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English abstract 

This doctoral thesis develops informetric methods for determining cognitive distance between 

publication portfolios of evaluators and evaluees in research evaluation. In a discipline specific 

research evaluation, when an expert panel evaluates research groups, it is an open question how 

one can determine the extent to which the panel members are in a position to evaluate the 

research groups. This thesis contributes to the literature by proposing six different informetric 

approaches to measure the match between evaluators and evaluees using their publications as a 

representation of their expertise. 

An expert panel is specifically appointed for the research evaluation. Experts are typically 

selected in one of two ways: (1) straightforward selection: the person(s) in charge of the research 

evaluation has access to a list of acknowledged experts in specific fields, and limits its selection 

process to ensuring the experts’ independence regarding the program under evaluation; and (2) 

gradual selections: preferred profiles of experts are developed with respect to the specialization 

under scrutiny in the evaluation. Both ways leave some freedom for an “old boys’ network” to 

appoint someone without properly evaluating their qualifications. There are also other ways for 

expert selection, for example, inviting open application or the research groups that will be 

evaluated can propose their choice of experts. In research evaluation, an expert panel usually 

comprises independent specialists, each of which is recognized in at least one of the fields 

addressed by the unit under evaluation. The expertise of the panel members should be congruent 

with the research groups to ensure the quality and trustworthiness of the evaluation. All things 

being equal, panel members who are credible experts in the field are also most likely to provide 

valuable, relevant recommendations and suggestions that should lead to improved research 

quality. However, there was an absence of methods to determine the cognitive distance between 

evaluators and evaluees in research evaluation when we started working in July 2013. 

In this thesis, we develop and test informetric methods to identify the cognitive distances 

between the (members of) an expert panel on the one hand, and the (whole of the) units of 

assessment (typically research groups) on the other. More generally, we introduce a number of 



x 

 

methods that allow measuring cognitive distances based on publication portfolios. In academia, 

publications are considered key indicators of expertise that help to identify qualified or similar 

experts to assign papers for review, and to form an expert panel. Our main objective is to 

propose informetric methods to identify panel members who have closely related expertise in the 

research domain of the research groups based on their publications profile. The main factor that 

we have taken into account is the cognitive distance between an expert panel and research 

groups. We consider the publication portfolio of the involved researchers to reflect the position 

of the unit in cognitive space and, hence, to determine cognitive distance. Expressed in general 

terms we measure cognitive distance between units based on how often they have published in 

the same or similar journals. Our investigations lead to the development of new methods of 

expert panel composition for the research evaluation exercises.  

We explore different ways of quantifying the cognitive distance between panel members and 

research group's publication profiles. We consider all the publications of the research groups 

(during the eight years preceding their evaluation) and panel members indexed in Web of 

Science (WoS). We pursue the investigation at two levels of aggregation: WoS subject categories 

(SCs) and journals. The aggregated citation relations among SCs or journals provide a matrix. 

From the matrix, one can construct a similarity matrix. From the similarity matrix, one can 

construct a global SCs or journal map in which similar SCs or journals are located more closely 

together. The maps can be visualized using a visualization program. During the visualization 

process, a multi-dimensional space is reduced to a projection in two dimensions. In this process, 

similar SCs or journals are positioned closer to each other. 

We propose three methods, namely the use of barycenters, of similarity-adapted publication 

vector (SAPV) and of weighted cosine similarity (WCS). We take into account the similarity 

between WoS SCs and between journals, either by incorporating a similarity matrix (in the case 

of SAPV and WCS) or a 2-dimensional base map derived from it (in the case of barycenters). We 

determine the coordinates of barycenters using a 2-dimensional base map based on the publication 

profiles of research groups and panel members, and calculate the Euclidean distances between 

the barycenters. We also identify SAPV using the similarity matrix and calculated the Euclidean 

distances between the SAPVs. Finally, we calculate WCS using the similarity matrix. The SAPV 

and WCS methods use a square N-dimensional similarity matrix. Here N is equivalent to 224 
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WoS SCs and 10,675 journals. We used the distance/similarity between panel members and 

research groups as an indicator of cognitive distance. Small differences in Euclidean distances 

(both between barycenters and SAPVs) or in cosine similarity values bear little meaning. For this 

reason, we employ a bootstrapping approach in order to determine a 95% confidence interval 

(CI) for each distance or similarity value. If two CIs do not overlap, difference between the 

values is statistically significant at the 0.05 level. Although it is possible for two values to have a 

statistically significant difference while having overlapping CIs, the difference is less likely to 

have practical meaning.  

Two levels of aggregation and three methods lead to six informetric approaches to quantify the 

cognitive distance. Our proposed approaches hold advantages over a simple comparison of 

publication portfolios. Our approaches quantify the cognitive distance between a research group 

and panel members. We also compare our proposed approaches. We examine which of the 

approaches best reflects the prior assignment of main assessor to each research group, how much 

influence the level of aggregation (journals and WoS SCs) plays, and how much the 

dimensionality matters. The results show that, regardless of the method used, the level of 

aggregation has only a minor influence, whereas the influence of the number of dimensions is 

substantial.  

The results also show that the number of dimensions plays a major role in the case of identifying 

shortest cognitive distance. While the SAPV and WCS methods agree at most of cases at both 

the levels of aggregation the barycenter approaches yield different results. We find that the 

barycenter approaches score highest at both levels of aggregation to identify the previously 

assigned main assessor. When it comes to uniquely identifying the main assessor, all methods 

score better at the journal level than at the WoS SC level. Our approaches, but of course not the 

numerical result, are independent of the similarity matrix or map used.  

All six approaches give the opportunity to assess the composition of the panel in terms of 

cognitive distance if one or more panel members are replaced and compare the relative 

contribution of each potential panel member to the panel fit as a whole, by observing the changes 

to the distance between the panel’s and the groups’. In addition, our approaches allow the panel 

composition authority to see in advance about the panel’s fit to the research groups that are going 
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to be evaluated. Therefore, the concerned authority will have the opportunity to replace outliers 

among the panel members to make the panel fit well with the research groups to be evaluated. 

For example, the authority can find a best-fitting expert panel by replacing a more distant panel 

member with a potential panel member located closer to the groups.  

 

Keywords 

Barycenter  Bootstrapping  Cognitive distances  Confidence intervals  Expert panel  Journal 

overlay map  Matching research expertise  Overlay maps  Research evaluation  Similarity 

matrix  Similarity-adapted publication vector  Web of Science subject categories   overlay map  

 Weighted cosine similarity.  
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Nederlandstalig abstract 

In dit proefschrift ontwikkelen we informetrische methoden om de cognitieve afstand te bepalen 

tussen publicatieportfolio’s van evaluatoren en geëvalueerden bij onderzoeksevaluatie. In 

evaluaties op disciplineniveau, waarbij een expertpanel onderzoeksgroepen evalueert, is het een 

open vraag hoe we kunnen bepalen of de panelleden geschikt zijn om de onderzoeksgroepen te 

beoordelen. Dit proefschrift stelt zes informetrische benaderingen voor waarmee de inhoudelijke 

congruentie tussen evaluatoren en geëvalueerden kan worden gemeten; hierbij gebruiken we hun 

publicaties als een representatie van hun expertise. 

Expertenpanels worden specifiek voor de evaluatie aangesteld. Experts worden doorgaans op een 

van de volgende twee manieren uitgekozen: (1) rechtstreekse selectie: de verantwoordelijken 

voor de onderzoeksevaluatie gebruiken een lijst van erkende experts in specifieke velden en 

zorgen er in het selectieproces vooral voor dat de experts onafhankelijk zijn van het te evalueren 

programma, en (2) graduele selecties: voorkeursprofielen van experts worden ontwikkeld voor 

de specalisaties die beoordeeld moeten worden. Beide manieren laten echter de ruimte voor een 

“old boys’ network” om iemand aan te stellen zonder dat zijn/haar kwalificaties voldoende 

onderzocht zijn. Er bestaan ook andere manieren om experts aan te stellen, bijvoorbeeld door 

spontane kandidaatstellingen aan te moedigen, waarna de te evalueren onderzoeksgroepen hun 

voorkeur kunnen laten blijken. 

Het expertenpanel bestaat gewoonlijk uit onafhankelijke onderzoekers die elk gespecialiseerd 

zijn in minstens één van de specialismen van het te evalueren programma. Algemeen gesproken 

doen panelleden die tevens experts zijn in een bepaald veld ook de meest waardevolle en 

relevante aanbevelingen en suggesties, die tot een verbetering van de kwaliteit van het onderzoek 

kunnen leiden. Toen we in juli 2013 ons onderzoek aanvatten, waren er echter geen methoden 

voorhanden waarmee men de cognitieve afstand tussen evaluatoren en geëvalueerden kan 

bepalen. 
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We ontwikkelen en testen informetrische methoden om cognitieve afstand te operationaliseren. 

Deze cognitieve afstanden zijn met name afstanden tussen (de leden van) een expertenpanel 

enerzijds en (het geheel van) de te evalueren eenheden – doorgaans onderzoeksgroepen – 

anderzijds. Meer algemeen stellen we methoden voor waarmee men cognitieve afstanden kan 

bepalen op basis van publicatieportfolio’s. In de academische wereld zijn publicaties immers 

belangrijke indicaties van expertise en kunnen ze bijgevolg helpen om de best geplaatste experts 

te identificeren. Ons hoofddoel is informetrische methoden voor te stellen waarmee we die 

panelleden kunnen identificeren die over expertise beschikken die nauw verwant is aan die van 

de onderzoeksgroepen. De belangrijkste factor waarmee we rekening houden, is de cognitieve 

afstand tussen expertenpanel en onderzoeksgroepen. We gaan ervan uit dat het 

publicatieportfolio van de betrokken onderzoekers de positie van de eenheid in de cognitieve 

ruimte weerspiegelt en aldus kan worden gebruikt om cognitieve aftand te bepalen. In algemene 

termen gesteld meten we cognitieve afstand tussen eenheden door te bepalen hoe vaak ze in 

dezelfde of gelijkaardige tijdschriften hebben gepubliceerd. Ons onderzoek leidt tot de 

ontwikkeling van nieuwe methoden voor de samenstelling van expertenpanels bij 

onderzoeksevaluatie. 

We verkennen verschillende manieren om cognitieve afstand tussen publicatieportfolio’s te 

kwantificeren en maken daarbij gebruik van alle publicaties van de onderzoeksgroepen (uit de 

acht voorgaande jaren) en panelleden die in Web of Science (WoS) zijn geïndexeerd. De analyse 

gebeurt op twee aggregatieniveaus: WoS onderwerpscategorieën (subject categories of SCs) en 

tijdschriften. De geaggregeerde citatierelaties tussen SCs of tijdschriften kunnen in een matrix 

worden samengevat. Vanuit deze citatiematrix kan een similariteitsmatrix worden gemaakt. Op 

basis van de similariteitsmatrix kunnen we een SC- of tijdschriftenkaart of -map maken waarop 

gelijkaardige SCs of tijdschriften zich dichter bij elkaar bevinden. Het visualisatieproces houdt in 

dat de multidimensionale ruimte wordt geprojecteerd naar twee dimensies. In dit proces worden 

gelijkaardige SCs of tijdschriften dichter bij elkaar geplaatst. 

