Informatics Studies. ISSN 2320 — 530X. Vol. 3, Issue 4,
Fourth Quarterly Issue. October — December, 2016. P 31-44

Computing in Indian Languages for Knowledge
Management: Technology Perspectives and
Linguistic Issues

Ram Awathar Ojha

Abstract

The paper is the first among a series of documents on computer applications in Indian languages
to be published in the journal. Traditionally, computer applications were based on English as the
medium of interaction with the system. The technology is not yet viable to Indian languages.
Majority of Indian population does not speak or write in or understand English and this weakness
of technology hinders the attempts to use computers for education and literacy, meant for majority
of the population who should get the benefit of Information Technology. In many parts of the
world computer applications have been developed in different regional languages, appropriate to
the user communities. This introductory paper gives a perspective of research and development
on computational linguistics, the phonetic aspect of Indian languages, transliteration standards,
lack of uniformity, data entry methods, keyboards, phonetic mapping of the vowels and consonants,
web pages supporting display of Indian language text etc in the context of computing in Indian
languages.

Keywords: Computational Linguistics, Indian Languages, Telugu, Kannada, Phonetics, Alphabets,
vowels, consonants, syllables, transliteration standards, data entry methods, keyboards, , web

pages

This paper covers Writing Systems Codes for
the Aksharas, The Phonetic Aspect of Indian
Languages, The
Transliteration, Lack of Uniformity Between
Different Schemes. Data Entry Methods,
Keyboards, Phonetic Mapping of the Vowels
and Consonants and Web Pages Supporting
Display of Unicode Text.

importance of

Brief Introduction

The computer programs, which permit user
interaction with the computer in one or
more languages, where the language can be
selected dynamically, either at the time of
invocation of the program or subsequently
duringits execution is termed as Multilingual

Systems (MLS) in the context of this
discussion. Typically, an MLS will permit
users to interact with computers in their own
mother tongue. Such a system will have far
reaching consequences in a country like India
where English is not spoken or understood
by the majority of the people living in areas
away from urban environments.

Over the years, the bulk of software
development in India has been carried out
primarily through the English language.
Knowledge of English is essential for the
development of Information Systems since
virtually all development packages rely on
English specific input. Current software
development tools can also be used to

Informatics Studies 3(4), October — December, 2016 31

Computing in Indian Languages for Knowledge Management

develop an application that incorporates little
or no English in its user interface. Hence
MLSs are not only feasible at the level of an
application program but can also present a
truly localized environment for a user
desiring to interact with computers in
regional languages. This approach has the
added advantage of providing uniformity
across computer systems where, regardless
of the machines like PC, MAC, Workstation
etc. the user will see the same interface.

MLS catering only to the display of
information are easier to design and build.
The phenomenal growth of the internet has
created the need for internationalization of
the web where, using the right software tools,
one can present information in the form in
which it would be received best. However,
technical challenges faced in implementing
such MLS and the lack of standards have
retarded the development, especially in
respect of the languages of India.

In the past, MLSs in Indian languages have
basically concentrated on data preparation
and printing (DTP). The increasing demand
for using computers in the vernacular has
forced developers to look at the user interface
with seriousness. The Systems Development
Laboratory, Department of Computer
Science and Engineering at the Indian
Institute of Technology, Madras (II'TM) has
done unique research and development to
provide a quality MLS for the country that is
truly Indian in concept, design and
implementation. They have developed
numerous software packages to permit user
interaction with computers in different
Indian languages during the late eighties and
they continue their work. The series of
papers including the present one are
intended to present before the readers the
experience shared by concerned scientists of
II'TM in dealing with this interesting but
complex problem.

Computing in Indian Languages

Computing is a general term which refers to
information processing, where information

is associated with some data, typically a text
string, a number, an image and so on. One
writes computer programs to manipulate
data. Computing in Indian languages may
broadly relate to computer programs which
process Indian Language text strings, which
may be input through a keyboard and
displayed on a conventional screen display.

A primitive approach to computing in
Indian languages may be through computer
programs, which do string processing on
texts of Indian languages much the same
way it is done for the Roman (ASCII)
strings. This way, many existing applications
may be adapted to work with text strings in
Indian languages. It turns out that this is
not a simple task on account of the large set
of aksharas (letters) that have to be handled.
While the older techniques seem to be well
suited for displaying the Indian Scripts, data
entry becomes formidable. Hence, new
approaches to handling Indian language text
have become essential.

Often people ask questions such as ‘why
not have an Operating System run in Tamil
or Bengali?’ just as Arabic or Japanese
Windows. There is no satisfactory answer to
this question. In the first place, building
support for Indian languages within
Operating systems is not an easy job,
especially when one looks for uniformity in
use across all the Indian languages.

