CPU and primary disk of the host system; turned
on and off pointer acceleration options in the guest system; distance to which pointer
can be sent when one pointer movement is generated. Depending on the last reason,
test case to verify possible workflow optimization should be made.

3.1.1 Effect of Time Interval of Event Generation

Test case id: Event Generation Time

Unit to test: Verify whether pointer speed causes pointer offset. Results are to be
classified by the operating systems — Windows 3.11, Windows 95 and Windows 98.

Prerequisites: The hardware emulator (QEMU) is started with VNC-enabled op-
tion. The wallpaper of the guest system contains positions of the pixels which are
defined in test data. IWRec and IWRep tool is VNCplay. VNCplay is to be changed
in order to automatically send pointer events to the designated positions on the
screen within the specified time interval. Moreover, it should save pictures from the
guest system for further analysis. Recording and replaying are to be extended with
an option of saving pictures of the guest system’s screen. After each loop there must
be a pause to get updated screen snapshot from the guest system.

Test data: Time between each event (in ms) = {{0,5,15,30},{15,30, 50}}. There
are four loops using which pointer moves on the square of size 100 pixels. Starting

position is the center of the guest system screen. After each loop there is a pause of
3000 ms.

Steps to be executed:

1. Modify VNCplay to save pictures before and after each pointer move;

3.1 POINTER OFFSET n

2. Change VNCplay to generate pointer movements to the designated positions
and time intervals indicated in the test data ;

3. Start VNCplay;
4. Finish recording;
5. Evaluate pictures for pointer offset;
6. Repeat above-listed steps over each operating system.
® % 9 [] -
® ® o o
(a) Pointer movements sent from the position (b) Pointer movements sent from the stop
(400, 300) to (500, 300) place to the position (500, 400)

@ @ % ®

(¢) Pointer movements sent from the stop place (d) Pointer movements sent from the stop
to the (400, 400) place to the (400, 300)

Figure 3.1: Example of pointer offset when pause between each event generation
is 15ms; distance between two successive points is 100 pixels (Windows 95); black
dashed arrow line shows the expected result.

Expected result:

All the pointer movements specified in the test data should be processed correctly in

3 INTERACTIVE WORKFLOWS ANALYSIS

the guest system.
Actual result:
Windows 3.11 for Workstations:

This OS was evaluated with the time between each pointer movement sent (in ms):
{0, 5, 15, 30}. Sending of pointer movements without a pause moved pointer to the
wrong positions. First loop resulted in the correct pointer moves of approximately
10% but second loop moved the pointer up, nevertheless, movements was sent to
shift pointer down. In the third loop, instead of going left, pointer moved down.
During last loop pointer moved in right direction but only about 10% of events was
processed. Nevertheless all events sent with time interval fivems and more were
processed correctly.

Windows 95:

This OS was evaluated with the time between each pointer motion (in ms): {15,
30, 50}. 15 ms between each event resulted in processing of the half of the pointer
movements. Result with 30 ms was better but about 5 pointer movements were not
processed in each direction. With 50 ms delay, all events were delivered and processed

properly.
Windows 98:

Handling of events in the test case of this OS did not differ noticeably from the result
in Windows 95.

On the whole, all OS types processed events correctly with the time interval 50 ms
between each event.

Comments:
Test cases of this section are executed on the computer — Intel(R) Pentium(R) 4 CPU

2.53GHz, 1 GB RAM, and 80GB HDD. CPU was overloaded with md5sum jobs and
disk I/O heavy load was achieved by utilizing bonnie++ program [12].

3.1.2 Effect of Processor Load

Test case id: Pointer Movements Processor Load

3.1 POINTER OFFSET

Unit to test: Verify whether heavy CPU load causes pointer offset. Occurrences of
so called lost interrupt calls has to be identified. Results are to be classified by the
operating systems — Windows 3.11, Windows 95 and Windows 98.

Prerequisites: Hardware emulator (QEMU) is started with VNC-enabled option.
The wallpaper of the guest system contains colorful positions of the pixels which are
defined in the test data. The VNCplay is to be modified in order to automatically
send pointer events to the designated positions on the screen within the specified time
interval. Moreover, it should save pictures from the guest system for further analysis.
Recording and replaying has to be extended with an option of saving pictures of the
guest system screen.

Test data: Time between each event (in ms) = {{0,5,15,30},{15,30, 50}}. There
are four loops using which pointer moves on the square area of 100 pixels. Starting
position of the pointer is the center of the guest system screen. After each loop there
is a pause of 3000 ms for getting a changed state of the screen of the guest system.

Steps to be executed:

1. Modify VNCplay to save pictures before and after each pointer move;

Change VNCplay to generate pointer movements to the designated positions
and indicated in the test data time intervals;

Load CPU heavily;

Start VNCplay;

Finish recording;

Evaluate pictures for pointer offset;

Repeat above-listed steps over each of the three OSs.

N

OOt W

Expected result:

Pointer movements may be delayed. Additional to the previous test case shifts may
take place because of CPU loading.

Actual result:
Windows 3.11 for Workstations:

Oms pause between each event generation caused that the guest system did not
process events correctly. From the first loop like 20% of the pointer moves were
handled. In the second loop, movements were sent to move the pointer down but
result was opposite. Pointer moved approximately 3 times more distance that it
supposed to in upper direction rather than down. Third loop was needed to generate
events moving pointer to the left for 100 pixels. Instead of that, pointer was moved for

3 INTERACTIVE WORKFLOWS ANALYSIS

about 40 pixels down but also about 5-10 pixels to the left. Direction of the fourth
loop was correct but about only 3-7 moves were processed. With 5ms and more
pause, pointer movements were properly processed.

Windows 95:

Pointer motions without any pause caused to move pointer in guest system to only
2-5%. 15ms delay caused to move the pointer for about 50% of the distance. In each
direction after pause between loops of events 3 sec, guest system processed exact
number of pointer events. When pointer movements were sent every 30ms, then
percentage of correctly processed movements reached approximately 90 %.

Windows 98:

Pointer movements that were being sent without delay were processed not correctly
in this guest system. Like 1-3 % were processed from the first loop, second loop
which should move the pointer down, moved it to the right. Other loop events were
also not correctly processed by the guest system . With 15 ms pause, only about 50
% of events were processed, others were ignored. 30ms delay allowed guest system
to interpret correctly like 80 - 90 %. Others were ignored or lost, as well. When
pause became 50 ms guest system processed like 85 - 90 % of events from the first
loop, other events were all processed.

Generally speaking, there was no much difference comparing to the previous test case
result. To avoid all offset time should be increased for at least 10 more ms, which is
60 ms for all tested OSs.

3.1.3 Effect of Disk I/0 Load

Test case id: Pointer Movements Disk I/O Load

Unit to test: Verify whether heavy Disk I/O load causes pointer offset. Occurrences
of so called lost interrupt calls has to be identified. Results are to be classified by
the operating systems — Windows 3.11, Windows 95 and Windows 98.

Prerequisites: The hardware emulator (QEMU) is started with VNC-enabled op-
tion. Wallpaper of the guest system contains colorful positions of the pixels which
are defined in test data. VNCplay is to be changed in order to automatically send
pointer events to the designated position on the screen within the specified time
interval. Moreover, VNCplay should save pictures from the guest system for fur-
ther analysis. Recording and replaying are to be extended with an option of saving
pictures of the guest system screen.

3.1 POINTER OFFSET ﬂ

Test data: Time between each event (in ms) = {{0,5,15,30},{15,30, 50}}. There
are four loops using which pointer moves on the square of the size of 100 pixels. After
each loop there is a pause of 3000 ms.

Steps to be executed:

1. Modify VNCplay to save pictures before and after each pointer move;

Change VNCplay to generate pointer movements to the designated positions
and indicated in the test data time intervals;

Drastically load hard disk by large amount of I/O operations;

Start VNCplay;

Finish recording;

Evaluate pictures for pointer offset;

Repeat above-listed steps over each operating system.