We stellen drie methoden voor, namelijk het gebruik van barycentra, similariteitsgeadapteerde 

publicatievectoren (SAPV) en gewogen cosinussimilariteit (WCS). We nemen de similariteit 

tussen SCs of tijdschriften mee, hetzij door een similariteitsmatrix te gebruiken (in het geval van 

SAPV en WCS) hetzij door een tweedimensionale map te gebruiken die van de matrix is afgeleid 
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(in het geval van barycentra). We bepalen barycentra door een tweedimensionale map te 

combineren met de publicatieportfolio’s van de onderzoeksgroepen en panelleden, en berekenen 

de Euclidische afstand tussen de barycentra. SAPVs worden bepaald met behulp van de 

similariteitsmatrix; vervolgens berekenen we de Euclidische afstand tussen SAPVs. Tot slot 

berekenen we de WCS met behulp van de similariteitsmatrix. De similariteitsmatrix heeft N 

dimensies, waarbij in ons geval N gelijk is aan 224 in het geval van SCs en aan 10,675 in het 

geval van tijdschriften. De afstand of (cosinus)similariteit tussen panelleden en 

onderzoeksgroepen beschouwen we als een indicator van cognitieve afstand. 

Kleine verschillen in afstand of similariteit hebben weinig betekenis. Om deze reden hanteren we 

een aanpak met bootstrapping om een 95% betrouwbaarheidsinterval (confidence interval of CI) 

voor elke afstand/similariteit te bepalen. Indien twee CIs niet overlappen, is het verschil tussen 

de waarden statistisch significant op het 0,05 niveau. Hoewel het mogelijk is dat het verschil 

tussen twee waarden met overlappende CIs statistisch significant verschillen, is het minder 

waarschijnlijk dat het verschil in de praktijk betekenisvol is. 

Twee aggregatieniveaus en drie methoden leiden tot zes manieren waarmee cognitieve afstand 

kan worden gekwantificeerd. Onze voorgestelde methoden hebben duidelijke voordelen ten 

opzichte van een eenvoudige vergelijking van publicatieportfolio’s, doordat ze de cognitieve 

afstand tussen groep en panel beter benaderen. We vergelijken de voorgestelde manieren ook 

onderling. We onderzoeken welke aanpak het best overeenstemt met de toewijzing van 

hoofdbeoordelaar aan onderzoeksgroep en welke rol zowel aggregatieniveau als dimensionaliteit 

spelen. De resultaten geven aan dat, ongeacht de gebruikte methode, het aggregatieniveau slechts 

een beperkte invloed heeft, maar dat met name het aantal dimensies een aanzienlijke invloed 

uitoefent. De resultaten geven ook aan dat het aantal dimensies een grote rol speelt bij de vraag 

welke cognitieve afstand de kortste is. Terwijl de SAPV- en WCS-methoden op beide 

aggregatieniveaus gelijkaardige resultaten opleveren, geeft de aanpak met barycentra vaker 

andere resultaten. Op beide aggregatieniveaus scoren de barycentra beter dan de andere 

methoden bij het bepalen van de eerder toegewezen hoofdbeoordelaar. Wanneer de 

hoofdbeoordelaar uniek moet worden aangeduid, scoren alle methoden beter op het niveau van 

tijdschriften dan op dat van SCs. Onze manieren zijn onafhankelijk van de gebruikte 

similariteitsmatrix of map. 
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Alle zes benaderingen geven de mogelijkheid om de samenstelling van het panel te vergelijken 

met alternatieve constellaties waarbij een of meer panelleden vervangen worden en om de 

relatieve bijdrage van ieder potentieel panellid aan het panel als geheel te beoordelen, door 

wijzigingen in de afstand tussen panel en groep na te gaan. Bovendien laten onze benaderingen 

toe om reeds op voorhand de overeenstemming van het panel met de onderzoeksgroepen te 

bekijken. De autoriteit die de evaluaties uitvoert, heeft dan ook de mogelijkheid om eventuele 

buitenbeentjes in het panel te vervangen en het panel zo goed mogelijk bij de te evalueren 

onderzoeksgroepen te laten aansluiten. De autoriteit kan er bijvoorbeeld toe besluiten een veraf 

gelegen panellid te vervangen door een potentieel lid dat zich dichter bij een of meerdere 

onderzoeksgroepen bevindt. 
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Chapter I: Introduction 

1.1 Introduction 

Research evaluation exercises are carried out in many countries and regions across the world 

including the UK, Norway, Finland, Sweden, Denmark, the Netherlands, Belgium (both Flanders 

and Wallonia), Italy, Spain, Germany, Czech Republic, Romania, Japan, Hong Kong (China), 

Australia, New Zealand, and USA (Barker, 2007; Papponetti & Bucchi, 2007; Molas-Gallart, 

2012; Simon & Knie, 2013; McKenna, 2015; Milat, Bauman, & Redman, 2015). Discipline-

specific research evaluations carried out by panels of peers are a common practice at many 

universities worldwide. Expert panel review is a standard practice for evaluating research groups 

(Nedeva, Georghiou, Loveridge, & Cameron, 1996; Butler, 2007; Rons, Bruyn, & Cornelis, 

2008; Lawrenz, Thao, & Johnson, 2012; Milat et al., 2015), and for research proposals submitted 

to research funding organizations (Wessely, 1998; van den Besselaar & Leydesdorff, 2009; Li & 

Agha, 2015; Pina, Hren, & Marušić, 2015; Wang & Sandström, 2015). In some cases, the 

evaluations include site visits by an expert panel. The expert panel also files a report. The panels 

may be required to follow a systematic research evaluation procedure in accordance with an 

evaluation protocol, for example, the Standard Evaluation Protocol in the Netherlands (VSNU, 

KNAW, & NWO, 2014). The panel arrives at conclusions and recommendations, preferably 

through consensus, and provides guidelines for the improvement of research quality and research 

policy based on the assessments. Depending on the research group or proposal, these 

recommendations deal with the implementation or have an impact on a program continuation, or 

part of it. The assessments vary from one to another (Lawrenz et al., 2012) but usually focus on 

current performance and on future plans and potentials (Hansson, 2010). The principal objective 

of research groups evaluations is to improve the quality of scientific research groups or 

departments within a national or regional context (Engels, Goos, Dexters, & Spruyt, 2013). In 

some cases, in addition to reviewing the quality of research the goal of the evaluation is to 

allocate research funding on the basis of past performance (Hicks, 2012; Cattaneo, Meoli, & 

Signori, 2016).  
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In research evaluation, an expert panel usually comprises independent specialists, each of which 

is recognized in at least one of the fields addressed by the program under evaluation. The 

expertise of the panel members should be congruent with the research groups to uphold the 

quality and trustworthiness of the evaluation. When an expert panel evaluates research groups, it 

is an open question how one can determine the match between panel members and research 

groups. This ‘match’ will be further on refined using the concept of cognitive distance. In this 

thesis, we aim to develop and test informetric methods to identify the cognitive distances 

between the (members of) an expert panel on the one hand, and the (whole of the) units of 

assessment (typically research groups) on the other. More generally, we introduce a number of 

methods that allow measuring cognitive distances based on publication portfolios. We propose 

six different informetric approaches according to entities’ publication output to measure the 

match between evaluators and evaluees. 

In this chapter, we will introduce the topic of the thesis. First, we briefly discuss the two main 

concepts in the thesis: peer review and cognitive distance, and how they are used here. In 

addition, we state the research problem, the purpose of the study, formulate the research 

questions, and indicate in which chapter they are answered. Moreover, as the data from expert 

panel evaluations at the University of Antwerp has been used, we briefly discuss this particular 

evaluation process as an example.  

1.1.1 Peer review process 

Peer review is an established component of professional practice in research, scholarly 

communication, the academic reward system, etc. (Lee, Sugimoto, Zhang, & Cronin, 2013). This 

process is particularly applied to the evaluation of scientific work by one or more persons to 

maintain standards of quality. In scientific journals, peer review is a key component to determine 

an article’s suitability for publication, scientific accuracy, originality, interest to the journal’s 

readers, contributes to clarity and improvement of the quality of a manuscript, identify any errors 

or misinterpretations (Nicholas et al., 2015). In the case of article level peer review, often the 

reviewer is anonymous to the authors of the evaluated publication. When one or more 

individuals carry out peer review, we refer to it as individual evaluation. Although multiple 

individuals may evaluate the same thing, they carry out peer review as individuals and without 
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communication with the other reviewers. This kind of peer review is most commonly used for 

publications.  

 

On the other hand, panel evaluation (Coryn & Scriven, 2008; Abramo & D’Angelo, 2011) refers 

to a panel of experts working together in their evaluation of, e.g., a research group, an institution 

or a research grant application (ESF, 2011; Boyack, Chen, & Chacko, 2014). Contrary to 

individual evaluation, this kind of peer review presupposes frequent contact and communication 

between the evaluators. It may include site visits by the expert panel members (Borum & 

Hansen, 2000; Hansson, 2010; Lawrenz et al., 2012). Mixed forms of both types occur 

frequently. In expert panel evaluation, however, the panel members are visible, and hence the 

units of assessment themselves can judge the expertise of the panel member and the expert panel 

in relation to their research domain. In this thesis, we focus on peer review in the form of expert 

panel evaluations.  

1.1.2 Cognitive distances 

The concept of cognitive distance has been developed in the academic literature by Nooteboom 

and colleagues (Nooteboom, 1999, 2000; Nooteboom, Van Haverbeke, Duysters, Gilsing, & van 

den Oord, 2007). Cohen & Levinthal (1989, 1990) explained the process by which an individual 

or organization, by extrapolation can integrate and reuse knowledge from outside sources in 

research and development, while Nooteboom uses these ideas to define the concept of cognitive 

distance between individuals and organizations. Nooteboom (2000, p. 73) defines cognitive 

distance as “a difference in cognitive function. This can be a difference in domain, range, or 

mapping. People could have a shared domain, but a difference of mapping: two people can make 

sense of the same phenomena, but do so differently”. Thus, cognitive distance describes how two 

individuals – and, by extension, organizations or groups of individuals – are different, in terms of 

knowledge, but also in the way they perceive and interpret external phenomena.  

The concept of ‘cognitive distance’ and ‘cognitive proximity’ is already in use in information 

science and informetrics literature. Hautala (2013) stated that cognitive proximity is achieved 

through cooperation and suitable tasks for knowledge creation between international research 

groups. Science overlay maps have been in use in the informetrics literature to assess the degree 
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of similarity and dissimilarity between research profiles (Boyack, 2009; Rafols, Porter, & 

Leydesdorff, 2010a; Soós & Kampis, 2012). Boyack et al., (2014) used overlay maps to compare 

the locations of reviewer publications for four expert panels on a base map of science, for the 

purpose of evaluating a set of grant applications. Molas-Gallart et al. (2015) explored a 

proximity-based approach in which translational research takes place and what factors may 

promote collaboration between the different actors who facilitate communication across different 

communities. A more quantitative way was introduced by Wang & Sandström, (2015), who used 

bibliographic coupling and topic modelling. We have proposed a number of methods to 

determine the cognitive distances between publication portfolios of researchers and panel 

members (Rahman, Guns, Rousseau, & Engels, 2015; Rahman, Guns, Leydesdorff, & Engels, 

2016; Rousseau, Guns, Rahman, & Engels, 2017), which are part of this thesis. 