There is a general feeling among the
professionals that it is best to deal with
Multilingual information at the level of the
user application. That is to say, keep the
language aspects outside the Operating
System. This way, the Operating Systems are
rid of the problem of having to deal with
varied character sets across many different
languages. While some persons point to the
success of Unicode implementation in
Microsoft Windows, it must be clearly
understood that the system kept away from
Indian languages for an important reason.
Unicode is just not right for linguistic
processing with Indian Languages and is too

32 Informatics Studies 3(4), October — December, 2016

Ram Avathar Ojha

complex to handle even for one Indian script,
much less for all the scripts in a uniform
way. For all practical purposes Unicode has
retained only the eight bit coding structure
(actually only 128 codes) for all our scripts,
which is really the bottleneck in handling the
aksharas. For efficient string processing, it is
necessary to work with the basic linguistic
quantum of our languages, which happens
to be not a letter of the alphabet but an
Akshara, which is actually a syllable.
The problems associated to the current
implementation of Unicode for Indian
languages, or for that matter the ISCII code
itself, the basic standard that led to the
Unicode representation for our languages will
be discussed later.

Any meaningful approach to computing in
Indian languages must provide for unique
identification of the full set of aksharas,
through fixed length codes and also provide
a uniform approach to data entry of the
aksharas across all the languages. Any other
approach will suffer from incompatibilities
between the user interfaces across different
Indian languages. While solutions specific
to a language may indeed be feasible, one is
looking for solutions, which can be used all
over the country.

For the present, and at least for some years
to come, it is best to handle the problem by
writing applications which handle
Multilingual information directly, that is to
say that the Operating System’s support
should not be sought as there is no
consensus among the professionals on what
this support should be. The total
arbitrariness with which data entry in Indian
languages has been handled, not to speak
of the lack of uniform representation across
the languages, makes it necessaty for us to
take a serious look at standardization. The
problem is further compounded by the
individual approaches taken by vendors who
seem to think that the concept of the language
kit with an Operating System will solve the
problem.

The phonetic base and the concept of the
Akshara is unique to the languages of India.
It is best to deal with the problem of
computing with Indian languages by first
understanding how aksharas have been used
in our ancient as well as modern texts. This
will give us an insight into the linguistic base
of our languages, allowing us to come up
with a universal approach to dealing with all
the languages of the country.

General Introduction to Indian

Languages

Numerous languages are spoken in India.
Most of them relate to one of the officially
recognized languages and there are about
eighteen languages identified for regular use
in the country. All these languages have a
phonetic base, though their writing systems
vary. Some of the languages have a common
script and some have scripts of their own.
There are nine basic scripts besides the scripts
for Urdu and Sindhi. These nine constitute
the basic scripts of India. The eighteen
languages mentioned above, have been
given the status of official languages by the
Government. Though the use of a language
may appear to be confined to a region within
the country, the mother tongue of many
persons living in that region may be quite a
different one, traceable to early migrations
of families.

All the recognized languages; mostly referred
to as the regional languages have a phonetic
base. It is seen that there is a substantial set
of words common to many of these
languages and the roots of these words may
be traced to specific languages such as
Sanskrit or Tamil, both of which are
considered very ancient languages.

Linguistic aspects of Indian languages have
always attracted scholars from different parts
of the world on account of the hoary past
of the languages as well as their unique
phonetic base. Another interesting aspect of
Indian languages is the fact that language
was a means not merely for communication

Informatics Studies 3(4), October — December, 2016 33

Computing in Indian Languages for Knowledge Management

in daily life but also for expressing religious,
philosophical, scientific and professional
concepts in amazingly compact ways.

Computers and Indian Languages

Itis not surprising therefore, to find renewed
interest today, in studying and understanding
many of India’s ancient literary works. With
the possibility of using computers for
linguistic studies and with the increasing
demand to disseminate information in the
vernacular, computing in Indian languages
has gained significance. Though applications
such as word processing, Desk Top
Publishing etc., have been successfully
implemented for Indian languages, the
solutions remain substantially language
specific. One is happy that many of these
applications are really useful in practice, in
spite of the effort needed in handling data
entry. Yet, very little seems to have been done
in respect of electronically processing the
information. Viewed nationally, there is an
urgent need to provide a uniform and
meaningful software solution to computing
in Indian languages.

The phonetic nature of the languages leads
to a writing system, which represents sounds
through unique symbols. Fach language has
its own representation for the sounds and
thus its own script, though it was mentioned
carlier that some languages may use a
common script. In practice, there are small
variations in the scripts that probably matter
when linguistic aspects are brought in.

Writing Systems

The writing systems for most Indian
Languages employ symbols for about
sixteen vowels and as many as thirty-five
consonants. Syllables that are formed from
these basic sounds are also given unique
representations. The term conjunct is used
to refer to a syllable formed from one or
more consonants and a vowel. Though one
can theoretically think of thousands of
conjuncts, only about 800 of them are known
to be in regular use and each of these can

combine with a vowel to make nearly 13000
ot so individual sounds, each with its own
unique representation in the script.

Interestingly, the writing systems employ just
about 200 or so symbols to form the unique
shapes representing the conjuncts by
combining shapes, somewhat in the manner
of addingligatures. For each language, well-
defined rules exist for writing most of the
conjuncts and their combinations with the
vowels. The term Akshara is normally used
to refer to a consonant or a vowel or a simple
combination of a consonant and a vowel.
The term Samyuktakshara is used to refer to
conjuncts.