N

N Gk w

Expected result:

Pointer movements may be delayed but should reach locations indicated in test data.
Actual result:

Windows 3.11 for Workstations:

Events that were generated without any pause were processed wrongly as in the
previous test cases. The difference occurred when events were handled with 5ms
pause: about 92 -97 % of movements were processed. As it supposed to expect in
this OS, when pauses between events were 15-30 ms - all movements were handled
correctly.

Windows 95:

This time, results of this test case over this OS were different. In the first and second
loop with 15 ms pause about 50 % were processed. But in the third one about 5 more
events were handled which caused shift in the end of execution for 2-5 pixels to the
left of the starting point. Pointer movements, sent with 30 ms delay in the first loop
did not move pointer at all. OS could not react and just hanged. In the second loop
about 80 % of events were processed. The third loop showed approximately the same
situation. The fourth loop did not move the pointer. With 50 ms delay, all events
were processed correctly.

Windows 98:

All loops with delay of 15ms caused the guest system to handle only about 50 % of
events. With 30 ms pause between each event, about 80 % of events were processed.

3 INTERACTIVE WORKFLOWS ANALYSIS

When pause was about 50ms, three loops were processed correctly. Only in the
fourth loop about 90 % of events were processed.

Generally speaking, small additional shift to few pixels in comparison to the previous
test case has been noticed.

Results of these test cases show:

1. Fast pointer movements in all tested OS neither processed nor processed cor-
rectly.

2. Contrary to this, slower moves with 50 ms between each move to the next pixel
handled by the guest system in all cases, when no load (CPU or I/O operations)
applied, properly.

3. Windows 3.11 for Workstations OS processed events correctly when pause is
5 ms;

4. OSs as Windows 95 and 98 processed events properly when delay between each
event was 50 ms;

5. When there was heavy load of CPU or 1/O operations over primary disk of the
host system, it was necessary to increase time of the pause between each event
for about 10 ms;

Two last statements derive the following conclusion: OSs differ in their properties
and particularly, how fast they process events. One of the reasons is the specific
settings of the operating system as the interval time betweeen each event processing.
Furthermore, IWD should be checked for the time between each event which could
help identify whether the offset in EMWs take place because of the mentioned reason.
Also, time interval in the IWRep with which interactions are extracted from the IWD
also should be verified.

3.1.4 Effect of Pointer Acceleration

Test case id: Pointer Acceleration

Unit to test: Check whether pointer movements trigger pointer acceleration and
identify possible offset of the pointer in the guest systems (Windows 3.11, Windows
95 and Windows 98), depending on the pointer acceleration level.

Prerequisites: Emulator is started with VNC-enabled option. Wallpaper of the
guest system contains colorful positions of the pixels which are defined in Test data.
Screen resolution is 800x600 pixels. If it is different, then positions in the test data

3.1 POINTER OFFSET

should be changed, according to the resolution. VNCplay is to be changed in order to
automatically send pointer events to the designated position on the screen. Moreover,
it should save pictures from the guest system for further analysis. Recording and
replaying is to be extended with an option of saving pictures of the guest system
screen after each pointer movement.

Test data: Pointer acceleration levels: No, Medium, High; there are four positions
and five pointer events to be sent. Fist pointer movement is necessary to confirm
that the pointer is in the center (400,300), and other four to move the pointer to
positions: (500, 300), (500, 400), (400, 400) and (400, 300).

Steps to be executed:

Modify VNCplay to save pictures before and after each pointer move;
Change VNCplay to generate pointer movements to the designated positions;
Start VNCplay;

Finish recording;

Evaluate pictures for pointer offset;

Repeat above-listed steps over each operating system.

SERA

Expected result:

Pointer movements have to be exact and stop at marked locations.
Actual result:

Windows 3.11 for Workstations:

Absence of the acceleration in the guest system did not cause an offset in the pointer
movements.

Medium acceleration moved pointer to the doubled distance. So in our case, move-
ments were sent to 100 pixels and pointer moved to 200 pixels, hence offset 100 pixels.
Full acceleration moved the pointer out of the screen, hence offset was at least
140 pixels. Note that the screen resolution in this OS was 640x480 pixels.

Windows 95:

Absence of the acceleration in the guest system did not cause an offset in the pointer
movements;

Full acceleration moved the pointer out of the screen. One last movement was possible
to measure — the distance of the offset was four times more than the actual pointer
movement. So,the event was sent to move the pointer to 100 pixels, but final distance
with the offset comprised 500 pixels.

3 INTERACTIVE WORKFLOWS ANALYSIS

Windows 98:
Results over this OS were identical with the previous one.

This test case proves and shows how exactly the acceleration in the guest system
influence EMW. With the combination of the test case Event Generation Time, fol-
lowing statement can be derived: Pointer acceleration drastically influence pointer
movement offset. To make EMW more reliable whether pointer acceleration has to
be turned off and then movements to the various positions inside guest system with
the interval 50 ms and more will be replayed correctly. Otherwise, if the switching
the pointer acceleration off does not seem to be feasible, then pointer movements
should be sent with 1 pixel distance and also with no less than 50 ms time interval,
speaking generally.

Nevertheless, all three OS support easy switching off the pointer acceleration from the
Control Panel. Of course, that is not a valid statement for all types of OSs (as only
three Windows Operating systems were tested) but with the software implemented
based on these test cases, it is possible to easily check other operating systems and
come to further conclusions.

3.1.5 Effect of Pointer Movement Distance

Test case id: Pointer Movement Distance

Unit to test: Actual MWs consists of large amount of pointer movements. It has to
be verified whether it is possible to eliminate intermediate events. To do that each
pointer movement has to be sent to the distances more than 100 (pixels).

Prerequisites: Pointer acceleration has to be turned off. Wallpaper of the guest
system contains colorful positions of the pixels which are defined in the Test data.
Screen resolution is 800x600 pixels. If it is different, then positions in the Test data
should be changed, according to the resolution. VNCplay is to be changed in order
to automatically send pointer event to the designated position on the screen within
the specified time interval. Moreover, it should save pictures from the guest system
for further analysis.

Test data:

Positions when the screen size is 800x600 pixels:

3.1 POINTER OFFSET

(a) Pointer Acceleration disabled, result is from the guest system — Windows 3.11,
distance between two horizontal or vertical points is 100 pixels

® ° N

(b) Pointer Acceleration enabled - medium level, result is from the guest system —
Windows 3.11

(c) Effect of full pointer acceleration - pointer moved out of the screen, result is taken
from the guest system — Windows 95;

Figure 3.2: Pictures show pointer acceleration effects depending on its level; dashed
black arrow line shows the desirable result.

3 INTERACTIVE WORKFLOWS ANALYSIS

e ((400,300), (600,300), (600,500), (400, 500), (400,300)) — five pointer move-
ments events are to be generated;

e ((400,300), (5,5), (795,5), (795,525), (5,525), (5,5)) — six pointer movements
events are to be generated;

e ((400,300), (400, 5), (400,525), (5,5), (795,525), (795,5), (400,300)) — seven

pointer movements events are to be generated;
Positions when the screen size is 640x480 pixels:

e ((320,240), (470,240), (470,390), (320,390), (320,240)) — five pointer movements
events are to be generated;;

e ((320,240), (5,5), (635,5), (635,475), (5,475), (5,5)) — six pointer movements
events are to be generated; ;

e ((320,240), (320,5), (320,475), (5,5), (635,475), (635,5), (320,240)) — seven
pointer movements events are to be generated;;

Steps to be executed:

Modify VNCplay to save pictures before and after each pointer move;
Change VNCplay to generate pointer movements to the designated positions;
Start VNCplay;

Finish recording;

Evaluate pictures for pointer offset;

Repeat above-listed steps over each operating system.

SR e

Expected Result:

Pointer has to move to the designated positions since there is no pointer acceleration.
Actual Result:

Windows 3.11 for Workstations:

All positions were processed by the operating system correctly without any shift.
Windows 95:

In the first list of positions specified in test data — pointer moved only to 126 pixels.
Using the second list in the test data — pointer moved only to 126 pixels.

Third time with the corresponding positions from the test data, the same result has
obtained.