1.1.3 Problem statement 

The expert panel is specifically appointed for the evaluation. An expert panel usually comprises 

independent specialists, each of which is recognized in at least one of the fields addressed by the 

program under evaluation. Experts are typically selected in one of two ways: (1) straightforward 

selection: the person(s) in charge of the research evaluation has access to a list of acknowledged 

experts in specific fields, and limits its selection process to ensuring the experts’ independence 

regarding the program under evaluation; and (2) gradual selections: preferred profiles of experts 

are developed with respect to the specializations under scrutiny in the evaluation. Both these 

ways leave some freedom for an “old boys’ network” to appoint someone without properly 

evaluating their qualifications (Goldfinch & Yamamoto, 2012). There are also other ways for 

expert selection, for example, inviting open application or the research groups that will be 

evaluated can propose their choice of experts. A downside of the peer review process can be the 

absence of an adequate methodology to find relevant experts (Hofmann, Balog, Bogers, & de 

Rijke, 2010; Gould, 2013; Berendsen, de Rijke, Balog, Bogers, & Bosch, 2013; Lee et al., 2013; 

Oleinik, 2014; Buckley, Sciligo, Adair, Case, & Monks, 2014). In research evaluation, the extent 

to which the expertise of the panel members charged with research assessment is congruent with 

the research of the units, is crucial to the quality and trustworthiness of the assessment. In 

addition, the panel members taken together preferably have expertise on the discipline of the 
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research groups; otherwise the trustworthiness of the evaluation is open for discussion. Panel 

members who are credible experts in the field will be able to provide valuable, relevant 

recommendations and suggestions that should lead to improved research quality. In practice, 

however, the degree to which the expertise of the panel members overlaps with the expertise of 

the unit of assessment has not been quantified (Engels et al., 2013). 

The exponential growth of research literature indicates the growth of specialized disciplines 

(Sobkowicz, 2015) besides the growth of databases themselves. Therefore, an individual panel 

member may have sufficient expertise in a given field, but collaborative evaluation together with 

peers is crucial unless and until the individual panel member covers the expertise of the research 

groups. In this respect, Langfeldt (2004) explored expert panel evaluation and decision making 

processes, and concluded that overlap of expertise between experts is highly needed in order to 

foster cooperation among panel members. Tasks are often divided between the panel members 

according to their field of research. When the panel is heterogeneous, there is a chance that 

decisions are made in a suboptimal manner and/or not by those panel members that are best 

suited, i.e. at the closest cognitive distance. Moreover, each research group expects its research 

interests to be well covered by the expertise of at least one panel member. A sufficiently high 

degree of congruence between the expertise of the panel members charged with research 

assessment and the research of the units is a prerequisite for a sound, reliable assessment (Engels 

et al., 2013). However, to the best of our knowledge, no methods have been established to 

measure and quantify congruence of expertise or overlap of expertise or cognitive distance 

between panels and the units of assessment in discipline-specific research evaluation. The main 

motivation for the work in this thesis is, therefore, the need for a method to find appropriate set 

of experts and to determine an appropriate expert assignment to research groups in a discipline-

specific research evaluation.  
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1.2 Purpose of the study 

We study the problem of composing an expert panel, such that the individual panel members’ 

expertise covers the research domains in the discipline where the units of assessment (in our 

case: research groups) have publications. In academia, publications are considered key indicators 

of expertise (Rybak, Balog, & Nørvåg, 2014) that help to identify qualified or similar experts to 

assign papers for review (Neshati, Beigy, & Hiemstra, 2012), and to form an expert panel 

(Hashemi, Neshati, & Beigy, 2013). One of the main factors that need to be taken into account is 

the cognitive distance between an expert panel and research groups (Rahman et al., 2015, 2016; 

Wang & Sandström, 2015; Rousseau et al., 2017; Rahman, Guns, Rousseau, & Engels, 2017). 

In this thesis, we explore informetric approaches to determining cognitive distances between 

expert panel members and research groups for discipline-specific research evaluation. We 

specifically focus on the situation where the expert panel needs to evaluate all the research 

groups of a department. We attempt to gauge cognitive distances between panel and research 

groups through publishing in the same or similar WoS subject categories (WoS SCs) and 

journals. The goal is therefore to present informetric methodologies to assess the congruence of 

panel expertise and the research output in the units under assessment.  

1.2.1 Objectives of the study 

The main objective of this thesis is to propose informetric methods to identify panel members 

who have closely related expertise in the research domain of the research groups. We aim to 

develop and test informetric methods to identify the cognitive distances between the (members 

of) an expert panel on the one hand, and between the expert panel and the (whole of the) units of 

assessment (typically research groups) on the other. More generally, the objective is to develop 

one or more methods that allow measuring cognitive distances between publication portfolios 

and understand their properties and interrelations. Our research has led to the development of 

new methods for determining cognitive distance in the context of expert panel composition. 
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1.2.2 Research questions 

To achieve the objectives of this research the following research questions are formulated: 

 

Research question 1 

How can we measure cognitive distance between two entities using publication data, 

especially between an expert panel and the research groups under evaluation? 

 

As a preliminary exploration, we determine the correlation between the publication output of two 

expert panel and research groups using Pearson’s correlation coefficient, Spearman’s rank 

correlation coefficient, top-down correlation (Iman & Conover, 1987) and cosine similarity 

(Salton & McGill, 1986). We argue that correlation and similarity measures are insufficient to 

measure cognitive distance, as they do not consider the relatedness of WoS SCs or journals 

(discussed in chapter IV). Therefore, in order to answer this first main research question, we 

formulate the following four sub-questions: 

 

i) How can one visualize the expertise of two entities (e.g., a research group and a 

panel) using publication data? 

ii) How can one quantify the cognitive distances (overlap of expertise) between two 

entities (e.g., a research group and a panel) using the WoS SCs to which their 

publications belong?  

iii) How can one quantify the cognitive distances between two entities using the 

journals in which they have published?  

iv) How can one estimate the uncertainty inherent to these cognitive distances?  

In order to answer the first sub-question, we explore the usefulness of overlay mapping, using 

two base maps of science, one at the level of WoS SCs and the other at the level of journals as a 

starting point. We create overlay maps of individual panel members, the whole evaluation panel, 

individual research groups and the combined research groups to visually compare the cognitive 

distance between them, thus following earlier work in overlay mapping (Rafols et al., 2010; 

Leydesdorff, Carley, & Rafols, 2013). The visual comparison based on WoS SCs is discussed in 

detail in chapter V. The overlay maps based on journals are not discussed explicitly in the body 
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of the thesis but are included in the technical reports that are available online (see section 3.2.8 

of chapter III).  

 

To answer the second sub-question, determine an entity’s barycenter according to its 

publications output, we introduce the use of the barycenter method on maps of science (at the 

level of WoS SCs). The barycenter provides a single point on the map corresponding to an 

entity’s expertise as witnessed by its publication output (see chapter V). The distances between 

two barycenters were then considered as an operationalization of cognitive distance between the 

entities involved. In chapter V and the corresponding publication (Rahman et al., 2015), we used 

the terminology of overlap of expertise. Later on in the PhD project, we came to realize that the 

term cognitive distance is more appropriate. For the sake of consistency with the published 

articles, we keep the terminology per chapter as in the articles. This explains the difference in 

terminology between chapter V and the subsequent chapters.   

 

Further work led to the realization that approaches need not be confined to two dimensions only. 

In the end, this led to the development of five methods: a benchmark that does not take similarity 

into account, two methods using barycenters (one in two and one in three dimensions), 

similarity-adapted publication vectors (SAPV) and weighted cosine similarity (WCS). The 

benchmark and the last two methods are applied in N dimensions, where N denotes the total 

number of WoS SCs. A theoretical comparison between the methods is discussed in chapter VII.  

 

The third sub-question is in fact quite similar to the second one, but at a lower level of 

aggregation (journals instead of WoS SCs). Hence, our approach to answer this question is also 

similar. More specifically, we outline three quantitative methods that determine the cognitive 

distance between evaluators and evaluees, using the journals they have published in. We 

consider the barycenter, SAPV and WCS method for this purpose. The application of the 

barycenter and SAPV methods at the aggregation level of journals is discussed in chapter VI, 

while the result of the WCS method is included in the technical reports (see section 3.2.8 of 

chapter III). 

 



9 

 

To answer the fourth sub-question, we use a bootstrapping method, leading to confidence 

intervals for distances (benchmark, barycenter two- dimensional, barycenter three-dimensional, 

and SAPV methods) and similarities (WCS method). We discuss the bootstrapping method in 

chapter VI and chapter VII.  

 

Research question 2 

How do the proposed approaches relate?  

In order to answer the second main research question, three sub-questions need to be addressed: 

 

i) What are the correlations between the different approaches? Which aspect 

(method vs level of aggregation) has the largest influence on the correlation?  

ii) To what extent do the approaches agree in matching the panel member at the 

closest cognitive distance from a research group? 

iii) How accurate are the approaches in matching the main assessor for each 

research group? How accurate are they to uniquely match the main assessor? 

In answer to the first research question, we propose a number of different approaches. We can 

distinguish between two levels of aggregation – journals and WoS SCs – and three methods – the 

2-dimensional barycenter method and the N-dimensional SAPV and WCS methods. In total, this 

leads to six different approaches, all of which are based on the publication profile of research 

groups and panel members.  

To answer the first sub-question, we calculate Spearman’s rank-order correlation between the 

results/values of each pair of the six approaches. We create a heat map with hierarchical 

clustering based on the correlation results for a visual summary of the results. The hierarchical 

clustering directly shows which approaches are more closely related.  

To answer the second sub-question, we explore whether the approaches agree regarding the first 

ranked panel member, ignoring the confidence intervals. 

To answer the third sub-question, we compare the closest panel member with the main assessor 

while accounting for overlap between confidence intervals. Here the main assessor refers to the 

panel members assigned to a research group by the respective panel chair during the research 
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evaluation exercises at the University of Antwerp. We systematically compare how these six 

approaches fare in predicting the main assessor of each research group. We discuss the above 

sub-questions in chapter VIII. 

1.2.3 Scope of the study 

In this thesis, we are especially concerned with the case of expert panel evaluation of research 

groups. Here the research groups’ publications profile covers a period of 8 years and the panel 

members’ publication profile covers the entire publication profile until the year of the evaluation. 

Therefore, our proposed methods are best suited to the evaluation that covers a longer period 

with a larger set of publications. The approaches are not tied to any specific map or matrix but 

can, at least in principle, be applied to any map or similarity matrix. 

Our approaches may not be suitable to identify experts who are invited to assess individuals, 

grants, individual research projects, or to review journal articles. In these cases, the required 

expertise is more at the topical level than at the discipline level. One can have publications on 

many topics, but due to the level of granularity both the WoS SC and journal maps and matrices 

are at the level of disciplines or specializations. Therefore, the proposed approaches cannot 

identify cognitive distance at the topical level with the data used in this thesis.   