Handling Indian languages on the computer
is complicated by the requirement that each
and every one of these aksharas or
samyuktaksharas be individually recognized.
Though only a few hundred primitive shapes
may be employed in practice to form the
combinations, the large number of aksharas
must necessatily be identified individually for
linguistic or text processing purposes.
Children in India are taught to identify
thousands of aksharas and once they have
mastered reading the script, they find learning
other languages, including European
languages, relatively easy.

The methods which work well for a limited
set of twenty six different letters in the
Roman alphabet, obviously fail or become
inadequate when applied to Indian
languages, not only for the reason there are
thousands of aksharas but also that there is
more than one accepted way of writing many
of the combinations. Though there are clear
rules for writing the combinations, existing
practices permit multiple representations for
the same conjunct, even within a language,
not to speak of variations across the

languages.
Codes for the Aksharas
Thus there is need to look at the problem

of representing (coding) the large set of
aksharas so as to artive at a standard that can

34 Informatics Studies 3(4), October — December, 2016

Ram Avathar Ojha

apply uniformly across all the Indian
languages. Electronic text processing can then
be attempted using these codes.

The pioneering work, which resulted in the
GIST technology at the Center for
Development of Advanced Computing,
must be regarded as the earliest of the
attempts towards some standardization.
This development permitted DOS based
applications to handle Indian language text.
The text was electronically represented using
the ISCIT code and was largely language
independent, thus permitting a uniform
approach to dealing with the languages. Over
the years, this hardware dependent approach
has been replaced by quality word processing
and data preparation software but the
essential eight bit coding of the characters
has been retained. As will be explained later
while dealing with Character encoding for
Indian languages, eight bit codes are not really
suitable for efficient string processing.

All the official languages of the country are
written using scripts specific to each language.
Scripts denote the writing systems employed
by the languages to represent the sounds,
which form the phonetic base of the
languages. Currently, the following language
specific sctipts are considered essential.

Devanagari, Gurmukhi, Bengali, Gujarati,
Oriya, Telugu, Tamil, Kannada and
Malayalam. The scripts for Urdu and Sindhi
should also be included in the above, though
Devanagari is often used for writing in
Sindhi.

The Phonetic Aspect of Indian
Languages

The languages of India have a common
phonetic base. One does not use the term
‘alphabet ‘ to refer to the set of letters with
which the script is written. Instead, the set is
called ‘Aksharas’. Very Simply, an akshara
refers to a sound. Sounds heard in spoken
words are built up from the basic set of
sounds represented by the vowels and
consonants of the language.

In all Indian languages, an akshara is
pronounced the same way regardless of its
position within a word, unlike in English
where the pronunciation varies widely,
depending not only on the word but also
on the location of the letter within the word.

Also, in Indian languages, the vowels number
between thirteen and eighteen while the
consonants vary from eighteen in Tamil to
as many as thirty-eight in Telugu and
Malayalam. All the aksharas are therefore built
from about fifty basic letters.

It is indeed possible to use just the vowels
and the consonants for writing any of the
languages. This is probably how children are
taught a script to begin with. In practice
however, the scripts abound in what are called
‘Samyuktakshars ¢, which are the equivalent
of syllables and represent sounds built up
from combinations of consonants and a
vowel. The writing system for a language
often permits more than one representation
(shape) for the

Samyuktakshars are often referred to as

samyuktakshar.

conjunct characters. Clearly, when one sees
an akshara in print, its sound is fixed.
However, there may be more than one
representation for a given conjunct and this
depends on the writing practices followed in
aregion.

All the ideas expressed here may well be
grasped by studying the Devanagari script in
which Sanskrit and a couple of other Indian
Languages are written. An extensive
discussion on this can be found in II'TM
site on Learning Sanskrit (II'TM, 2010).

It turns out that when dealing with Indian
languages on a computer, one needs a
representation for the aksharas in general and
not merely the vowels and consonants. The
akshara is the basic unit or quantum from a
linguistic point of view and computer
programs processing text in Indian languages
should be able to efficiently deal with this
quantum, built up from two or more basic
sounds. This poses a real challenge as there

Informatics Studies 3(4), October — December, 2016 35

Computing in Indian Languages for Knowledge Management

are more than 13000 individual aksharas that
have to be reckoned and many more which
might come into use, if the need arises.

The importance of Transliteration

The common phonetic base across all the
Indian Languages is helpful in situations
where language independent information
such as statistical data, addresses, schedules
of meetings etc., have to be disseminated in
different languages simultaneously. People
who can speak a language but do not know
its script may still be able to read information
in that language by merely reading it in a script
familiar to them.

Traditionally, books written in English that
deal with text in Indian languages such as
commentaries on ancient scriptures used
Roman transliteration to help read the text.
In many instances, diacritical marks were
added to the Roman letters to establish a
closeness to the aksharas of the language,
which would be difficult to achieve with just
the twenty-six letters.