Windows 98:

3.1 POINTER OFFSET

% L]
(a) Pointer movement to the position (400,300) (b) Move pointer to the position (5,5)
to confirm that pointer is on the correct
position

(¢) Move pointer to the position (795,5) (d) Move pointer to the position (795,525)

(e) Move pointer to the position (5,525) (f) Move pointer to the position (5,5)

Figure 3.3: Pointer movements sent according to the second set of positions in the
Test data with the screen resolution of 800x600 pixels. Screenshots taken from the
OS — Windows 95.

3 INTERACTIVE WORKFLOWS ANALYSIS

First kind of test - pointer moved only to 127 pixels in all directions; Second type
of test - pointer moved only to 126 and sometimes to 127 pixels; Third type of test
- results are the same as from the second type of test with possible inaccuracy of
one pixel.

The result of this test case is very important for the reduction of the duration of
the EMWs. For example, approach in the thesis of Ruzzoli[3, pg.10] was to elimi-
nate pointer movements which were between pointer clicks: "Es bietet sich also an,
komplett auf die Aufnahme der Mausbewegungen zu verzichten und ausschliefslich
relevante Aktionen, also ein Betétigen der Maustasten, abzuspeichern". That could
be time and event optimizing solution. But the test case shows that such an approach
is not valid for all types of OSs. Although, in Windows 3.11 for Workstations it does
work, in Windows 95 and 98 it does not. One pointer movement from one position to
another cannot exceed 126 pixels. If it exceeds, then pointer just stops after reaching
that threshold. Further solution to improve reliability and duration of EMWs should
take into account this feature of the mentioned OSs.

3.2 Workflow Level

This type of the test cases are abstracted from the properties of the interactions and
are aimed to register time, successful, failure rate and other characteristics of the
EMWs. That is needed to reason on the reliability and time efficiency of the actual
EMWs.

3.2.1 Large-Scale Format Migrations

Test case id: Large-Scale Format Migrations

Unit to test: Verify reliability, scalability and register time efficiency of the actual
EMWs. Thus success and failure rates, total and singular runtime of the EMW has
to be determined. Format migrations have to be made first and second time by using
the same set of DOs and the same MW, third time to migrate different DOs but
using the same MW. It is necessary to see how EMWs reliability depends on the
chosen set of the DOs.

Prerequisites: Prepare software to make large-scale format migrations. Input for-
mat is DOC. Output format is RTF. The application that is used to migrate DOs is

3.2 WORKFLOW LEVEL

MS Word 97 (8.0). The guest system is Windows 98.

Test data: 1000 DOs of one format.

Steps to be executed:

1. Create one MW with necessary number of SyncPoints to make EMW reliable

as much as possible;

2. Migrate 1000 DOs from one format to another;

3. Migrate the same 1000 DOs using the same workflow;

4. Register necessary data;

Expected Result:

All 1000 DO should be migrated.

Actual Result:

Table 3.1 shows the results of the two migrations of one set of DOs migrated by the
same MW. Table 3.2 presents the results of the migration of different DOs but using

the same MW.

Criteria First Large-Scale | Second Large-Scale
Migration Migration

#of Input DOs 997 998

#of Output DOs 892, 89.47% 891, 89,28%

of Failures 105, 10,5% 107, 10,7%

Avg time over all failures 00:15:00.89 00:14:52.49

Total time over all failures 26:16:32.95 26:31:36.20

Avg time over all successful mi- | 00:03:58.57 00:03:59.14

grations

Total time over all successful | 59:06:41.59 59:11:10.70

migrations

Avg time over all migrations 00:05:08.32 00:05:09.19

% Total time 85:23:14.54 85:42:46.90

Comments Time format: | Time format:
[HH]:MM:SS.00 [HH]:MM:SS.00

Table 3.1: Results of the large-scale migrations of the same DOs with the same MW.

In the first large-scale format migration, three DOs were not sent to VncPlay — the
possible reason ia the large size of the DOs 29-31 Mbytes. The mentioned issue is

3 INTERACTIVE WORKFLOWS ANALYSIS

Criteria TI}ird . Large-Scale
Migration

#of Input DOs 999

#of Output DOs 905, 90,6%

of Failures 94, 9,4%

Avg time over all failures 00:14:19.20

Total time over all failures 22:26:04.33

Avg time over all successful mi- | 00:04:04.01

grations

Total time over all successful | 61:20:31.21

migrations

Avg time over all migrations 00:05:01.90

% Total time 83:46:35.54

Comments Time format:
[HH]:MM:SS.00

Table 3.2: Results obtained by using the same MW as in the first and second large-
scale migrations but with different primary objects

related to SOAP messaging, because there is limit of the size of the message, in
which DO is wrapped. In the second large-scale migration two DOs (size - 30, 33
(MB)) were not sent to VncPlay — the same reason as in the previous case. In the
third migration one DO (size 29 (MB)) was not sent to VncPlay. This bug is neither
related to the MWs nor to their execution, since its resolution will not be considered
in this thesis.

Comments:

Test cases in this section are executed on the computer with the following charac-
teristics: Intel(R) Core(TM)2 Duo CPU E7300 @ 2.66GHz, 4 GB RAM, and 250GB
HDD.

3.2.2 Failure Migrations Analysis

Failed EMWs should be further analyzed to find out probable causes and failures.
Therefore, failed DOs that are being migrated, should be run second time and error
causes of the failing EMWs should be determined. Further on, recommendations and
mechanism on how to eliminate the error causes are to be derived.

Test case id: Failure Analysis

3.2 WORKFLOW LEVEL

Unit to test: Test failure EMWs from the first large-scale format migration for the
possible causes and types of the errors.

Prerequisites: DOs that are not migrated in the first large-scale format migration.
Use the same MW as in the tests — large-scale format migrations. Failures within
EMWs have to be registered.

Test data: 105 DOs of one format
Steps to be executed:

1. Start large-scale format migrations;

2. Make 30 snapshots of the screen over 30 random DOs when possible failures of
EMWs causes appear;

3. Analyze pictures for the possible failure causes of the EMWs;

Expected Result:

By using the pictures from the failure migrations, it should be possible to identify
potential failure causes and error kinds.

Actual Result:

In failure cases, appeared three types of modal windows - first, notifying that there is
no free space on the hard drive. Current size was 30 MB but for graphics conversions
into specific format MS Word 97 needed more space. This type of the errors happened
only when DO contained graphical content (see Fig. 3.4).

Second type of the error messages Fig. 3.5 appeared when primary object had differ-
ent descriptors rather than the sample DO used to create IWD.

From failed in the first large-scale format migrations 105 DOs nine were migrated
this time. Therefore number of not migrated DOs is 96 from 105.

Third type of the error or warning modal window in the Fig. 3.6 was related to
macroses. User should have had invoked additional interactions to close this modal
window.

Failure causes:

e Different than in the sample DO file descriptors caused additional pop-up mes-
sages to appear;

e Additional content as macroses of obsolete format which may generate warning
messages;

3 INTERACTIVE WORKFLOWS ANALYSIS

Microzoft Word 3

AuF Dy ist kein Speicherplatz frei: Machen Sie Speicher auf dieserm Laufwetk Frei,
versuchen Sie die folgenden Optionen:

* achligfien Sie nicht bendtighe Dokumente, Programme und Fensker,

* gpeichern Sie das Dokument auf einem anderen Datentrager,

Figure 3.4: Example of the error, caused by not sufficient disk space
Microsoft Word

D:}dab.dor sollte nur mit Schreibschutz getFfnet werden, solange keine Snderungen
gespeichert werden missen. Soll die Datei mit Schreibschutz gedffnet werden?

Mein | #Abbrechen |

Figure 3.5: Example of the error, caused because of the different file descriptor (read-

only)

e Heavy load of the host or guest system such that it could not process events;
e Not enough free space of the container used in the EMWs;

Recommendations to eliminate failure migrations:

1.