1.3 Expert panel evaluation: Example from the University of Antwerp 

In this thesis, we particularly look at the research evaluations carried out at the University of 

Antwerp by its Department of Research Affairs and Innovation (ADOC). The overall annual 

research output of the University of Antwerp comprises over 2,000 peer-reviewed publications, 

the large majority of which are included in the WoS (Engels et al., 2013). 

In 2007, the University of Antwerp decided to introduce evaluative site visits by expert panels, 

during which the panel meets the spokesperson of each research group and other relevant 

stakeholders, and panel members are given every opportunity to enter into a dialogue with 

academic policymakers and the spokespersons of the research units during on-site interviews. 

The process facilitated asking additional questions or requesting clarification of specific points 
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described in the self-evaluation report the panel received in advance. This approach ensures 

maximal involvement of the panel members and guarantees that the panel can reach a balanced 

decision in a fully interactive environment. The site visits thus guarantee interaction and 

involvement between experts and research groups. 

At the start of a research evaluation, a department – typically encompassing several research 

groups – is invited to suggest potential panel chairs in addition to those suggested by the ADOC. 

Preferably, chairs are appointed as full professor, have an excellent publication record, have 

experience in research evaluations, are editors or board members of important journals, and 

possess academic management experience. The ADOC verifies whether proposed panel chairs 

and members have no prior involvement (i.e. no prior joint affiliations, no co-publications, no 

common projects) with the assessed research groups, and further checks if they are scholars with 

a prominent publication record in recent years, a proven track record of training young 

researchers, and sufficient experience in research policy, preferably in academic leadership 

positions. Furthermore, proposed panel chairs and members are preferably not affiliated with any 

Flemish institution of higher education and have no formal links to the University of Antwerp. 

The department that is being evaluated is also allowed to suggest potential panel members, but it 

should be noted that it is eventually the chair’s prerogative to decide on the final composition of 

the panel.  

The combined expertise of all panel members is to cover all subdomains in the discipline that is 

being evaluated and the panel is preferably balanced in terms of gender and nationality. When a 

sufficient number of professors have agreed to be on the panel, the university’s research council 

ratifies the panel composition. Furthermore, all research groups belonging to a specific 

department (e.g., Biomedical Sciences) are to be evaluated by the same panel and the language 

of communication is English. Following the Dutch Standard Evaluation Protocol (VSNU, 2003; 

VSNU et al., 2014), the peer panels assess the quality, the productivity, the relevance and the 

viability of each research group.  

To facilitate a critical reflection about the expiring 8-year cycle of site visit-based research 

assessment exercises and to ensure incorporation of the recommendations and suggestions by the 

start of the second 8-year cycle, the spokespersons of all research units that have participated so 
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far were invited at the end of 2014 to fill out a short online questionnaire. The questionnaire was 

sent to 102 (former) spokespersons, i.e., spokespersons of research units belonging to the 

disciplines for which evaluation reports had already been handed in by the peer review panels. 

No response bias was found at the level of the scientific fields, while higher response rates were 

observed for disciplines that had been subjected more recently to assessment.   

The vast majority of the respondents concluded that the site visits of the peer panels were useful 

(73%) and well organized (95%). Eighty-one percent of the respondents claim to have had 

sufficient time to present their research to the peer panel and 76% consider that also sufficient 

time was allowed for the subsequent interviews. According to 85% of the respondents, the 

interview was conducted in an atmosphere of openness. A few spokespersons further propose to 

devote somewhat more time to the unit’s presentation and subsequent interview and three 

spokespersons advocate the idea that a visit to the research units’ labs is incorporated in the site 

visits. 

In general, the spokespersons expressed satisfaction with the external peer review panel charged 

with the evaluation of their discipline: 85% feel that the panel was (very) well positioned to 

assess the research in the discipline in general and 77% also believe that the panel’s overall 

assessment was fair. In addition, 82% of the spokespersons are of the opinion that the panel was 

appropriately composed to evaluate the research conducted by their own research group in 

particular and 80% feel that their research unit was evaluated in a fair way. Only 8% of the 

respondents claim that the panel was biased in its judgement of the various research groups 

under assessment and 14% feel that such was the case for their own research group. Several 

spokespersons indicate in the accompanying comments that they were satisfied with the fact that 

the panel covered nearly all research activities of the groups under assessment, despite the 

diversity of the research that needed to be evaluated for each assessment exercise. The panel 

members’ expertise was also apparent during the interviews, although the extent of preparation 

of the panel members is questioned by some spokespersons. The switch of panel chair that 

needed to be carried through for one of the research assessments was unanimously deplored by 

the spokespersons belonging to this discipline. 
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1.4 Overview of the chapters 

This thesis is structured in nine chapters. In chapter two, we present a literature review of the 

broader topic and context of the research presented in this thesis.  

 

In chapter three, we provide a detailed description of the data and methods that are used and 

proposed in this thesis.  

 

Chapter four provides a preliminary exploration, comparing correlations and cosine similarities 

between the publication profile of evaluators and evaluees. The downside of these correlations 

and cosine similarity measures is that they do not take into account the relatedness of WoS SCs 

or journals. This leads to the approaches in the following chapters that do consider similarity. 

 

In chapter five, we introduce the barycenter method at the level of WoS SCs. We explore the 

usefulness of overlay mapping on a global map of science (with WoS SCs) to gauge cognitive 

distance and introduce methods to determine an entity’s barycenter according to its publication 

output. The Euclidean distance between barycenters is used as an indicator of cognitive distance. 

Overlay mapping techniques are used to visualize the barycenters.  

 

In chapter six, we outline two quantitative methods – barycenter and SAPV – that gauge the 

cognitive distance between evaluators and evaluees, based on the journals they have published 

in. Both approaches determine an entity’s profile based on the journals in which it has published. 

While the barycenter approach is based on a journal map, the SAPV method is based on the full 

journal similarity matrix. Subsequently, we determine the Euclidean distance between the 

barycenters or SAPVs of two entities as an indicator of the cognitive distance between them. 

Using a bootstrapping approach, we determine confidence intervals for these distances.  

 

In chapter seven, we study the problem of determining the cognitive distance between the 

publication portfolios of two units from a more general perspective. We provide a systematic 

overview of five different methods (a benchmark Euclidean distance approach, distance between 

barycenters in two and in three dimensions, distance between SAPVs, and WCS) to determine 

cognitive distances on the basis of publication records. The (two- or three-dimensional) 
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barycenter method is based on global maps of science, the SAPV method and WCS method 

(both in N dimensions) use a full similarity matrix. We also present a theoretical comparison as 

well as a small empirical case study. 

 

In chapter eight, we systematically compare how our proposed six approaches are related. We 

determine the correlation between the approaches, whether the method and level of aggregation 

has influence on the correlation or not. In addition, we explored, how much the approaches agree 

in finding the closest panel member, and how much they agree in predicting the main assessor.  

 

Chapter nine contains a summary of the findings, policy recommendations, limitations of the 

study and suggestions for further research.   
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Chapter II: Literature review 

2.1 Introduction 

In this chapter, first we discuss the definition of research and of peer review, and how we have 

used these terms in this thesis. In section 2.3, we provide an overview of research evaluation 

focusing on discipline-specific informed peer review evaluation of research groups. We outline 

the need to determine cognitive distance between expert panel members and research groups (see 

section 2.4). Furthermore, we discuss the concept of cognitive distance and methods of 

operationalizing cognitive distance (see section 2.5). In section 2.6, we introduce the topic of 

bibliometric mapping, how science maps are constructed and visualization techniques. We focus 

on two specific types of global maps of science – maps based on WoS SCs and journals –, and 

discuss how these maps can be used to determine cognitive distance between evaluators and 

evaluees based on their publication portfolios in research evaluation. Finally, in section 2.7, we 

discuss the research gap in the existing literature and how our research contributes to fills the 

gap.  

2.2 Definition 

Before we embark on further discussion, we will discuss the definitions of research and of peer 

review.  

2.2.1 Research  

Creswell (2014, p. 4) defined research as a  

process of steps used to collect and analyze information to increase our 

understanding of a topic or issue.  
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OECD (2015, p. 44) described it as  

creative and systematic work undertaken in order to increase the stock of 

knowledge – including knowledge of humankind, culture and society – and to 

devise new applications of available knowledge.  

 

According to the UK Research Assessment Exercise, research is defined as   

… original investigation undertaken in order to gain knowledge and 

understanding. It includes work of direct relevance to the needs of commerce 

and industry, as well as to the public and voluntary sectors; scholarship; the 

invention and generation of ideas, images, performances and artefacts 

including design, where these lead to new or substantially improved insights; 

and the use of existing knowledge in experimental development to produce new 

or substantially improved materials, devices, products and processes, 

including design and construction.  

 

It excludes routine testing and analysis of materials, components and 

processes, e.g. for the maintenance of national standards, as distinct from the 

development of new analytical techniques. It also excludes the development of 

teaching materials that do not embody original research (RAE2001, 2002, p. 

1.12).  

 

For the purpose of the thesis, we will consider the definition of the UK research assessment 

exercise as this more specified definition applies especially in the context of research evaluation.  

2.2.2 Peer Review 

Peer review is an umbrella term for expert-based review practices. It is an important  mechanism 

for quality control, assessing scientific works and ensuring trustworthiness of scientific research 

(Ziman, 2002; Cronin, 2005; Holbrook, 2010; Bornmann, 2011; Lee et al., 2013). The most 

important forms of formalized peer review are review of research manuscripts, review of funding 
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or grant applications (Guston, 2003; Smith, 2006), job application or career promotion review, 

review for scientific prizes (like the Nobel Prize) (Hemlin & Rasmussen, 2006), review of 

research groups and academic institutions (Hemlin, 1996), and national peer review based 

research assessments (Wouters et al., 2015).  

The following possible objectives of peer review are distinguished (Geisler, 2000; Wager, Fiona 

Godlee, & Jefferson, 2002, as cited in Wouters et al., 2015, pp. 44-45): 

1. assess the quality of research results, outcomes, projects and programs; 

2. determine the level of performance, either in absolute terms or comparatively, of (parts 

of) the scientific and innovation system; 

3. promote accountability; 

4. contribute criteria and evidence for resource allocation; 

5. contribute criteria and evidence for science and technology policy making; 

6. contribute criteria and evidence for career decisions and human resource policies. 

Moed (2005) classified peer review according to the moment it takes place (see also Wouters et 

al., 2015). They distinguish peer review of:  

1. grant proposals in the context of funding decisions; 

2. manuscripts in the context of publication decisions by journal or book publishers; 

3. scientific data in the context of publication decisions or data repositories; 

4. the performance of researchers or research groups in the context of national or 

international research assessment exercises and awarding scientific or scholarly prizes; 

5. the context of foresight exercises and the development of national or international 

research agendas.  

Whitley (2007) characterized peer review as a ‘strong research evaluation system’ as it is 

institutionalized and formalized, follows specific procedures, and makes a direct contribution to 

the concerned authority’s purpose.  

In the following sections, we will discuss research evaluation focusing on peer review. More 

specifically, we introduce the problem of expert panel composition, and the two major 
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components of our proposed methods to inform expert panel composition. We will also discuss 

the research gap concerning the expert panel assignment for a research group in discipline-

specific research evaluation and how this thesis contributes to fill the research gap.  