Transliteration between Indian languages is
very desirable to help people learn one
language through another. The common
phonetic base makes this easy. Yet,
transliteration between the languages will
have to be handled with care, for there are
quite a few aksharas which are specific to some
languages but not seen or used in others.
For instance, Tamil does not have the
aspirated consonants of Telugu or Sanskrit
and reading Sanskrit through Tamil, which
is very desirable, is often rendered difficult.
Situations such as these are usually handled
by introducing new symbols in the script of
a language to represent via transliteration,
characters found in other languages.

This paper stresses the need to establish a
single coding scheme to cover all the different
aksharas across all the languages of India in
order to allow cotrect transliteration. In this
connection, the use of Roman letters with
diacritic marks does result in a script useful
for reading text prepared in any of the Indian

languages. The National Library at Calcutta
has recommended an efficient scheme for
Roman transliteration (GOV, NL).

Transliteration Principles

Transliteration refers to the process by which
one reads and pronounces the words and
sentences of one language using the letters
and special symbols of another language.
Thus transliteration is meant to preserve the
sounds of the syllables in words.
Transliteration is helpful in situations where
one does not know the script of a language
but knows to speak and understand the
language nevertheless.

For
transliteration has been used to represent

several decades now, Roman
texts of Indian languages, especially Sanskrit.
In many printed books, a key to
transliteration would be printed at the
beginning in the form of a table. Since it is
difficult to represent the aksharas of Sanskrit
using just the twenty-six letters of the
Roman alphabet, scholars used varying
schemes to accommodate sounds that could
not be correctly indicated using appropriate
Roman letters.

Here are some examples of transliteration
as per the schemes, which were in general
use in the past. The schemes are somewhat
arbitrary in the choice of the Roman letters.

Sometimes phonetics symbols are used in
place of the normal Roman letters. Phonetic
symbols are basically the letters of the
Roman alphabet with special marks known
as diacritic marks. Here are some examples
of transliteration using symbols from the
phonetic alphabet. In the second set of
aksharas shown below, one sees the use of
special symbols from the ascii character set in
place of diacritics.

36 Informatics Studies 3(4), October — December, 2016

Ram Avathar Ojha

Roman transliteration which makes use of
diacritic marks works better for Indian
languages and in the last few decades some
standardization has been effected based on
the recommendation from the National
Library in Calcutta (GOI, NL). Roman letter
assignments in this scheme are phonetically
equivalent to the aksharas of Sanskrit or other
Indian languages. As indicated earlier, the
phonetic alphabet with diacritic marks is very
helpful for representing text in Indian
languages. Such letters are also easily typeset,
for typefaces are available specifically for this
purpose. Typesetting was however
attempted manually for nearly a century until
special word processing and typesetting
applications were developed using
computers. These programs make use of
high quality fonts to produce good printouts
and displays. However most of them rely
on some indirect data entry methods to
generate the phonetic symbols.

The primary difficulty in data entry of the
phonetic symbols is that there is no
provision to input the symbols directly using
the standard ASCII keyboard. Desktop
publishing and word processing programs
provide means by which the glyph code of
the symbol is input using the numeric
keypad. While this is acceptable, it does not
provide a natural approach. Transliteration
methods, which use only the displayable
ASCII symbols, do not run into this
problem since the ASCIT letters can be typed
in directly. A special computer program
would however be required to interpret the
input string to produce the Indian languages
display or printout. This is precisely what
the currently popular transliteration schemes
attempt. Schemes such as ITRANS, RIT,
ADHAWIN etc., use only the standard

displayable ASCII letters and symbols to
transliterate the text. These schemes allow
multiple representations for certain syllables
and long vowels but the processing program
handles this well.

Lack of Uniformity Between Different
Schemes.

While transliteration based data input is very
useful, one must remember that the schemes
themselves vary, even for a given language.
The consequence of this is that the data entry
procedures will change depending on the
scheme and worse still, a given transliterated
string will produce different outputs for
different languages/scripts. Take for instance
the word ‘yoga’. The transliterated data input
for this string using the TTRANS ‘ scheme
is ‘yogA ‘. However, when you use this string
to get an output in Tamil, using other
schemes, you will get @) grgq as opposed
to Bwrgs which is the
transliteration. The fact that the short forms
of the vowels ‘o’and ‘e’ are present only in

correct

the Southern languages is the real issue here.

Transliteration schemes have to face the
problem of letters present in one language
and not in the other. Thus, unless a superset
of letters from all the Indian Languages is
formed, uniform transliteration is ruled out.
Even if such a superset were identified, it
turns out that unique Roman letter
combinations are not easily identified for
complex Aksharas. Moreover, the large
number of vowels in Indian scripts also add
to the complexity in transliteration.

String Processing Using Transliterated
Text.

One useful feature of transliterated
representation of Indian Language strings
is that conventional string processing
programs may be used to process the text.
However, applications such as sorting will
produce erroneous results as the sorting
order of the Aksharas and Roman letters are
quite different. Many string processing
applications such as processing a sentence

Informatics Studies 3(4), October — December, 2016 37

Computing in Indian Languages for Knowledge Management

may however work propetly, so long as the
input strings do not contain special
characters, which are needed for transliteration
but can cause confusion if they happen to
be delimiters fixed for parsing routines.