File descriptors over all DOs to migrate and DO during recording has to be the
same to prevent additional modal windows to appear;

. To deal with modal windows such as e.g., macroses and other unexpected modal

windows, MW should be described on an abstract level, such a description
should contain ways to deal with the failing EMWs.

Increase the space of container from 30 (MB) to 500 (MB) where migration
takes place;

Each interaction that result in the guest system screen change should be fol-
lowed by SyncPoint in the place where such screen change takes place. One of
the solution is to use only pointer events (movements, clicks) since the IWRec
(actual used one is VNCplay) makes SyncPoints based on the pointer position.
Second solution is to have a possibility during recording for each interaction
that cause a change on the screen to make the SyncPoint on any position of
the screen of the guest system with the feature to pause the recording.

3.2.3 Migration Workflow Optimization

Test case id: Workflow Optimization

3.2 WORKFLOW LEVEL

Achtung! HE

Das Dokument, das Sie &ffnen, enthalt Makros oder Anpassungen. Makros
kénnen Yiren enthalten, die Thren Computer beschadigen kinnen,

Elicken Sie auf 'Makros akkivieren', wenn Sie sicher sind, dal das Dokument aus

einer vertrauvenswirdigen Quelle stammt. Elicken Sie auf 'Makros deaktivieren',
wenn Sie nicht sicher sind und die AusFibrung von Makros verhindern wollen.

Weitere Informationen

¥ wor dem SFfnen von Dokumenten, die Makros enthalten, Bestatigung einbolen

| Makros deaktivieran || Makros akkivieren | icht &fFnen I

Figure 3.6: Example of the error, caused since DO contains macroses

Unit to test: Verify whether it is possible to remove intermediate interactions such
as pointer movements from the IWD but not harm the integrity of the execution of
the original MW.

Test data: distance = 50 (pixels); timer interval firing the event processing: 20 ms
(actual value), 30 ms, 40 ms

Prerequisites: Pointer acceleration turned off.

Steps to be executed:

1. Create one MW with necessary number of the SyncPoints to make EMW reli-
able as much as possible;

2. Replay the MW;

3. Register pointer movements between two events such as key strokes or pointer
click.

4. Delete all pointer movements that are between those two events which are less
than 50 pixels.

5. Replay changed MW and compare the results with the original one.

Expected Result:

Pointer has to move to the same positions as in replaying the original IWD.

Actual Result:

e With the actual value of 20 ms, some events were not consumed in the replaying,
resulting in offsets. Offset of about 3 pixels was noticed when replaying from
the original IWD.

e With the value of 30 ms - offset of about 1-2 pixels is noticed when replaying
from the original IWD.

3 INTERACTIVE WORKFLOWS ANALYSIS

e With the value of 40 ms - no offset was noticed. So replaying from original and
modified (reduced in interactions) IWD did not differ in the result.

From this test case, it became evident that the actual time interval of the timer,that
extracts interactions from the IWD is not sufficient for the replaying in the guest
systems (Windows 95 and Windows 98) but sufficient for the Windows 3.11. Thus,
time of the timer should be increased. Without doing it, optimization of the workflow
by eliminating some kinds of interactions as pointer movements may lead to incorrect
replayings, in comparison to the original IWD . This test case is much related to the
first test case Event Generation Time. Its result may be abstracted on most OSs by
checking the input processing characteristics of each particular OS, that was made
and shown in this chapter.

3.2.4 Multi-Format Migrations

In this test case, one obsolete application has to be chosen and DOs have to be
saved in the formats that the mentioned application provides. All format migrations
have to follow one after the other. It has to be verified whether by using the actual
MWs it is feasible to identify particular format migration(s). Moreover, possibility
to rearrange or delete some parts of the MW in order to obtain the migration of the
DO to preferred format should be checked.

Test case id: Multi-Format Migrations

Unit to test: Check whether it is possible to rearrange current multi-format MWs.
Prerequisites: Make one multi-format MW.

Test data: DO of certain format.

Steps to be executed:

1. Create multi-format MW;
2. Migrate the DO;
3. Analyze the MW;

Expected Result:

MW has to consist of the several format migrations which should be easily identified
within the MW. It has to be possible to rearrange or delete some of the parts of the
MW in order to get DO of necessary format(s).

3.3 SUMMARY

Actual Result:

MW consists of overwhelmed number of registered interactions. They make the
workflow not usable,that do not allow to reorder the execution. Without particular
constraints and identification of the stages it is not possible to perform any rearrang-
ing. Because, firstly, such rearranging on the actual MWs may harm the integrity
of the EMWs and secondly, the MW consists of more than two thousand of inter-
actions, making it very difficult to identify which interaction where and at which
format migration appeared.

3.3 Summary

In this section, conclusions over all test cases are to be derived. Related to the
statement test case(s) is (are) to be given in parentheses.

It was shown that the pointer offset significantly influence the migration (Event Gen-
eration Time, Pointer Acceleration, Pointer Movement Distance, Pointer Movements
Processor Load, Pointer Movements Disk 1/O Load), that is, the reliability of the
EMWs. The time with which user moves the mouse is not enough to the guest system
to process interactions during the recording of the workflow (Event Generation Time,
Pointer Movements Processor Load, Pointer Movements Disk 1/O Load). Solution
is to move the pointer slower or research in improving the existing network protocol
between the guest and host system (if possible) but preserve independence of the
mentioned protocol from the guest OS and emulated hardware.

In addition, pointer acceleration influences the pointer offset (Pointer Acceleration).
In order to provide reliable recordings and replayings, it should be turned off in the
guest system. All three tested OSs (Windows 3.11, Windows 95 and Windows 98)
supported easy switching off the pointer acceleration.

The approach to eliminate all pointer movements as described in thesis [3] became
obvious to be not working for at least two OSs (Pointer Movement Distance). Hence,
it cannot be used as optimized solution. However, some interactions and time op-
timization of the EMWs can be derived after the results of test case: Workflow
Optimization.

It was noticed that current time of the replaying interactions is not sufficient to
correct replaying of them in the guest system. Hence, it has to be increased Workflow
Optimization.

3 INTERACTIVE WORKFLOWS ANALYSIS

The pointer movements can be processed correctly if the distance of them do not
exceed some threshold which also proves that all pointer movements cannot be elim-
inated - as it is described in [3]. But even if some intermediate interactions can be
eliminated, to improve reliability of the EMWs, additional pointer movements before
each pointer click should be registered into an IWD. It will confirm that the pointer
movement and pointer click occur on the same position on the screen thus improving
the reliability of the EMWs.

Additionally, the MW (that was tested in the test case Multi-Format Migrations)
consist of more than two thousand interactions making it neither timely nor optimized
by number of interactions. There is no feature of IWRec to structure the MW, which
could allow rearranging of different format stages from the MW. Such a structure
of the MW could also allow in the future combination of the stages from different
MWs to guarantee automatic error-handling and cycling of some stages to migrate
large-number of primary objects within one MW.

In order to determine actual state of the MWs, test case Large-Scale Format Migra-
tions was needed. Moreover, we used result of the mentioned test case to identify
main type of failures occurring within the EMWs (Failure Analysis). Solution to the
appearance of the unexpected modal windows within EMW is to be provided in the
next chapter.

3.4 Requirements

Based on the results from Summary section and objectives of the thesis, the following
requirements on the design and the implementation of the software to improve MWs
have to be defined.

Reliability

Time and Event Optimization
Integrity

Ability to rearrange

Usability

U W=

3.4.1 Reliability

EMWs is reliable if every interaction of the MWs is processed in the target system
and an expected outcome of such interaction is obtained. If there will be reduction

3.4 REQUIREMENTS

of interactions in the MWs and speed increase in EMWs, then the reliability of the
EMWs should be preserved, resulting in the same number or increased number of
successful migrations.

3.4.2 Time and Interactions Optimization

The method to get rid of not necessary for the EMWs interactions has to be devised.
It has to be based on the results of the analysis, made in this thesis. Delays depending
on the user have to be excluded but EMWs has to be timely synchronized.