2.3 Research evaluation 

There has been a paradigm shift in research management when evaluation started to play a more 

active role in research and innovation governance (Arnold, 2004). Systematic evaluation efforts 

are perceived as useful instruments for rearranging the science system (Rip & Meulen, 1995; van 

Steen & Eijffinger, 1998). In many different sectors and fields evaluation of publicly funded 

research is carried out (Balázs & Arnold, 1998). Evaluation, including research evaluation, has 

become an institutional part of public sector governance (Dahler-Larsen, 2012; Hammarfelt & de 

Rijcke, 2015). Evaluation can be divided into two forms: ex-ante (before the event) and ex-post 

(after the event). The former is conducted prior to, e.g., a research project to assess its potential 

importance and probability of success, while the latter takes place after the completion of the 

research to assess its output and impact (Kogan, 1989; Massy, 1996; Suter, 1997; Geuna & 

Martin, 2003). One can also distinguish between formative and summative evaluation. 

Summative evaluation is conducted to examine the effects or outcomes of the research unit in 

comparison to similar units, while formative evaluation has the goal of improving the quality of 

research. Evaluation results are used as inputs in research management (Geuna & Martin, 2003; 

McDavid, Huse, & Ingleson, 2012).  

Here, we will focus on a more specific research evaluation system, which can be classified as ex-

post and carries aspects of both the summative and formative forms of evaluation. At the 

University of Antwerp, research evaluation is discipline-specific, in that each assessment 

encompasses all the research groups of that discipline at the same time. The research evaluation 

results in a report by the external evaluation panel containing both an assessment of the past 

research performance and suggestions regarding the ongoing research and future plans of each 

research group and of the department as a whole. Although the panels may make suggestions e.g. 

to stop or merge some research groups, the main focus rests with the suggestions for the 

department as a whole and for each of the research groups in the department, i.e. the formative 

characteristics. We use the terms ‘evaluation’ and ‘assessment’ as synonyms.  
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Since the 1980s a large number of research evaluation programs has emerged in most OECD 

(Organization for Economic Co-operation and Development) countries, and this on the level of 

institutions and on national level (OECD, 1997). Many countries have implemented formal 

policies to assess performance and output of publicly funded research on the national, regional, 

and institutional level (Whitley, 2007; Hammarfelt & de Rijcke, 2015). To evaluate a research 

unit’s performance, policy makers and funding agencies are using two main approaches: peer 

review and bibliometrics (Ramos & Sarrico, 2016). Some researchers have compared 

bibliometric indicators and the outcome of the peer assessment for the same researchers or 

research groups (Nederhof & van Raan, 1993; Rinia, van Leeuwen, van Vuren, & van Raan, 

1998; Aksnes & Taxt, 2004; van Raan, 2006; Lovegrove & Johnson, 2008; Patterson & Harris, 

2009; J. Li, Sanderson, Willett, Norris, & Oppenheim, 2010; Franceschet & Costantini, 2011; 

Wainer & Vieira, 2013; Bertocchi, Gambardella, Jappelli, Nappi, & Peracchi, 2015; Baccini & 

Nicolao, 2016). There is a positive correlation between peer review score and bibliometric 

indicators (Oppenheim, 1997; Moed, 2002; Norris & Oppenheim, 2003; van Raan, 2005; 

Abramo & D’Angelo, 2011). 

Due to database coverage and varying citation and publication cultures, the correlation between 

bibliometrics and peer review is weaker in most fields of engineering and computer science 

(Rahm, 2008), and humanities and social sciences (Abramo & D’Angelo, 2011). Moreover, 

publication and citation habits vary between different fields (Nederhof, 2006). Research 

evaluation practices vary according to discipline and country but consultation of peers is 

normally seen as an ‘unavoidable’ part of it (Langfeldt, 2004). Warner (2003) argued that expert 

review is the only system that enjoys both the confidence and the consent of the academic 

community. Some forms of peer review are vital as practical judgment is required and they 

cannot be replaced by bibliometric indicators (HEFCE, 2015). However,  bibliometric indicators 

can support the peer review evaluation process (Aksnes & Taxt, 2004; Allen, Jones, Dolby, 

Lynn, & Walport, 2009; Taylor, 2011, Hicks, Wouters, Waltman, Rijcke, Rafols, 2015). The 

concept of informed peer review, in which bibliometric techniques and other information support 

the peer review evaluation process, has been proposed (van Raan, 1996; Butler, 2007; Moed, 

2007). An example of such informed peer review is the United Kingdom’s Research Excellence 
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Framework (REF) system for assessing the quality of research in UK higher education 

institutions evaluation (REF2014, 2014). 

2.4 Problems with expert panel composition 

Eisenhart (2002) stated that active researchers are the best-suited persons to do peer review and 

these researchers need to be from the same or a broader field as the research to be evaluated. In 

research evaluations, a group of reviewers evaluates the research outputs. These reviewers are 

termed peers. These peers are well-informed experts in the sense that they are aware of the 

discipline’s research literature, as well as the state of the art, the challenges, and the research 

frontier in their field (Nederhof & van Raan, 1993; Langfeldt, 2004; Fedderke, 2013). In 

addition, they are typically active researchers who have the ability to evaluate fellowship or grant 

applications, manuscripts, published research, and the like. Their task is to make explicit 

recommendations on whether certain quality standards have been met, whether the research 

contributes to the knowledge base, which research proposal is expected to have a greater impact 

etc. (Eisenhart, 2002; Bornmann, 2011; Hammarfelt & de Rijcke, 2015). A downside of the peer 

review process can be the absence of an adequate methodology to find relevant experts 

(Hofmann et al., 2010; Gould, 2013; Berendsen et al., 2013; Lee et al., 2013; Oleinik, 2014; 

Buckley et al., 2014).  

Expert panel review is a standard practice for evaluating research groups (Nedeva et al., 1996; 

Butler, 2007; Rons et al., 2008; Lawrenz et al., 2012; Milat et al., 2015) and for research 

proposals submitted to research funding organizations (Wessely, 1998; van den Besselaar & 

Leydesdorff, 2009; Li & Agha, 2015; Pina, Hren, & Marušić, 2015; Wang & Sandström, 2015). 

In many peer review processes the referees are anonymous to the researchers whose work is 

under assessment; in expert panel evaluation, however, the panel members are visible, and hence 

the units of assessment themselves can judge the expertise of the panel members and the expert 

panel in relation to their research domain. 

The exponential growth of the research literature indicates the growth of specialized disciplines 

(Sobkowicz, 2015). Therefore, an individual panel member may have ample expertise in a 

subfield, but collaborative evaluation together with peers is still needed unless and until the 
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individual panel member covers the expertise of the research groups. It has been argued that peer 

review can be biased and unreliable (Cicchetti, 1991; Bazeley, 1998; Wessely, 1998; Langfeldt, 

2004; Bornmann & Daniel, 2005; Bornmann, 2011; Lee et al., 2013). Sometimes the evaluees 

are not pleased with the evaluation because ‘reviewers or panelists are not expert in the field, 

poorly chosen, or poorly qualified’ (McCullough, 1989, p. 82). The reliability and validity of 

peer review are not a given (Cicchetti, 1991; Bazeley, 1998; Langfeldt, 2004; Bornmann & 

Daniel, 2005; Benda & Engels, 2011; Bornmann, 2011; Lee et al., 2013). There may be 

controversy on a panel’s composition: the expertise of the reviewers is frequently questioned 

(Over, 1996; Bornmann & Daniel, 2006; Daniel, Mittag, & Bornman, 2007). Evaluation done by 

people perceived as being non-experts raises questions about its credibility (Langfeldt, 2004). 

One way the credibility of peer review could be supported, is through measurement of the match 

between the expertise of the panel member and the research interests of the research groups. 

Such methods should be able to quantify the cognitive distance between the expert panel and the 

research groups. Engels et al., (2013) argue that a methodology is required to measure and 

quantify congruence of expertise or cognitive distance between panels and research groups in 

discipline-specific research evaluation. In this thesis, we focus on approaches that do exactly 

that. In the following section, we discuss cognitive distance and proximity.  

2.5 Cognitive distance/proximity 

Nooteboom (2000, p. 73) defines cognitive distance as “a difference in cognitive function”. He 

explains this as follows: “This can be a difference in domain, range, or mapping. People could 

have a shared domain but a difference of mapping: two people can make sense of the same 

phenomena, but do so differently”. Cohen & Levinthal (1989, 1990) explained the process by 

which an individual or organization by extrapolation can integrate and reuse knowledge from 

outside sources in research and development, while Nooteboom uses these ideas to define the 

concept of cognitive distance between individuals and organizations. Broström & McKelvey 

(2016, p. 6) define cognitive distance as “an inverse characterization of the degree of overlap 

between two people in terms of knowledge bases, values, norms and the heuristics of attribution 

and decision making”, while exploring the interaction between experts and policy makers for 

generating policy learning and implementation. Cognitive distance may lead to misunderstanding 
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or disagreement, but it also has positive aspects, e.g. in mutual learning. Wuyts, Colombo, Dutta, 

& Nooteboom (2005) note that the distinctiveness value (standing out as being better due to a 

specific feature) of a relation between two firms increases with cognitive distance and decreases 

with mutual understanding. Organizations need to aim at avoiding too great cognitive distance 

between its members to understand each other and achieve organizational goals; however, a 

certain amount of cognitive distance between the members is necessary (Granovetter, 1973).  In 

a densely connected organization (strong ties, small cognitive distance) organizational 

knowledge is implicit and taken for granted, while a loosely connected organization has more 

weak ties that typically represent a greater cognitive distance between the involved actors. 

Consequently, the latter situation represents more opportunities for mutual learning (Granovetter, 

1983). The capacity of sharing knowledge between communities depends on the degree of 

similarity  between communities while the capacity of learning new things depends on the degree 

of dissimilarity (Grabher & Ibert, 2013).  

If there is a large cognitive distance, it is hard to have a meaningful exchange between experts 

and policy makers (Howlett, 2009). Cognitive distance is also a factor in the collaboration 

between universities and industry for knowledge transfer activities. Different values, norms and 

mindsets from two different entities can increase the cognitive distance in this context (Muscio & 

Pozzali, 2013). Boschma (2005) explained that cognitive proximity is one of the factors that 

facilitate effective collaboration between the different actors in translational research. However, 

an excessive amount of or too minimal cognitive proximity might hinder learning and innovation 

(Boschma, 2005; Nooteboom et al., 2007; Hautala, 2013; Molas-Gallart, D’Este, Llopis, & 

Rafols, 2015).  

In sum, the term cognitive distance has been used in different fields. In the literature, cognitive 

distance has been studied especially in the social and behavioral sciences (Golledge, 1987; 

Montello, 1991). For example, in the tourism literature, cognitive distance has been identified as 

a mental representation of actual geographical distance based on an individual’s social, cultural 

and life experiences (Harrison-Hill, 2001). Cognitive distance also occurs in individuals 

depending on cognitive and cultural differences. Tourists take decisions based on their own 

perception of distance (Ankomah & Crompton, 1992; Ankomah, Crompton, & Baker, 1996).  
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In summary, the term ‘cognitive distance’ refers to the way in which two persons, and by 

extension, two organizations or groups of persons, are different, not only in terms of knowledge, 

but also in the way they perceive and interpret external phenomena. Like many other notions 

used in the social sciences – the notions of the impact, inequality, visibility come to mind –, the 

notion of cognitive distance must be operationalized. This operationalization can be done in 

many different ways.  