With transliterated input, the representation
for syllables is always multibyte with varying
number of bytes for different syllables. For
example, if we were to examine the aksharas
in the second row of the letters seen in the
image above, we will see that the last two
words contain two aksharas
(samyuktaksharas are treated as aksharas since
they constitute one syllable) each. However,
the word ‘Arya’ has four ascii letters but the
word ‘dhR”shTvA’ has nine. So linguistically
speaking, transliteration using Roman letters
may not be the best choice for text processing

at the level of a syllable.

It would be helpful to have a representation,
which uses a fixed number of bytes for each
syllable. Such a representation would be
ideally suited for studying the metrical
structure of poems or slokas.

Transliteration Features in the IITM
Software.

The Multilingual software from IITM has
incorporated features to help deal with
transliterated text. The multilingual editor
has a data entry method that directly allows
transliterated text to be typed in and the text
viewed in local scripts. A If file is also
automatically created by the editor. Those
familiar with ITRANS based input will find
this feature helpful. II'TM also has some
utilities for viewing and converting
transliterated text (ITTM).

Data Entry Methods Suited for Indian
Languages

Standard QWERTY keyboard seen with
most computers is generally used for

preparing texts and documents in various
Indian languages and scripts.

The answer to the question ‘can we do it as
simply as one does it for English?’ is an

obvious NO but a qualified YES. The ‘no’
part of the answer has to do with the fact
that the limited number of keys on the
keyboard will certainly not be able to cater to
the thousands of aksharas, which occur in
our texts. The qualified ‘yes’ is based on the
observation that the keys may be used to
represent only the vowels and consonants
and thus provide for inputting a series of
consonants and vowels from which the
required aksharas may be formed using
suitable computer programs.

The question of data entry in Indian scripts
had attracted the attention of scholars and
computer experts since long and today, we
can see numerous computer programs,
which permit document preparation in
different languages and scripts. These
programs, some of them very good in many
respects, tend to differ significantly in their
approaches to data entry. The variety seen in
their approaches merits discussion so that
we may better understand the problems
involved.

The programs permitting data entry in many
Indian languages/scripts may be classified
based on the specific approach taken to
forming the aksharas from the keystrokes.
These are listed below.

e Language/sctipt specific data entry,
which relies on a specific font.
Transliteration based data entry.

Data entry conforming to Manual
Typewriter keyboards, specific to each
language.

e Data Entry based on the INSCRIPT
layout

e Data entry methods specific to generating
HTML pages supporting our scripts
(web page creation)

e Data entry based on uniform mapping
of the keys for all the languages/scripts.

Data Entry Methods Which are Based on
Fonts.

The font based data entry methods utilize
the feature supported by conventional word

38 Informatics Studies 3(4), October — December, 2016

Ram Avathar Ojha

processors where the font to be used for
displaying the text may be dynamically
selected/changed during data entry. Today,
the font rendering capabilities built into the
operating systems are quite sophisticated in
that the required shape of a character may be
built from several primitive shapes which
are called glyphs. Each font may consists of
about 200 different glyphs, where each glyph
may directly represent a letter of the alphabet,
a special character or a symbol.

In fonts for Indian languages, the glyphs
will invariably include shapes for the matras,
special samyuktakshars and special ligatures
besides the basic shapes for the vowels and
the consonants themselves. When a font is
selected, the word processor will display the
glyphs corresponding to the keys entered.
For the English language (Roman alphabet)
each letter corresponds to only one glyph in
the font and data entry is smooth. In the
case of Indian scripts, we will have to know
what keys will have to be entered to display
the sequence of glyphs, which will make up
one character. In the case of Roman, the set
of displayable glyphs correspond to the set
of ASCII codes that are generated when keys
are pressed on the keyboard. This is a set of
96 characters and anything more than this
number will require special data entry, as
keyboard has only a limited set of keys.

Conventional word processors are designed
for languages where a letter (or a character) to
be displayed is associated with one glyph
only. Also, for most of the western
languages, the character set itself is limited
and so the set of displayable characters is
well within the 96 mentioned above. Even
though a font for western languages may
need to accommodate only the displayable
set, many glyphs in the font may be present
that are not displayed when the keys are
pressed during regular data entry. That is,
there may be glyphs in a font, which are
displayable but not necessarily shown when
keys are entered. These glyphs usually
correspond to characters with accent marks,

specialized symbols, diacritic marks etc., and
may be required mostly in printed text and
special applications. Some word processors
do support data entry for these glyphs, which
are typically located in the upper ASCII range
(160-255) by allowing the numeric value of
the glyph location to be input with the ALT
key kept down as the numeric value is typed
in.

Fonts for Indian languages (Except Tamil)
are required to have many more than 96
glyphs and so, data entry based on this
method of inputting the numeric glyph code
values and displaying the character, will
become necessarily cumbersome. Worse still,
the input sequences are font specific and will
vary from font to font even for a given
script. Fonts for Indian languages had till
recently evolved arbitrarily and do not follow
any standard. Consequently one sees wide
variations in the glyphs themselves as well
as the encoding for the font which used to
locate the glyphs at specified locations in the
table of 256 locations, there are no standards
for glyph locations for Indian scripts and it
considered that such standards will be
difficult.