3.4.3 Integrity

The above-named reductions of the interactions and of the delays are to be made with
some constraints. Without them EMWs may become unpredictable, error-prone and
less deterministic, resulting in failure migrations. Conditions in which cases, what
type of optimizations and when may be made are to be defined. Using that conditions
(constraints) integrity of the MWs has to be preserved.

3.4.4 Ability to rearrange

There has to be a feature that allows a user to partition the MWs. The feature
has to make it possible to rearrange and delete some parts of the workflow in e.g.,
multi-format MWs to choose necessary format migration. It should be possible to
combine different parts of even different MWs and make a working MW. Certainly,
in this case, previous requirement has to be taken into account.

3.4.5 Usability

The contributor should have possibility to think more to perform certain actions
but that delays of the workflow should not be replayed within the EMWs. That
could allow to create MWs resulting in more reliable execution. Hence, an approach
implementing that has to be devised. Additionally, a feature to structure MWs has
to be implemented, that could allow a user efficiently modify the MWs depending on
the user’s task.

4 Design

In this chapter, an approach to optimize the EMWs are presented. Furthermore,
MWs described on an abstract level. That allowed to design an operation of repeating
certain part of the MW to migrate set of DOs within one EMW. Additionally, after
an abstract description of the MWs, it became possible to devise error-handling
mechanism.

4.1 Migration Workflow Optimization

Reliability of the EMWs can be improved by increasing the time of the timer in
IWRep at least in three tested OSs. The timer makes IWRep extract interactions
one by one from the IWD after some particular time period. Current 20 ms is
increased to 40 ms.

By removing excessive pointer movements from EMWs it is feasible to increase speed
of the EMWs. The mentioned pointer movements are the pointer movements that
are between key strokes or pointer clicks which does not change the screen state of
a guest system. The pointer movements cannot be fully eliminated from the EMW
because of the results of the test case Pointer movement distance. To recall, the test
case states that some OSs (e.g., Windows 98, Windows 95) can move a pointer only
to some specific distances by one event.

Our solution to that is :
1. To identify first and last pointer movements between pointer clicks;

2. Do not register in IWD all pointer movements which positions on the screen of
the guest system are less than some threshold (currently chosen 100 (px));

3. To confirm that pointer click happens at the same position where last pointer
movement appeared - generate and inject into IWD additional preceding to
pointer click — pointer movement, which has the same position as pointer click;

4.2 ABSTRACT MIGRATION WORKFLOW DESCRIPTION

4. To synchronize all interactions by time, threshold can be taken from the test
cases Workflow Optimization, Pointer Movements Disk I/O Load, Pointer Move-
ments Processor Load, Event Generation Time (currently chosen 40 (msec) for
each interaction and applied for all interactions within an IWD.

This optimization drastically decreases the number of the interactions in the IWD.
Reduced number of the interactions wintin an IWD make it possible to identify and
edit the interactions within IWD. Stages to be described in the next section serving in
this case as user-defined markers, will give possibility to exactly determine required
interaction.

Besides, the optimization to be made to IWRec, registers in the IWD only necessary
for the EMWs interactions, decreasing the overall time of the EMWs.

Additionally, delays when user thinks on the action to perform are ruled out. User
has enough time to think which exact action necessary to commit.

Stress on both making reliable and fast EMWs is eliminated thus making recording
more usable. After implementation of the feature it will be possible for a user to
concentrate only on the task to make EMWs reliable not considering the pauses that
the user makes.

4.2 Abstract Migration Workflow Description

In order to satisfy requirements reliability, integrity, ability to rearrange and usability,
a MWs are to be described on an abstract level. Abstract description of the MWs
should define conditions when the mentioned requirements will be satisfied.

Further on, feature to implement properties of the abstract MW is to devised.

On an abstract level, the MWs can be described as a list of stages. These stages
have to be defined by the contributor during recording. As it is shown in the Fig.
4.2, there should exist mainly five stages to distinguish within each MW and two
additional stages necessary to meet the requirements mentioned in this section:

1. Start — initial stage after guest system is loaded;

2. LeftTop — stage (additional), where contributor moves the pointer of the guest
system to the position (0,0) and presses the mouse button to make sure, that
the position is registered in the IWD and not deleted during the optimization.

4 DESIGN

This stage is needed to syncronize the pointers positions in the guest system
and the remote one, allowing to make SyncPoints at the positions where both
pointers located and after synchronizing the positions to control the pointer
from the remote system so that no offset with the pointer of the guest system
will take place;

3. DOready — stage, when DO to migrate is loaded into proprietary application
and ready to be migrated;

4. MigrateToFormatX — stage, where actual migration to particular user-defined
format take place, X is the extension of a format or multiple formats;

5. CleanupL — (or CleanupM) this stage is additional and necessary only when
contributor wants to have some error-handling scenario within the EMWs; In
order to use it, IWRep has to be extended to jump to that stage whenever
conditions (e.g. time limit of SyncPoints mismatches) do not hold. L. and M
stand for any positive number and may be equal. These type of stages are
processed when the stage name matches the specified in IWRep and in the
IWD stage name, and if there is an error within the EMW is appeared.

6. CloseApp — Closing the application;
7. End — Stop of the replaying phase;

If a user wants to create multi-format MW, then it is necessary to create multi-
ple MigrateToFormatX stages, where X will notate particular format or number
in increasing order, corresponding to the number or extension of the format to be
migrated. Moreover, not all stages are necessary to make format migrations. For ex-
ample, stages LeftTop and Cleanup(L or M) are additional and necessary to improve
the reliability of the EMW.

Decisions (diamonds) in the flowchart diagram Fig. 4.2 may check the following:

SyncPoints match

Time threshold to check SyncPoints
Number of times to check one condition
Unique title of the stage within the IWD

To fulfill Ability to rearrange and Integrity requirement pointer has to be moved to
the position (0,0) after each stage (except the stages: Start, CloseApp, Cleanup(L or
M), and End).

When there exists MW containing multiple format migrations, then there is a possi-
bility to the user to choose necessary stages of the MW, that migrate DO to certain

4.2 ABSTRACT MIGRATION WORKFLOW DESCRIPTION

format. That could be made by the identity of the starting and ending state of all
MigrateToFormatX stages. In order to identify the parts of the MW and make it
more usable, stages should be marked, accordingly to the Fig. 4.2.

To maintain the integrity of the MW and implement the ability to rearrange its
stages, the constraints on the starting and ending status of that stages have to be
fulfilled.

The state of the stage is the screen state, pointer position, and stage title.

4.2.1 Mechanism of Stages Repetition

Stages DOready, Migrate ToFormatX, CloseApp can be repeated, according to the
number of the DOs that are being migrated. Therefore, the stage titles should
be specified in the IWRep and then during the recording of the MW. Afterwards,
number of DOs to migrate has to be read from the container. The stage titles should
correspond to the stage titles specified in the IWRep. In the end, depending on
the number of primary objects, repetitions of the mentioned stages within an IWD
should be performed by the IWRep.

To open the next DO in the folder additional interactions may be necessary. Inter-
actions that do choose particular DO (e.g. key strokes), can be marked using the
stages. Afterwards, they can be repeated number of times multiplied by the number
of the primary objects.

Another issue is the name of the DOs. Since in the recording phase one sample DO
is used, then other all DOs may have the same name thus rewriting each other in
the folder. That can be avoided by identifying interactions when name of the DO is
typed. Also in this case, by using the stages that part of the interactions should be
marked and for the next after first DOs increasing number (by simulation of pressing
the key) should be appended. For example, if the name of the first migrated DO
is MOB.pdf, then then interactions before typing M and after typing B should be
marked. Furthermore, IWRep should have already some counter by using which for
the next DO specific key event will be generated. This will allow to save DOs with
different names in one folder.

In such a way, based on the stages, cycles to migrate set of DOs within one EMW
can be implemented. This approach can decrease the time of the EMWs, since the
time to repeat such operations as emulator run, operating system boot, shutdown of
the operating system will not needed to be repeated for each primary object.

4 DESIGN

4.2.2 Error-handling Mechanism

EMWs should have a mechanism reacting on failures automatically, after a user
identified such failure migrations and created IWD corresponding to each error case.
To do that, a feature to create stages is crucial.