In this thesis we consider the publication portfolio of the involved researchers to reflect the 

position of the unit in cognitive space and, hence, to determine cognitive distance. Expressed in 

general terms we measure cognitive distance between units based on how often they have 

published in the same or similar journals. One can think of other informetric ways to determine 

cognitive distance between scientists. Wang & Sandström (2015) for example use bibliographic 

coupling and topic modelling to determine cognitive distance between publication portfolios. 

Besides using publication portfolios, one could also measure cognitive distance between patent 

portfolios, in terms of conference participation, in terms of diplomas, and so on. Moreover, 

cognitive distance is relevant in many other social and political contexts as well, e.g. when hiring 

employees, when comparing the programs of political parties, or to understand cultural 

differences.    

2.6 Bibliometric mapping  

Bibliometrics is the scientific field that uses statistical analyses of the research literature and 

covers a wide range of laws and methodologies (Godin, 2006). A well-known application of 

bibliometrics is the comparative evaluation of countries, universities, research organizations, 

individual researchers etc. on the basis of their publication profiles. Bibliometrics is also used to 

investigate the structure of a research field or to determine the growth of research topics 

(Borgman & Furner, 2002). Bibliometric mapping is one of the major research topics in the field 

(Börner, Chen, & Boyack, 2003). For bibliometric mapping, the first requirement is to build a 

bibliometric network, often using a normalization process of the relation (edges) between its 

nodes by using similarity measures. “Maps are built on the basis of a matrix of similarity 

measures computed from correlation functions among information items present in different 

elements (e.g., co-occurrence of the same author in various articles)” (Rafols, et al., 2010). 
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The nodes can be different entities, e.g., publications, journals, researchers, subject categories, or 

keywords occurring in research papers. The edges refer to the relation between pairs of nodes, 

for example, – in a co-authorship network – which authors co-author papers or – in a citation 

network – who cites whom. Bibliometric networks are usually weighted networks. Therefore, 

edges indicate the relation and strength of the relation between two nodes (van Eck & Waltman, 

2014). Since the beginning of bibliometric research, visualization has received much attention. 

The visualization of bibliometric networks is referred to as ‘science mapping’ or ‘bibliometric 

mapping’ (van Eck & Waltman, 2009; Cobo, López-Herrera, Herrera-Viedma, & Herrera, 2011). 

In bibliometric mapping, similar nodes are placed closer to each other and dissimilar nodes are 

more distant. Garfield, Sher, & Torpie (1964) manually constructed the first bibliometric maps of 

citation networks. Many different approaches have been developed to extract networks using, 

e.g., citation, co-citation, bibliographic coupling, keyword co-occurrences, and co-authorship. It 

is important in this process to choose an adequate unit of analysis (authors, documents, journals, 

terms etc.). For details on methods of bibliometric mapping we refer to the literature 

(Leydesdorff, 1987; Small, 1999; Noyons, 2001, 2004; Börner et al., 2003; Boyack, Klavans, & 

Börner, 2005; van Eck, 2011; Boyack & Klavans, 2014a, 2014b).  

Bibliometric mapping thus refers to a set of quantitative methods to visually represent some 

aspects of the research literature by visualizing the relations between entities. Maps of science 

provide a visual overview of a knowledge field and can be a useful tool for evaluative 

bibliometric studies (Buter, Noyons, & Van Raan, 2004). Most bibliometric maps are using 

proximity-based approaches where proximity between two nodes indicates the relatedness of the 

nodes – the closer they are, the more they are related. Multidimensional scaling (MDS) (Borg & 

Groenen, 2005) is a common proximity-based technique for determining the location of nodes. 

Alternatives to MDS include VxOrd (Boyack et al., 2005; Klavans & Boyack, 2006) and the 

VOS technique (van Eck & Waltman, 2007). VOS, which stands for Visualization of 

Similarities, and MDS are mathematically closely related to each other. Like most mapping 

techniques, VOS and MDS locate items in a low-dimensional space and reflect the similarity or 

relatedness. VOS provides distance-based visualizations of bibliometric networks and display the 

edges between the nodes. VOSviewer is especially suitable for visualizing larger networks (van 
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Eck & Waltman, 2014).  For details about the VOS mapping technique we refer to van Eck & 

Waltman (2010).  

Graph-based maps determine distances between nodes based on the occurrence and weight of 

links. Typically, the links are drawn as well, which is less common in distance-based 

approaches. The Kamada and Kawai (1989) algorithm is a commonly used technique for 

creating graph-based visualizations. Kamada-Kawai is a spring-based layout algorithm for 

connected undirected graphs. It calculates the total balance of the graph, as the square summation 

of the differences between the ideal distance and the actual distance for all vertices and produces 

layouts with small amounts of edge crossings (Kamada & Kawai, 1989). Pajek is a professional 

software package for performing network analysis that implements the Kamada-Kawai algorithm 

(de Nooy, Mrvar, & Batagelj, 2012). For details about the Kamada-Kawai algorithm we  refer to 

Kamada & Kawai (1989). Both in the graph-based approach and the distance-based approach 

nodes are positioned in a two-dimensional space. Among other approaches, Garfield, Pudovkin, 

& Istomin (2003) and Chen (2006a) used a timeline-based approach where the position of each 

node is constrained by publication year. In this thesis, we have used the VOS and Kamada-

Kawai techniques for visualization purposes.  

Bibliometric mapping simplifies the job of preparing bibliometric data for display and facilitates 

the reading of bibliometric information by non-experts (Rafols, et al., 2010). Its initial purpose 

was to provide suggestions for policy-related decision making by governments, funding 

agencies, and universities (Healey, Rothman, & Hoch, 1986; Franklin & Johnston, 1988; 

Noyons, 2001, 2004). Moreover, bibliometric maps can be used to get an overview of the 

scientific literature in a certain domain or on a certain topic (van Eck, 2011). Henry Small has 

pioneered several bibliometric techniques for mapping science (Griffith, Small, Stonehill, & 

Dey, 1974; Small & Garfield, 1985; Small, 1999). We refer to several articles for overviews of 

the bibliometric mapping literature regarding visualization of knowledge domains (Börner et al., 

2003; Shiffrin & Börner, 2004), contemporary scientific data visualization (Börner, 2010), 

information visualization with a specific focus on science mapping (Chen, 2006b, 2013), 

characterizing individual bibliographic entities (Morris & Martens, 2008). Due to technological 

advancements, maps at the level of individual papers, containing millions of nodes, have also 

become possible in recent years (Boyack & Klavans, 2014a, 2014b). Bibliometricians, research 



26 

 

institutions, funding agencies, and publishers have shown interest in bibliometric network 

visualizations for their respective purposes. Nowadays, a number of software tools are available. 

For example Pajek and Gephi are general tools for the analysis and visualization of networks, 

while CitNetExplorer, CiteSpace, HistCite, Sci2, and VOSviewer are more specialized tools that 

focus on bibliometric networks.  

Bibliographic databases are one of the main sources to create science maps. When a map of a 

specific discipline is created, it is called a ‘local science map’ while a ‘global science map’ is 

based on an entire bibliographical database and hence, in principle, covers all fields of research. 

In this thesis, we will work with global maps of science. Examples of general bibliographic 

databases include multidisciplinary citation indexes, like Web of Science (WoS) by Clarivate 

Analytics (formerly Thomson Reuters) and Scopus by Elsevier. At present, WoS and Scopus are 

the main sources for citation data. WoS contains publications from the year 1900 to the present 

(Clarivate Analytics, 2016) while the Scopus database initially covered 1996 to the present. Its 

coverage nowadays dates back to 1970 (Elsevier, 2016). Scopus has greater coverage of some 

disciplines, including computer science, engineering, clinical medicine and biochemistry, 

literature from Asia and the Far east (Klavans & Boyack, 2007), but its coverage of pre-1996 

publications and citations is lower than that of the WoS (Harzing & Alakangas, 2016; Mongeon 

& Paul-Hus, 2016).  

WoS and Scopus contain citations and references of publications, while this information is 

lacking in most disciplinary databases like Chemical Abstracts for chemistry, MEDLINE in 

medicine, etc. Usually, the multidisciplinary databases have advantages for bibliometric mapping 

purposes as they contain cited references of a document  (van Eck, 2011). A bibliometric map 

can be constructed, if one has access to a bibliographic database of the domain.  

Now we will focus on two types of global science maps – maps whose nodes are WoS SCs and 

maps whose nodes are journals. In WoS, the Journal Citation Reports (JCR) are one of  the main 

sources of citation data on journals that are indexed in the Science Citation Index Expanded 

(SCIE) and Social Sciences Citation Index (SSCI). The JCR help to measure research influence 

and impact at the journal level, and show the relationship between citing and cited journals of 

SCIE and SSCI.  
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The aggregated citation relations between journals contain information about of the structure of 

and relations between disciplines and specialties (Leydesdorff, 2006). The aggregated journal-

journal citation data is however not publicly available and must be purchased from Clarivate 

Analytics or a similar company. The aggregated citation relations among journals can be used to 

construct a journal similarity matrix (Leydesdorff, 2004, 2006). The journal similarity matrix can 

be considered as an adjacency matrix, and thus is equivalent to a weighted network where similar 

journals are linked and link weights increase with similarity strength. Leydesdorff & Rafols, 

(2012) generated global maps of science at the journal level from the aggregated journal–journal 

citation data of the SCIE and SSCI. This global map of science based on journal similarity is 

available at http://www.leydesdorff.net/journals12. ‘Using a global map of journals, one can 

assess the portfolio in terms of the spread across journals and journal categories, and also 

measure “interdisciplinarity” in terms of the journal coverage of the set(s) under study’ 

(Leydesdorff, Moya‐Anegón, & Guerrero‐Bote, 2015, p. 1001). 

A global map of science has been constructed  based on aggregated journal–journal citations 

using Scopus data too (using the entire set of 1996–2012 journals) (Leydesdorff, de Moya‐

Anegón, & Guerrero‐Bote, 2010; Leydesdorff, Moya‐Anegón, et al., 2015). The Scopus maps 

have greater coverage than WoS data of, for example, the humanities (Leydesdorff et al., 2010).  

WoS also contains a classification of journals into so-called Subject Categories (Clarivate 

Analytics, 2017). Clarivate Analytics  (formerly Thomson Reuters) has added one or more 

subject categories (SCs) to WoS-indexed journals based on ‘subjective, heuristic methods’, and 

has received criticism for being crude for some research areas (Pudovkin & Garfield, 2002). 