A discussion of fonts and the issues to be
considered in designing Indian language
fonts will occur in later sections.

A point to keep in mind is that the internal
representation of the text prepared according
to this method is in the form of eight bit
glyph codes. This has serious consequences
if one were to attempt any sort of string
processing of the text because the glyph codes
bear no relationship whatsoever to the
linguistic nature of the aksharas in terms of
lexical ordering, sorting or indexing etc. Yet,
this font based data entry method is popular
with DTP packages, where one is interested
more in printing text as opposed to linguistic
analysis.

There is however a bright side to this
approach. Though keyboard entry is
cumbersome, one might effectively use the

Informatics Studies 3(4), October — December, 2016 39

Computing in Indian Languages for Knowledge Management

cut and paste facilities supported in the word
processors to petrform some editing of the
entered text. In some word processors, one
also sees an image of the keyboard with
aksharas and matras assigned to the keys and
the user may simply click on the keys to select
the glyph to be displayed. Also if the user
were to keep a standard file containing the
glyphs, then individual glyphs may be cut
and pasted even for entering short sentences
of text. Some Urdu word processors have
this feature.

The data entry on the basis of fonts and
glyph codes cannot really provide a natural
interface, even if supported through
sophisticated macro facilities found in some
word processors. When we have to input a
text like the following multilingual text using
our favorite word processor or DTP program
there is a need for some easy ways to do this.

Transliteration Based Data Entry
Methods.

Transliteration has been a popular approach
to preparing printed documents in different
Indian scripts. The idea behind the method
is to use Roman letters to represent the
aksharas of the languages and process the
resulting string (ASCII text) using special
computer programs, to produce printed
output. The output is obtained using
appropriate fonts.

One of the early computer programs to
successfully implement this idea is the Dvng
processor for Devanagari using TeX. This
program produced a TeX file, which could
be typeset using the TeX program. Franz
Velthuis who devised this package, had also
included a special Devanagari font for use
with the package. The Dvng package ran on
Unix systems and TeX fonts have the

advantage that neatly every glyph in the font,
which may have as many as 250 glyphs, may
be used in printing. In contrast, fonts for
other systems such as X-windows,
MSWindows, PostScript etc., are restricted
to just about 200 glyphs. This is not a design
limitation of the font but a problem atising
out of the inability of application programs
and font rendering routines to look at specific
glyph locations. As a consequence of the rich
set of glyphs, the Dvng package could print
arich set of conjunct characters in Devanagari.

After Dvng, Charles Wikner_enhanced the
fonts to accommodate Vedic symbols and
also gave a new processing package. As of
today, the Devanagari output obtained using
this package is of remarkably high quality
and Wikner’s choice or design of the glyphs
has allowed neatly a thousand different
conjunct formations to be derived from the
basic set of about 250 glyphs.

Both the packages mentioned here had
arrived at some guidelines for standardization
in the selection of the Roman letters for the
aksharas of Sanskrit. In many instances,
special symbols from the ASCII set were
required to be used to distinguish similar
sounding aksharas. Printout using these
packages were restricted to Devanagari but
Roman could be part of the text as well,
permitting bilingual outputs. Subsequently
TeX based systems were introduced
for Tamil, Telugu, Malayalam, Gurmukhi,
Gujarati and Bengali.

Following the success of the TeX based
packages, Avinash Chopde developed a
special transliteration package that allowed
other scripts to be handled as well, via
language specific fonts. His ITRANS
package is well known on the web.
Subsequently he enhanced the package to
work with normal fonts under Windows-
95 and X-windows and was able to generate
html documents for display on the web. The
most recent version of ITRANS supports
quite a few languages.

40 Informatics Studies 3(4), October — December, 2016

Ram Avathar Ojha

It must be remembered that all transliteration
based data entry methods, require a computer
program to generate as well as format the
output and hence they cannot be applied or
used for interactive data preparation, where
the display in Indian scripts immediately
follows the key strokes.

The ITRANS package was followed
by JTRANS, a Javascript based program by
Sandip Sibal who allowed quick generation
of html documents from transliterated
inputs. This package introduced Xdvng, a
quality font for Devanagari, which could be
used for viewing web pages with Devanagari
text both under MSWindows and
XWindows. Sibal’s package is however
restricted to Devanagari.

The Itranslator package from Onkarnath
Ashram in Rishikesh allows data entry in
ASCII using the ITRANS scheme but allows
the string to be converted to Devanagari and
displayed on the screen itself. The font used
by this package is probably the finest of the
freely available fonts for Devanagari and is
known as Sanskrit_1.2. Unfortunately, this
font is suited for the Windows platform
alone and has glyphs in locations that create
problems on other platforms. A later version
of this font (Sanskrit-98) seems to avoid
the above problem. There are many later
additions to the Itranslator package,
including new fonts.

Transliteration Schemes for Tamil and
Telugu.