The following description of the mechanism to deal with failing EMWs can be con-
sidered:

Assume user makes large-scale EMWs. The user creates a script to log all information
concerning migration into some file. After the EMWs are finished, the user can
identify which DOs are migrated and which are not. Further on, the user deals with
the DOs that were not migrated.

User makes recording over one of the failed DOs. Whenever error appears (in most
cases, as test case Failure analysis shows, errors are unexpected modal windows) the
user creates stage CleanupL, where L is the error appeared with EMW. The user
makes screenshot of the error appeared, serving later on as a SyncPoint, so that
it will be possible to the IWRep during migrations using the stage title and exact
screenshot of the error to identify the failure. Afterwards, user executes actions to
get rid of the error and continues recording; After error is eliminated, user moves the
pointer to position (0,0) and creates new stage to identify the end of the CleanupL
stage.

In the next step,the user imports that stage (marked list of interactions) into the
original IWD in corresponding place within the IWD where actually error can occur.
IWRep functionality should be changed to jump to the section in IWD to the stage
CleanupL whenever error occurs. If SyncPoint match in that stage, then actions to get
rid of the error will be taken automatically. If SyncPoint in CleanupL stage does not
match, then IWRep search for the next occurrence of the CleanupL. Also in this case
as in previous SyncPoint is checked. If no SyncPoint match in the CleanuplL stage(s),
then IWRep goes to the stage End, right after the stage CloseApp, and finishes the
EMW. User will check how many DOs are migrated time time and if there is some
more failure EMWs, then user can repeat the scenario for the new errors. In the end
original MW will consist of the number of CleanupL stages that correspond to the
number of different failures within EMWs and IWRep will automatically deal with
that type of errors in the next migrations.

Also use of manual-area SyncPoints where a user can exactly specify the area of the
SyncPoint during recording of the MW is preferable. In the future, possibilities of
creating them has to be investigated.

4.3 SOFTWARE DESIGN

This approach is scalable depending on the number of errors. It can definitely improve
reliablity of EMWs since it guarantee an expected outcome of interactions from the
original MW. Stages in this case, as in the previous section are essential to perform
such kind of error-handling.

4.3 Software Design

This section considers the design of the particular features in the IWRec and IWRep
(see Chapter 2.1) to achieve the goals described in Introduction. The design meets
the requirements from Chapter 3.

4.3.1 Use Cases

Use case diagram modeling functionality of the system in terms of the following
actors, and their use cases shown in Fig. 4.1.

The Interactive Workflow Recorder supports two use cases:

1. Input: Pointer movements between two input pointer clicks or SyncPoints;
Output: Inject optimized pointer movement events;

2. Input: Request to create the stage with the specified name;
Output: Inject stage specific information;

The Interactive Workflow Replayer supports two use cases, too:

1. Input: Stage specific information;
Output: Processed stage specific information;

2. Input: Interactions;
Output: Progress information;

4.3.2 Actors

The potential actors accessing both components are:
Contributor - user that utilizes workflow registration component and IWRec to create
IWD for further unattended migration of obsolete DO;

4 DESIGN

End User - user that works with the migration component or directly with the IWRep
and migrates obsolete DOs. End user should specify format of the DO and of the
resulting migrated DO, upload and download the DO.

Both components interact with the actor:
Interactive Workflow Description - DO containing a MW, with the description of
each interaction that contributor had invoked.

Interactive Workflow Recorder

@@

Contributor

Generate and
Inject Stage X

Extract Stage X

Inject Optimized
Pointer Movements

Interactive Workflow Description

Progress
Information

Inform Stage X

User

Figure 4.1: Use Case Diagram

4.3 SOFTWARE DESIGN

Start

Ye System is No.
loaded?
Stage: DOready
v Open Application; Yes
Prepare DO
Stage: LeftTop heck Time <
Move the Pointer (minutes)
to Position (0,0)
No
Yes [> DOready?
No, Yes No
Stage:CleanupL Yes
Stage taken from IWD heck Time <
#L+1 (minutes)
Move the Pointer to
T Position (0,0)
No

Yes

s there stage
Cleanupl and
syncOk?

Stage: MigrateToFormatX

Yes

Counter < j
times
Yes
Stage:CleanupM "
Stage taken from IWD » MigateiDot)
Format X
#M+1

A

Yes

s there stage
Cl and
syncOk?

Yes

v

Move the Pointer to
Position (0;0)

More Formats to
Migrate to?

Stage: CloseApp
Close Application

Y-
g
a

Figure 4.2: Modified Flowchart

diagram describing a migration workflow on an ab-

stract level. Combined process — Stage: Migrate ToFormatX includes other processes

and decisions.

5 Implementation

This chapter describes the implementation of the functionality described in the Chap-
ter 4. Furthermore, it describes how well the requirements from the Chapter 3 are
met.

5.1 Create Stage Use-Case

The implementation of the use-cases Create Stage X, Generate and Inject Stage X,
Extract Stage X, Inform Stage X, and Progress Information meets the requirements:
Reliability, Ability to rearrange, Usability, and Integrity. Requirement reliability
is met since feature to partition the MWs into the stages along with the abstract
description of the MWs made in the previous chapter serves as a base for the error-
handling mechanism. Such an error-handling mechanism is necessary to guarantee an
expected outcome of each interaction from the original MW. Abstract description of
the MWs allows to delete, edit and rearrange certain stages of the MWs by preserving
overall integrity of EMWs.

The first use-case provides contributor with specific interface to create stages. Title
(name) of the stages should be specified by the contributor depending on the part of
the MWs. New stage has unique id - stagelD, starting from one and incrementing
automatically, as new stage is added.

In order to implement this use-case, two java classes were used - ButtonPanel.java
and VncInputRecorder.java. All classes except described in section SyncPoints Ab-

straction, are taken from the modified VNCplay version!.

First class creates interface of the top panel of the VncPlay with several buttons. On
that panel — button NewStage is created. Second class "listens" to the button action

and whenever it is clicked, invokes pop-up input window to enter the name of the
stage. If nothing entered in the input window then no stages are created. The same

'VNCplay modifications based on the theses of [3][11][13]

5.2 GENERATE AND INJECT STAGE USE-CASE

action undertaken when input window is cancelled. Inputted by the contributor text
and other parameters as stagelD transmitted as the parameters to other method
newStage, which is considered in the next use-case.

Pseudo code based on the code snippet that is added to the ButtonPanel.java class:

0~ O O W N+~

Following pseudo code based on the code that is added to the existing Vnclnpu-
tRecorder.java class:

5.2 Generate and Inject Stage Use-Case

After getting the name of the Stage, appropriate to IWD information is generated.
That information can be saved in a hashmap to fit IWD formatting and structure.

O© 00~ O Tt = W N~

—
o

5 IMPLEMENTATION

Timestamp of the stage is calculated by getting first, the last interaction timestamp
and adding to that timestamp 40 ms.

Pseudo code to do that is the following:

procedure newStage (stagelID, stageTitle)
Convert stageID to String
Create HashMap m of generic type String, String
Put into m strings "SID" and "stageID"
Put into m strings "Title" and "stageTitle"
Put into m strings "type" and string "stage"

Increase the timestamp of previous event by 40
Assign it to ts;
Register into the output file ts and m

5.3 Inject Optimized Pointer Movements Use-Case

Actual MWs contain a great number of pointer movements. Such movements are
saved to each few pixels increasing the time of the EMWs and overall load to the
guest system. Moreover, they make the MWs unreadable and less editable.

Finally, contributor spends time on thinking which action to undertake in particular
situation. These delays are also saved to the MWs making them time-inefficient.

Next implementation of the optimized MWs does not register in the IWD excessive
to EMWs pointer movements. Pointer movement is only saved when: it is the first
interaction after SyncPoint; when it is the first interaction before and after some
mouse click; when this pointer movement is more than some threshold (actual 100
pixels) in comparison to the previous registered pointer movement. Above-mentioned
threshold is derived from the test cases Pointer movement distance, Mouse Accelera-
tion, Event Generation Time and Migration Workflow Optimization. It is valid until
now on all three OSs tested, but can be easily abstracted by using test cases from
the Chapter 3.