However, the WoS SCs are used for the evaluation of scientific performance (van Leeuwen, 

Visser, Moed, Nederhof, & Van Raan, 2003), schematic visualizations of scientific domains 

(Moya-Anegón et al., 2004), evaluation of the quality of research work in different subject 

categories (Sombatsompop & Markpin, 2005), analysis of citation or publishing patterns 

(Guerrero-Bote, Zapico-Alonso, Espinosa-Calvo, Gómez-Crisóstomo, & Moya-Anegón, 2007; 

Lancho-Barrantes, Guerrero-Bote, & Moya-Anegón, 2010a) etc. In addition, WoS SCs cover all 

disciplines and are generally accepted and used by bibliometric practitioners (Rehn, Kronman, 

Gornitzki, Larsson, & Wadskog, 2014; Leydesdorff & Bornmann, 2015).  
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A global map of science using the aggregated WoS SC-SC citation matrix has been developed by 

Leydesdorff, Rafols and colleagues (Leydesdorff & Rafols, 2009; Leydesdorff, Carley, et al., 

2013). Based on JCR 2011 (which contains journals from the SCIE and SSCI), a matrix of citing 

to cited SCs has been created that has been cosine normalized in the citing direction. The map 

based on WoS SC data is available at http://www.leydesdorff.net/overlaytoolkit/ map10.paj   

(Leydesdorff, Carley, et al., 2013).  The file ‘map10.paj’ contains a weighted network (where 

edge weights represent similarity between the nodes involved) of WoS SCs. WoS has 250+ SCs 

while Scopus distinguishes about 330 so-called minor subject areas (based on all science journal 

classification’ (ASJC) codes, equivalent to WoS SCs), but there is no map for the latter.  

Overlay maps are a kind of visualization, where a similarity matrix is the source of a base map. 

The base map is used as a template on which the result of an analysis can be projected. The 

overlay map is well known from Google Earth, Google Maps, and/or network visualization 

programs such as Pajek  (Boyack et al., 2005; Bornmann & Leydesdorff, 2011; Leydesdorff & 

Persson, 2010; Leydesdorff & Bornmann, 2012; Leydesdorff, Kushnir, & Rafols, 2014) and 

VOSviewer (van Eck & Waltman, 2007). Rafols et al., (2010) first used WoS SCs for developing 

interactive (responding to a user’s input) overlays on base maps. Subsequently, interactive 

overlays on a journal base map using VOSviewer for the visualization of journals (Leydesdorff 

& Rafols, 2012; Leydesdorff, Rafols, & Chen, 2013), patent categories (Leydesdorff et al., 2014; 

Kay, Newman, Youtie, Porter, & Rafols, 2014) and clusters of papers (Boyack & Klavans, 

2014b) have been developed. Overlay maps based on disciplines (such as WoS SCs) or journals 

can be used for research policy questions (Rafols, et al., 2010). However, document-level maps 

of science  are required for questions related to research planning, for example the article-level 

map of science covering 16 years and nearly 20 million articles using co-citation-based 

techniques created by Boyack & Klavans (2014a).   
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2.7 Research gap 

The literature addressing the issue of reviewer assignments focuses on submissions to academic 

journals or conferences (Campanario, 1998a, 1998b; Bornmann, 2011; Gould, 2013), grant 

applications (Wood & Wesseley, 2003; Demicheli & Pietrantonj, 2007), and fellowship 

applications (Bornmann & Daniel, 2005, Reinhart, 2009). In each of these contexts the question 

of optimization of the assignment of the ‘object’ under evaluation to reviewers arises. This kind 

of assignment is handled by the concerned authority, which relies on field knowledge that is 

relevant to the item of assessment (Wang, Zhou, & Shi, 2013). Such processes are a potential 

sources of bias. To have an unbiased process of selection of reviewers several studies have been 

carried out, mainly with two approaches: a modeling or algorithmic approach, and an 

information retrieval approach. Based on one or both approaches reviewer assignment systems 

have been developed. For example, Dumais & Nielsen (1992) proposed an automated method for 

assigning manuscripts to reviewers “based on information retrieval principles and Latent 

Semantic Indexing.” The abstracts of the reviewers’ publications were considered as a 

description of their sub-areas of interest and expertise. Latent Semantic Indexing was then used 

to compare the match between the reviewers’ expertise and the abstracts of the submitted papers.  

Tian, Ma, & Liu (2002) proposed a decision support system for research and development 

project selection. In this model, each of the proposals and external reviewers have to give two 

keywords to describe the discipline areas they belongs to. Through a combination of keyword 

matching and knowledge rules set by the funding organizations, external reviewers are matched 

with selected proposals. Janak, Taylor, Floudas, Burka, & Mountziaris (2006) have introduced a 

mathematical framework to address panel-assignment issues. This approach takes into account 

the number of proposals to consider, the number of reviewers to consider, and the number of 

reviewers needed per proposal. Rodriguez & Bollen (2008) used a relative-rank particle-swarm 

algorithm on a co-authorship network to determine the most appropriate reviewers for a 

manuscript. This approach used the reference list of a manuscript to represent the authors of its 

subject domain. From that author list, this approach identifies related authors in a co-authorship 

network for potential reviewers of the submitted manuscript. Wang, Zhou, & Shi (2013) 

proposed a two-phase stochastic-based ‘greedy algorithm’ for a group-to-group reviewer 
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assignment, where groups of reviewers are assigned to groups of manuscripts. All reviewers in 

the same group will review each manuscript in the assigned manuscript group. The reviewers 

need to select a number of keywords that describe their expertise. Similarly, a set of keywords is 

used to represent the manuscript. All the keywords are selected from the subject classification 

tree used by the National Science Foundation of China. In the first phase, the manuscripts are 

clustered into groups and in the second phase reviewers are assigned to the manuscript groups.  

There are some systems available that support the concerned authority to decide which 

submissions are to be assigned to which reviewer, for example, CMT: Microsoft’s Academic 

Conference Management Service (https://cmt.research.microsoft.com/cmt), Easychair (http:// 

www.easychair.org), HotCRP (http://www.read.seas.harvard.edu/~kohler/hotcrp), Linklings 

(http://www.linklings.com), Softconf (http://www.softconf.com), or Web Submission and 

Review Software (http://people.csail.mit.edu/shaih/websubrev). In these systems, the reviewers 

need to declare any potential conflict of interest and state their preferences for certain papers 

(paper bidding). Based on this information the system selects potential reviewers.  

Elsevier provides a back-end software system named Fingerprint Engine 

(https://www.elsevier.com/solutions/elsevier-fingerprint-engine). This software mines text from 

publication abstracts, funding announcements and awards, project summaries, patents, 

proposals/applications and creates an index of collections of weighted key concepts. This 

software maps text to semantic ‘fingerprints’. By using this technology, Elsevier provides 

services like creating expertise profiles to enable collaboration (Pure, 

https://www.elsevier.com/solutions/pure) and comparing Fingerprints to find reviewers  (Expert 

Lookup, https://www.elsevier.com/solutions/expert-lookup). The existing approaches discussed 

in this section look for reviewers for individual items (e.g. a manuscript, research proposal, or 

grant application) or explore connections among researchers in view of potential collaboration. 

We have not found any academic literature that discusses the algorithms or techniques behind the 

software in greater depth.  

The existing approaches do not seem to address the issue of expert panel composition. Moreover, 

as far as we know there are no studies focusing on issues related to expert panel composition and 

the assignment of panel members to research groups in discipline-specific research evaluation. In 
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this thesis, we aim to fill this research gap. In our case, expert panels are composed and the panel 

members are assigned to evaluate one or more research groups of a discipline. These expert 

panel members have a wide range of experience with a large publication profile. In this thesis, 

the publications of a panel member and research group are considered as indicative of their 

respective research expertise. For the purpose of research evaluation, each of the expert panel 

members should have expertise that is relevant to one or more research groups that will be 

evaluated. In this thesis, we propose six different informetric approaches to measure this match 

between evaluators and evaluees using their publications as a representation of their expertise. 

2.8 Conclusion 

In discipline-specific research evaluation, peer review is widely accepted by the scientific 

community. As the literature indicates, the reviewer assignment problem has been discussed in 

the scenario of academic journals, conferences, and grant and fellowship selection. In order to 

improve the trustworthiness of peer review, several mathematical models and algorithmic 

approaches have been proposed and some software tools are in use. Discipline-specific research 

evaluation, however, is peer review in a different context. In this case, the entire panel is 

responsible to evaluate a number of research groups in a department or discipline. Each of the 

expert panel members have expertise that is relevant to one or more research groups that will be 

evaluated. Here we consider a problem, to the best of our knowledge, that has not been addressed 

until now: how to assign reviewers (expert panel members) to a research group in the context of 

discipline-specific research evaluation. In this thesis, to fill this research gap, we propose six 

informetric approaches to determine cognitive distances between the publications of panel 

members and those of research groups.   
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Chapter III: Data and Methodology 

Imagine that person A publishes all his papers in the Journal of Documentation and person B 

publishes all his papers in Journal of Information Science; this would yield a cosine (or any other 

similarity) measure between A and B equal to zero. However, since the journals are very similar 

in topical scope, that score does not accurately reflect the ‘real’ similarity of their publication 

portfolios. This is in fact clearer when looking at a map of science, where the two journals would 

likely be positioned very close to each other. If we want to quantify that, we need to find 

something like an 'average' location of the group and panel and look at the distance between 

them.  

The overall aim of the thesis is to develop methods to solve the kind of problem illustrated by the 

example above. In other words, we have developed a number of methods that not only consider 

the number of publications in each WoS SC or journal, but also the similarity of WoS SCs and 

journals. In this chapter, we explain how these methods are constructed. We describe how the 

individual research groups’ and panel members’ publications data are collected, explain our use 

of similarity matrices (specifically the WoS SC similarity matrix and the journal similarity 

matrix) and maps of science that are derived from these matrices, as well as our proposed 

methods in detail.  

3.1 Data 

The data in this thesis stem from the research assessments from 2009–2014 of six departments 

belonging to the University of Antwerp through site visits by expert panel members. We use the 

data collected in the framework of these completed research evaluations. Altogether, there are 58 

research groups and 6 expert panels that are dedicated to one of the departments. We specifically 

focus on the situation where the expert panel needs to evaluate all the research groups of a 

department. These evaluations consider the entire research groups’ scientific activity for a 

specific period, typically eight years preceding the year of evaluation. All articles, letters, notes, 

proceeding papers, and reviews by the research groups published during the reference period 
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were considered in the evaluation. For the purpose of the thesis, we consider only the 

publications that are indexed in SCIE and SSCI of WoS.  

3.1.1 Data collection 

3.1.1.1 Research groups data collection 

Research groups at the University of Antwerp consist of professors (of all ranks), research and 

teaching assistants, and researchers (PhD students and postdocs). A research group consists 

either of one professor assisted by junior and/or senior researchers, or of a group of professors 

and a number of researchers linked to them. 

 

First, we received all the WoS accession numbers of the publications of each research group 

from the ADOC of the University of Antwerp. Research group names have been standardized 

using the first four letters of the corresponding department, for example, BIOL-A for Biology 

research group A, PHAR-B for Pharmaceuticals sciences research group B, etc. We do a basic 

search in WoS with the accession numbers of each research group, keeping the time span to all 

years and searching SCIE and SSCI. Subsequently, we analyze the search result with the 

‘Analyze Results’ option in the WoS according to ‘WoS SCs’  and the ‘Source titles’ (here after: 

journal titles). We repeat this procedure for each of the research groups. For both cases, we 

combine the search sets for each research group and get the data for the publications of the 

research groups as a whole, i.e. the department. In this way, any publication that has been co-

authored by members of two or more research groups is counted only once. 