There have been a few popular packages for
Tamil and Telugu, which use the
transliteration, based data entry method. The
Adhami package was written for use under
DOS and subsequently enhanced to work
under MSWindows and produced displays
and printouts in Tamil. Other transliteration
schemes such as Mylai and Cologne were also
popular with Tamil. For Telugu, the RIT
package developed by Rama Rao Kannegant,
used TeX for typesetting the output. Details
of some of the transliteration schemes may
be found elsewhere in this study.

Universal Transliteration Scheme for
Indic Scripts.

Dr. Anthony P. Stone has recommended a
special transliteration scheme to handle all
the Indian scripts. This interesting proposal
uses eight bit character codes to represent
the vowels and consonants and hence maps
a fairly large superset of vowels and
consonants from all the scripts of interest.
This is a meaningful proposal but has only
one likely limitation. Existing data entry
facilities do not permit easy typing of
characters in the upper ascii range (160-255)
and so data entry using this scheme was not
feasible. However, it is quite easy to display
all aksharas using this scheme. Therefore
printouts of Indian language texts in
transliterated form, can be easily generated.
Standardization of transliteration will help
considerably in dealing with Indian
languages in a uniform manner.

Summary of Transliteration Based Data
Entry.

1. This method allows text in Indian
languages to be input using Roman letters.
A special computer program is used to
process this text in Roman to produce
printouts or displays using appropriate fonts
for the scripts. There are several
transliteration schemes in use. Most of the
processing programs run under Unix.

2. Transliteration schemes are often specific
to one Indian language/script. There is no
single scheme yet that correctly handles all
the Indian languages.

3. Phonetically close Roman letters may not
be found for all aksharas. So some
compromise is required in selecting the
Roman letters. Also multiple representations
for the same akshara seem to be allowed,
making the processing somewhat complex.

4. It is possible to confuse most of the
processing programs by inputting arbitrary
formations of conjunct aksharas.

Transliteration based data entry is a workable
solution for Indian scripts, since in principle,

Informatics Studies 3(4), October — December, 2016 41

Computing in Indian Languages for Knowledge Management

it allows for a uniform data entry mechanism
for all the languages. The transliteration
scheme should be comprehensive enough
to handle all the aksharas across all the
languages/sctipts.

Will it be meaningful to have a system where,
as one types in the transliterated text, the
actual characters of the Indian script appear
on the screen? This is what was being
attempted by some of the applications,
which work under Microsoft Windows
systems. While this was an interesting
development, the transliteration schemes
used are often language specific and have not
always permitted the formation of many
complex conjuncts (Samyuktakshars).

Manual Typewriter Keyboard Based Data
Entry.

Manual typewriters for different Indian
languages have been available for quite some
time and their use in Educational institutions
and Government offices is substantial.
Manual typewriters provide for a minimal
set of aksharas consisting of the basic vowels
and consonants together with the matras so
that text can be prepared conforming to the
writing system for the language. The location
of the keys for the vowels and consonants
on a regional language typewriter is specific
to the language. Many are adept at using such
typewriters and when they have to move over
to using word processors, they would rather
see the same keyboard mappings. Some
word processors do provide for data entry
based on the typewriter based key mappings.
The resulting text may not include a number
of conjuncts but will be entirely adequate
for normal modern day correspondence.

Data Entry Based on the INSCRIPT
Keyboard.

The INSCRIPT keyboard allows more or
less uniform data entry of text across the
different scripts. The mapping provides for
the data entry of vowels, consonants and
matras consistent with the specifications in
ISCII. The INSCRIPT layout utilizes only

the keys provided on a standard QWERTY
keyboard and is hence implemented easily
on personal computers. It may be observed
that a number of keys normally used for
punctuation or special symbols are also
mapped to the ISCII characters. It will
therefore be difficult to perform data entry
of text along with a full complement of
punctuation marks, which have come to into
use with almost all the scripts. Microsoft
applications also use the INSCRIPT layout
for Unicode data entry and hence suffer from
this problem. The Microsoft Hindi keyboard
has apparently provided for many
punctuation marks but one has to effect
multiple keystrokes to enter them. Shown
below is the INSCRIPT layout on a
QWERTY keyboard. Keys corresponding to
the ISCII characters are common across all
the scripts.

Special Programs for Web Page Creation.

During the past several years, display of
Indian language text on the Internet
Newspapers and Magazines has become
popular. Web pages in Indian scripts are
feasible on account of the fact that web
browsers may be asked to display a given
text in a specified font. This will be further
discussed later.

The html standard provides for an interesting
way of specifying the glyphs to be displayed
either through the numeric code assigned to
the glyph or the universal name assigned to
that glyph location consistent with the font
encoding that has now become standard.
This way, the html language also functions
as a macro language, where a text string
describing the glyphs to be shown may be
just typed in using standard ascii. While one
may not need to worry about this for glyphs
in the displayable ascii range, the approach is
very useful for glyphs in the upper ascii range.
In lighter vein, some people on the net refer
to this as the method for the °‘ASCII
impaired’! The advantage of this approach
need not be emphasized, for virtually any
text editor capable of data entry for the upper

42 Informatics Studies 3(4), October — December, 2016

Ram Avathar Ojha

ASCII characters can be used to produce web
pages in Indian languages, provided one has
patience!