This use-case meets the requirements Time and Interactions Optimization, Integrity,
Usability and and preserve the Reliability of the EMWs. Not necessary to the EMWs
pointer movements will be not registered within the MWs increasing the speed of the
EMWs. The user has more time to think on which action to undertake in the MWs

1
2
3
4
5
6
7
8

5.3 INJECT OPTIMIZED POINTER MOVEMENTS USE-CASE

since all delays will be eliminated. User will think more on how to make EMW more
reliable (e.g., locating SyncPoints in the positions where screen state changes after
each key stroke or mouse click) than the speed with which to record. Time of all
interactions are synchronized and is no more user-dependent.

Overall integrity of the MWs is preserved, meaning that the actions the contributor
has done during recording will be exactly replayed.

Reliability of the EMWs also increased since the time with which each interaction
replayed is now enough to the guest systems (at least, three tested) for process-
ing. Before, IWD contained interactions with the time difference less than the time,
necessary to the guest system to process interactions.

Class VncCanvas.java "listens" to the interactions invoked by the contributor and
send them to the VnclnputRecorder.java class in order to register them in the IWD.
Thus, all analysis and further optimization of the pointer interactions are made in
this class.

Following pseudo code describes the optimization that was added to the class Vne-
Canvas.java:

© 00 O Ui W N -

5 IMPLEMENTATION

VnelnputRecorder.java class synchronizes the time of all interactions. Additionally, in
the mentioned class pointer movement which corresponds the positions of the mouse
click is generated. It is needed to synchronize the last pointer movement position
and the position of the next mouse click.

Pseudo code based on the code implementing that, partially shown here:

0~ O O W N

5.4 EXTRACT STAGE USE-CASE

5.4 Extract Stage Use-Case

This use-case extracts the stage properties from the IWD within the EMWs and
displayed to the end user. That is needed for the user to identify at which stage
EMW is.

Pseudo code look as following:

5.5 Progress Information Use-Case

In order to make the EMWs more user-friendly, progress of the EMWs is to be
computed. It is based on all interactions of the MW. When next interaction is
processed in the EMW, then the percentage of the EMW increases.

ﬂ 5 IMPLEMENTATION

Following pseudo code is based on the code snippet added to VnclnputPlayback.java
class:

0~ O O W N~

[
W N = O O

5.6 SyncPoints Abstraction

In thesis [11] pattern-matching SyncPoints were mentioned. In our thesis, three
classes dealing with the two types of SyncPoints are implemented: abstract class
- SyncPoint.java, and extending it PatternSync.java and BitmapSync.java classes.
Functionality of PatternSync.java class was taken from the code that was imple-
mented based on [11, ch.3|. Bitmap-matching SyncPoints were extracted and put
into BitmapSync.java class.

Such a structure allows to choose one of the SyncPoints during the runtime by the
following example command:

java VncViewer PORT localhost PORT 5900 autorecord yes
SyncPoint [pattern|bitmap]

Pattern-matching SyncPoints complicate comparisons of the SyncPoints by making
much more calculations in the replaying phase. However, this class maybe extended
later to provide comparisons of patterns such as windows, panels or objects of dif-
ferent sizes, but not distances of two snapshots. That could be used to handle error
situations when, for instance, the size of the SyncPoint is needed to be dependent
from the objects shapes on the screen.

5.7 EVALUATION OF OPTIMIZED MIGRATION WORKFLOWS
5.7 Evaluation of Optimized Migration Workflows

In order to conduct an evaluation of our approach, we created two MWs, one of which
is recorded by using a not optimized IWRec, that was prior to our studies, and the
second one is a optimized IWRec, that were extended, based on this thesis. Both of
the MWs consisted of the same number of SyncPoints that were made almost at the
same time and positions on the screen of the guest system — Windows 98.

The IWRep version is modified, based on our study, where the value of the instance
of the java class Timer is increased from 20 ms to 40 ms. This time increase enables
to process all interactions in the guest system (it is valid on all three OSs, tested
in Chapter 3) thus making the MW more reliable. Additionally, after appearance
of the wallpaper of the guest system, there is additional 10sec delay, that is made
in IWRep to give OS time to load all services and components. In some cases,
when there is no such delay, OS was not ready to process interactions even if the
wallpaper was displayed on the screen. This delay increases the reliability of the
EMWs, since the interactions, that were sent in the beginning of the EMWs will be
most probably processed by the guest system. Furthermore, time of the unsuccessful
SyncPoint matches, in the following mismatch threshold, in both sets are made to be
25 minutes. The container size in both sets of DOs is 500 Mbyte.

In order to check the time optimization of the execution of the optimized (created
using optimized IWRec — implemented in our study) and the non-optimized MWs
(the MWs that were created with IWRec version, previous to our study) — 50 sample
DOs were migrated. In the Fig. 5.1, we can notice the optimization that was made.
From 50 DOs all were migrated using both MWs. Time of the one execution of MWs
was not mentioned in the Fig. 5.1 because it took more than 20 minutes and could
excessevily increase the scale of the time in the figure. Using the non-optimized
MW only one execution took 29 min 38 sec 91 ms and another execution using the
optimized MW 25 min 52sec 71 ms. Even in this case, when threshold of mismatches
elapsed, the time of the execution of the optimized MW was less than the time of
the execution of the non-optimized MW.

In order to understand why both last mentioned executions took significantly more
time in comparison with others, the execution of both MWs was repeated with the
same DOs that triggered SyncPoint mismatches. This time the DOs that caused
SyncPoints mismatches were migrated without any issues. The execution of non-
optimized MW over the mentioned DO took 3 min 58sec 89ms while the execution
of the optimized MW took Omin 33sec 15ms. Therefore, the reason of threshold
mismatch may be related to the overload of the guest system so that it could not
process some interactions or it processed pointer movements wrongly, causing the

5 IMPLEMENTATION

05:45,6

inutes)
o
I
S
~
I~

0419,2 | 1 it
03360

s 02:528
- Execution of non-optimized MW's

0
es=Execution of optimized MWs

Ws (in m

0 02:096
£

i 01:26,4

_g 00432 N ---M.AM—-.—-—-.—--—-..;
00:00,0

Execu

1357 911131517192123252729 31333537 39 41 43 45 47 49

Migrations

Figure 5.1: Diagram showing comparison of the execution time of the optimized and
the non-optimized MWs.

offset. Such an offset was already demonstrated in the test cases Pointer Movements
Processor Load and Pointer Movements Disk 1/0 Load.

Overall execution time of the non-optimized MWs took 4 hours 6 min 45 sec, while
the overall execution time of the optimized MWs took 1hour 13 min 42sec. Hence,
the execution time minimization rate of the optimized MWs, in the described case,
is about 3.35 times.

6 Conclusion

Based on the aim of the thesis, we analyzed the hindrances to create reliable MWs.
We identified the set of reasons and their consequences on the reliability of the MWs.
The results of this analysis play a significant role to understand the failing EMWs
causes and subsequently, allows a user to create more reliable MWs.

A user recording MWs needs an additional time to make the workflow reliable, e.g,
to place SyncPoints at necessary positions, to make a decision whether to create the
SyncPoint at a particular point in the MW. Our approach does not consider such
delays and fully dependent on the number of interactions, that the user invoked.
That enables the user to focus more on the reliability of the MWs rather than both
characteristics: the recording speed and the reliability.

After the test cases, described in Chapter 3, we were able to optimize MWs. The
optimization, resulted in the significant increase of the speed of the EMWs while
preserving the reliability of the MWs.

During the analysis, we registered failing EMWs. The main reason was identified
and we devised an error-handling mechanism. The mentioned mechanism only can
work on all MWs when they are described on an abstract level. Hence, we designed
an abstract description of the MW, which shows the functionality how and when to
handle error cases.

We examined the work related to our study, and discovered the information on the
time reduction of the migration of numerous DOs. Based on that information and
the analysis of large number of MWs, using the abstract description of the MW, we
designed an approach to migrate set of DOs within a single EMW.

Abstract description of the MW was also used to specify certain stages of the multi-
format MWs. These stages upon meeting the conditions, shown in the abstract
description can be rearranged or modified so that a user can obtain different format
migrations from the single MW.

Since, the abstract description of the MW is crucial for the above-described func-
tionalities, we designed and implemented a feature to create this kind of description

6 CONCLUSION

within each MW. This feature allows a user to create stages within MW, so that it
can be structured in order to fit the mentioned description.

6.1 Future Work

Basic feature on partitioning the MWs based on the abstract description, was im-
plemented, but supplementary work can be done in the implementation and the
evaluation of the designed error-handling mechanism. Particularly, functionality to
make jumps of the MW execution to the necessary stage has to be implemented.
That can be done by the IWRep. The IWRep should reopen the IWD, and when-
ever a SyncPoint mismatch takes more than some time threshold (in our case, e.g.,
1 min), to find corresponding for error-handling stage in the IWD (we described them
as CleanupL(M) stage). If SyncPoint after the mentioned stage does not match, then
to search for the next CleanupL stages. If SyncPoint of some of the CleanupL stages
matches then proceed with the new opened IWD. In case none of SyncPoints match,
the execution should start from the point before it reopened the IWD. Hence, infor-
mation on the last extracted interaction should be saved e.g., in a hashmap. Con-
tinuing the execution that was before the jump is necessary because some DOs may
need more time to be migrated, since SyncPoints will not match but the EMW may
be correct and after some pause can proceed further. In this case, when the execution
jumps back to the last interaction, threshold of the SyncPoint mismatch should be
increased in the IWRep automatically (e.g., from 1 min to 60 min).

Moreover, repetition of a certain part of the MW in order to increase the speed of
the EMWs, can also be implemented in the future works, based on the design from
Chapter 4 and by using already implemented feature to create stages in the MWs.
IWRep should get a functionality to get the quantity of DOs that are being migrated.
It should be also extended whenever the number of DOs more than one to repeat the
stages specified in the Chapter 4. Further mechanism is described in the Chapter 4.

Additional work may be done in several areas to improve usability of the workflows,
to make it more interactive even after recording the IWD. For that reason, an editor
tool might be developed. The mentioned tool could load original IWD which has
machine-readable interactions. Based on the loaded IWD, editor would create simple
interactions that user will comprehend.

Following is the snippet of the actual IWD consisting of the different interactions.

1120 1d=503 button=0 when=1323771558075 modifiers=0 type=java.awt.
event .MouseEvent y=482 x=297

6.1 FUTURE WORK

Each line can be parsed by the editor and corresponding interactions could be derived.
Some events as mouse press and mouse released, key press and key release could be
combined to even one event. Derived IWD may look something like the following:

Using the software implemented, based on this paper, time difference between in-
teractions and timestamps of them may not be registered in IWD. They could be
automatically added during replay.

Such descriptive structure of the MW could ease understanding of the MW by the
user and user will be able to make some necessary modifications directly to the MW.

Editor further might be used to generate new IWD from the modified IWD. That
will allow the user to create new MWs based on the old ones without recording new
MWs.

Bibliography

1 Dirk von Suchodoletz, Klaus Rechert, and Isgandar Valizada. Remote emulation
for migration services in a distributed preservation framework. In Proceedings of
the 8th International Conference on Preservation of Digital Objects (iPres 2011),
pages 158-166, 2011.

2 Isgandar Valizada. Large-scale, transparent format migration system. Master’s
thesis, Albert-Ludwigs Universitéat, Freiburg, 2011.

3 Felix Ruzzoli. Ein framework fiir die zustandbasierte fehlererkennung und -
behandlung von interaktiven arbeitablaufen. Master’s thesis, Albert-Ludwigs
Universitat, Freiburg, 2009.

4 Klaus Rechert, Dirk von Suchodoletz, Randolph Welte, Maurice van den Dobbel-
steen, Bill Roberts, Jeffrey van der Hoeven, and Jasper Schroder. Novel workflows
for abstract handling of complex interaction processes in digital preservation. In

Proceedings of the Sixth International Conference on Preservation of Digital Ob-
jects (iPRES09), 2009.

5 Volker Uhrig. View-path realizations for obsolete digital objects. Master’s thesis,
Albert-Ludwigs Universitét, Freiburg, 2011.

6 Jacqueline Slats. Emulation: Context and current status, 2003. URL www.
digitaleduurzaamheid.nl.

7 QEMU. Quick emulator, 2006. URL http://wiki.gemu.org/Main_Page.

8 Jeffrey van der Hoeven. Dioscuri: emulator for digital preservation. D-Lib Maga-
zine, 13(11/12), 2007. ISSN 1082-9873. URL http://www.dlib.org/dlib/
november07/1linbrief.html#VANDERHOEVEN.

9 Nickolai Zeldovich and Ramesh Chandra. Interactive performance measurement
with vncplay. In ATEC °05: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 54—64. USENIX Association, Berkeley, CA,
USA, 2005.

BIBLIOGRAPHY

10

11

12

13

14

15

16

17

18

Tristan Richardson. The rfb protocol, 2009. URL http://www.realvnc.
com/docs/rfbproto.pdf.

Achille Nana Tchayep. Emulatoren-testing fiir die digitale langzeitarchivierung.
Master’s thesis, Albert-Ludwigs Universitét, Freiburg, 2011.

Russell Coker. bonnie++(8) - linux man page, 1999. URL http://www.
coker.com.au/bonnie++/readme.html.

Mario Philipps. Entwurf und implementierung eines softwarearchivs fiir die digi-
tale langzeitarchivierung. Master’s thesis, Albert-Ludwigs Universitét, Freiburg,
2010.

Remco Verdegem and Jeffrey van der Hoeven. Emulation: To be or not to be. In
ISET Conference on Archiving 2006, Ottawa, Canada, May 23-26, pages 5560,
2006.

Klaus Rechert, Dirk von Suchodoletz, Randolph Welte, Felix Ruzzoli, and Isgan-
dar Valizada. Reliable preservation of interactive environments and workflows. In
Mounia Lalmas, Joemon M. Jose, Andreas Rauber, Fabrizio Sebastiani, and Ingo
Frommbholz, editors, Research and Advanced Technology for Digital Libraries,
14th European Conference, EFCDL 2010, Glasgow, UK, September 6-10, 2010.
Proceedings, volume 6273 of Lecture Notes in Computer Science, pages 494-497.
Springer, 2010.

IDC. International data corporation, 2011. URL http://www.idc.com/.

PLANETS. Open planets foundation, 2011. URL http://www.
planets—-project.eu.

Microsoft. Pointer ballistics for windows xp, 2002. URL http://msdn.
microsoft.com/en-us/windows/hardware/gg463319.aspx.

	Introduction
	Background
	Definition of Terms
	Hardware Emulation
	Interactive Workflow Recording
	Interactive Workflow Replaying

	Interactive Workflows Analysis
	Pointer Offset
	Effect of Time Interval of Event Generation
	Effect of Processor Load
	Effect of Disk I/O Load
	Effect of Pointer Acceleration
	Effect of Pointer Movement Distance

	Workflow Level
	Large-Scale Format Migrations
	Failure Migrations Analysis
	Migration Workflow Optimization
	Multi-Format Migrations

	Summary
	Requirements
	Reliability
	Time and Interactions Optimization
	Integrity
	Ability to rearrange
	Usability

	Design
	Migration Workflow Optimization
	Abstract Migration Workflow Description
	Mechanism of Stages Repetition
	Error-handling Mechanism

	Software Design
	Use Cases
	Actors

	Implementation
	Create Stage Use-Case
	Generate and Inject Stage Use-Case
	Inject Optimized Pointer Movements Use-Case
	Extract Stage Use-Case
	Progress Information Use-Case
	SyncPoints Abstraction
	Evaluation of Optimized Migration Workflows

	Conclusion
	Future Work

	Bibliography