As an example, the html document shown
below will produce the display given in the
image that follows. < and «
represent two glyphs that are specified
through their name entities.

<html>

<center> View the source of this
document to see how name entities have
been used in preparing the Devanagari
string seen below

s<Sk«tm!

</center>

</html>

The user preparing the html document must
necessarily know the location of the glyphs.
This, as we know is font specific, even if the
font is meant for a specific script.

In a sense, generating display through html
is similar to the macro-based approach taken
by TeX, the typesetting program developed
by Dr. Knuth. While TeX has the advantage
of using most of the 256 glyphs in a font,
html displays are constrained to using only
about 200, thus loosing the ability to display
some conjunct letters.

Web Pages Supporting Display of
Unicode Text.

Unicode has been accepted as a meaningful
standard for handling multilingual text.
Most browsers introduced after 2002, include
support for this. With Unicode text, the
method indicated above does not apply, for
the encoding standard automatically
identifies the font to be used. Unfortunately,
rendering Unicode text in Indian languages
is beset with multitudes of problems and it
is unlikely that correct rendering of text will
be realized. Unicode text in Indian scripts
will have to be created using appropriate
programs such as Microsoft Word and
related applications. Even in 2005, several
browsers cannot correctly display Indian
language text represented through Unicode.
The difficulties encountered in dealing with
Unicode for Indian languages will be
explained in greater detail in later papers of
this series.

Phonetic Mapping of the Vowels and
Consonants.

One way of looking at data entry in Indian
languages is to view the text as consisting of
aksharas that can always be decomposed into
vowels and consonants and perhaps a few

Informatics Studies 3(4), October — December, 2016 43

Computing in Indian Languages for Knowledge Management

symbols. In this phonetic approach to data
entry, just one keystroke is associated with
each vowel and consonant and a computer
program typically an input module in an
application, keeps track of the keystrokes and
forms the aksharas. In many ways, this
approach is similar to the transliteration
based data entry except that we are not
constrained to mapping the vowels and
consonants to any specific keys. Also, in the
transliterated input case, more than one
keystroke may be required to form a vowel
or a consonant (e.g., an aspirated consonant

or a diphthong).

The Inscript keyboard layout; the
recommended standard for ISCIT based
systems follows this approach though it
includes keystrokes for the matras as well.
Since the addition of a matra to form a
consonant vowel combination is not
uniformly applicable to all cases (in Tamil
and Malayalam, the combination with the

< <

vowel ‘u ¢ changes the shape of the
consonant), the Inscript keyboard does not
correctly indicate or reflect what would
happen when a combination is input.
However it may be assumed that the key for
a matra does not always result in a matra but
may change the shape of the consonant. The
inscript keyboard basically confirms that a
phonetic approach to data entry is feasible.
True, the basic requirement here is that the
input module must process each keystroke
taking into consideration the previously
entered keys and also check if the conjunct is
valid or meaningful. But this is a module
that can be written once and incorporated
into an application program, to work
uniformly across all the Indian languages.

The data entry scheme recommended for the
IITM software essentially follows this
approach with one additional facility. The
CTRL key or an equivalent is used to indicate
that a combination is required to be effected
with the previously formed akshara and the
current input. Thus the user explicitly
indicates that a conjunct will have to be

formed. This feature is helpful in situations
where consonants and vowels not present
in a language are attempted to be input. The
system will not accept such inputs thus
providing a safeguard that only valid
combinations may be input.

In the phonetic approach, the key mappings
do not relate to the generic consonantsi.e.,a
consonant without any vowel. The mapping
relates to the form of the consonant where
the first vowel ‘ah ‘is assumed to be present.
This is often the way the consonants are
taught for children. This way, only one
keystroke will be required to enter the most
frequently required form of each consonant,
as opposed to the case with transliteration
based data entry where two keystrokes will
be needed.

References

Dash, N S (2005). Corpus linguistics and
language technology: With reference to Indian
languages. Mittal Publications.

Pal, U.,, & Chaudhuri, B B (2004). Indian
script character recognition: a survey. Pattern
Recognition, 37(9), 1887-1899.

Shneiderman, B (2010). Designing the user
interface: strategies for effective human-
computer interaction. Pearson Education
India.

Singh, A. K. (2006, October). A
computational phonetic model for Indian
language scripts. In Constraints on Spelling
Changes: Fifth International Workshop on
Writing Systems.

Sinha, R M K (1984). Computer Processing
of Indian Languages and Scripts—
Potentialities & Problems. IETE Journal of
Research, 30(6), 133-149.

Sinha, R. M. K. (2009). A journey from
Indian scripts processing to Indian language
processing. IEEE Annals of the History of
Computing, 31(1), 8-31.

Sinha, R. M. K. (2009). A journey from
Indian scripts processing to Indian language
processing. IEEE Annals of the History of
Computing, 31(1), 8-31.

44 Informatics Studies 3(4), October — December, 2016