 

Table 1 lists the publication statistics of the nine Biology research groups that generated 1158 

publications in 372 journals. In total, their publications are distributed over 90 WoS SCs.  

 

Table 2 lists the publication statistics of the fifteen Biomedical Sciences research groups that 

generated 1234 publications in 476 journals. In total, their publications are distributed over 103 

WoS SCs.  
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Table 1: Publication statistics of Biology research groups (2004-2010) 

Group code Number of Publications Number of Journals Number of WoS SCs 

 BIOL-A 168  53  26  
 BIOL-B 58  33  13  
 BIOL-C 212  75  36  
 BIOL-D 176  68  26  
 BIOL-E 169  69  28  
 BIOL-F 58  35  18  
 BIOL-G 280  139  55  
 BIOL-H 67  42  25  
 BIOL-I 86  52  24  
All groups  1158  372  90  

 

Table 2: Publication statistics of Biomedical Sciences research groups (2006-2013) 

Group code Number of Publications Number of Journals Number of WoS SCs 

 BIOM-A 96  55  42  
 BIOM-B 43  27  16  
 BIOM-C 107  47  24  
 BIOM-D 201  95  43  
 BIOM-E 70  34  15  
 BIOM-F 27  17  12  
 BIOM-G 241  115  45  
 BIOM-H 50  29  17  
 BIOM-I 89  55  27  
 BIOM-J 47  27  21  
 BIOM-K 74  43  28  
 BIOM-L 12  11  7  
 BIOM-M 164  67  22  
 BIOM-N 114  43  12  
 BIOM-O 60  32  13  

All groups 1234  476  103  

 

Table 3 lists the publication statistics of twelve Chemistry research groups that generated 920 

publications in 300 journals. In total, their publications are distributed over 94 WoS SCs. Table 4 

lists the publication statistics of ten Pharmaceutical Sciences research groups that generated 376 

publications in 180 journals. In total, their publications are distributed over 67 WoS SCs. Table 5 

lists the publication statistics of nine physics research groups that generated 1739 publications in 

353 journals. In total, their publications are distributed over 108 WoS SCs. 
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Table 3: Publication statistics of Chemistry research groups (2001-2008) 

Group code Number of Publications Number of Journals Number of WoS SCs 

 CHEM-A 129  47  27  
 CHEM-B 65  24  17  
 CHEM-C 156  52  26  
 CHEM-D 32  17  13  
 CHEM-E 70  39  23  
 CHEM-F 21  17  8  
 CHEM-G 161  47  42  
 CHEM-H 62  33  28  
 CHEM-I 51  24  19  
 CHEM-J 27  11  15  
 CHEM-K 97  66  48  
 CHEM-L 92  42  24  
All groups 920  300  94  

 

Table 4: Publication statistics of Pharmaceutical Sciences research groups (2001-2008) 

Group code Number of Publications Number of Journals Number of WoS SCs 

 PHAR-A 40  22  19  
 PHAR-B 62  32  21  
 PHAR-C 61  35  25  
 PHAR-D 32  17  13  
 PHAR-E 64  42  31  
 PHAR-F 34  21  8  
 PHAR-G 67  31  14  
 PHAR-H 39  27  21  
 PHAR-I 29  10  6  
 PHAR-J 11  9  10  

All groups           376  180  67  

 

Table 6 lists the publication statistics of three Veterinary Sciences research groups that generated 

231 publications in 146 journals. In total, their publications are distributed over 61 WoS SCs. 

Table 7 shows how many research groups collaborated and how often this has happened.  
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Table 5: Publication statistics of Physics research groups (2002-2009) 

Group code Number of Publications Number of Journals Number of WoS SCs 

 PHYS-A 125  53  44  
 PHYS-B 486  66  25  
 PHYS-C 525  147  46  
 PHYS-D 269  17  7  
 PHYS-E 159  55  28  
 PHYS-F 42  23  13  
 PHYS-G 43  26  12  
 PHYS-H 132  31  12  
 PHYS-I 115  63  49  
All groups 1739  353  108  

 

Table 6: Publication statistics of Veterinary Sciences research groups (2006-2013) 

Group code Number of Publications Number of Journals Number of WoS SCs 

 VETE-A 143  102  55  
 VETE-B 41  33  25  
 VETE-C 52  21  16  
All groups 231  146  61  

 

Table 7: Number of publications co-authored by research groups 

Department Two groups Three groups Four groups Five groups 

Biology 113  3  -  -  

Biomedical Sciences 142  16  2  1  

Chemistry 43  -  -  -  

Pharmaceutical Sciences 59  4  -  -  

Physics 150  7  -  -  

Veterinary Sciences  5  -  -  -  

3.1.1.2 Panel members data collection 

We have obtained the names and curricula vitae of the panel members from the ADOC. The 

panel member names are standardized as PM1, PM2 etc. We perform an advanced search for 

each panel member in WoS through checking the SCIE and SSCI. All the publications of the 

individual panel members up to the year of the research assessment at University of Antwerp 

were taken into account. We analyze the search result with the ‘Analyze Results’ option in the 
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WoS according to ‘WoS SCs’ and then ‘Source titles’ (here after: journal titles). We repeat this 

procedure for each of the panel members. For both the cases, we combine the search sets for 

each panel member and get the data for the publications of the panel as a whole. In this way, any 

publication that has been co-authored by two or more panel members is counted only once. Co-

authorship between panel members only occurs in the case of Chemistry. 

 

The Biology panel was composed of five panel members (including the chair). Table 8 lists the 

publication statistics of the Biology panel members. The combined publication output of the 

Biology panel members consists of 786 publications. The number of publications per panel 

member ranges from 76 to 262. In total, these publications appeared in 217 different journals and 

are assigned to 54 different WoS SCs. 

Table 8: Publication statistics of Biology panel members 

Panel member code No. of Publications No.  of Journals No. of WoS SCs 

 PM1 146  48  20  
 PM2 117  49  24  
 PM3 76  35  15  
 PM4 185  49  13  
 PM5 262  76  28  

Panel 786  217  54  

 

Table 9: Publication statistics of Biomedical Sciences panel members 

Panel member code No. of Publications No.  of Journals No. of WoS SCs 

 PM1 153  78  30  
 PM2 201  81  26  
 PM3 261  79  22  
 PM4 240  86  39  
 PM5 74  37  18  
 PM6 109  35  23  
 PM7 194  68  21  
 PM8 101  32  23  

Panel 1333  395  80  
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Table 10: Publication statistics of Chemistry panel members 

Panel member code No. of Publications No.  of Journals No. of WoS SCs 

 PM1 694  72  11  
 PM2 221  60  25  
 PM3 152  42  16  
 PM4 254  55  34  
 PM5 206  58  34  
 PM6 113  32  14  
 PM7 512  69  12  
Panel 2150  248  66  

Table 11: Publication statistics of Pharmaceutical Sciences panel members 

Panel member code No. of Publications No.  of Journals No. of WoS SCs 

 PM1 122  39  17  
 PM2 351  93  36  
 PM3 259  91  33  
 PM4 124  67  31  
 PM5 180  86  33  
Panel 1036  300  68  

Table 12: Publication statistics of Physics panel members 

Panel member code No. of Publications No.  of Journals No. of WoS SCs 

 PM1 117  7  3  
 PM2 168  15  4  
 PM3 124  49  10  
 PM4 166  40  10  
 PM5 247  87  10  
 PM6 282  54  10  

Panel 1104  204  46  

 

The Biomedical Sciences panel was composed of eight panel members (including the chair). 

Table 9 lists the publication statistics of the Biomedical Sciences panel members. The combined 

publication output of the Biomedical Sciences panel members consists of 1333 publications. The 

number of publications per panel member ranges from 74 to 261. In total, these publications 

appeared in 395 different journals and are assigned to 80 different WoS SCs. 
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Table 13: Publication statistics of Veterinary Sciences panel members 

Panel member code No. of Publications No.  of Journals No. of WoS SCs 

 PM1 313  50  21  
 PM2 121  66  31  
 PM3 272  46  8  
 PM4 131  53  19  

Panel 837  200  55  

 

 

Table 10 lists the publication statistics of the Chemistry panel members. The Chemistry panel 

was composed of seven panel members (including the chair). The combined publication output 

of the Chemistry panel members consists of 2150 publications, two of which are co-authored 

publications between two panel members. The number of publications per panel member ranges 

from 113 to 694. In total, these publications appeared in 248 different journals and are assigned 

to 66 different WoS SCs. 

 

The Pharmaceutical Sciences panel was composed of five panel members (including the chair). 

Table 11 lists the publication statistics of the Pharmaceutical Sciences panel members. The 

combined publication output of the Pharmaceutical Sciences panel members consists of 1036 

publications. The number of publications per panel member ranges from 122 to 351. In total, 

these publications appeared in 300 different journals and are assigned to 68 different WoS SCs. 

 

The Physics panel was composed of six panel members (including the chair). Table 12 lists the 

publication statistics of the Physics panel members. The combined publication output of the 

Physics panel members consists of 1104 publications. The number of publications per panel 

member ranges from 117 to 282. In total, these publications appeared in 204 different journals 

and are assigned to 46 different WoS SCs. 

 

The Veterinary Sciences panel was composed of four panel members (including the chair). Table 

13 lists the publication statistics of the Veterinary Sciences panel members. The combined 

publication output of the Veterinary Sciences panel members consists of 837 publications. The 

number of publications per panel member ranges from 121 to 313. In total, these publications 

appeared in 200 different journals and are assigned to 55 different WoS SCs. 
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Table 14: Publication statistics of the research groups and panels 

Name of the Department 

 
 

Asses
sment 

year 

Research groups Panel 

No. of 
research 

groups 

No. of 
journals 

No. of 
publicati

ons 

No. of 
WoS SCs 

No. of 
panel 

members 

No. of 
journals 

No. of 
public
ations 

No. of 
WoS SCs 

Biology 2011 9 372 1158 90 5 217 786 54 

Biomedical Sciences 2014 15 476 1234 103 8 395 1333 80 

Chemistry 2009 12 300 920 94 7 248 2150 66 

Pharmaceutical Sciences 2009 10 180 376 67 5 300 1036 68 

Physics 2010 9 353 1739 108 6 204 1104 46 

Veterinary Sciences  2014 3 146 231 61 4 200 837 55 

Table 14 lists the number of publications of the research groups during the eight years preceding 

their evaluation, and the entire publication profile of the panel (members) up to the year of 

assessment. Altogether, there are 58 research groups in six departments. The number of 

publications per department ranges from 231 to 1739. In total, these publications appeared in  

146 to 476 different journals, and publications are distributed over 61 to 108 WoS SCs. In all 

cases, two or more research groups from the same department co-authored some publications.  

Table 14 also shows that in total, there were 35 panel members involved in the research 

evaluations of the six University of Antwerp departments. The number of panel members ranges 

from 4 to 8 for each department. The number of publications per panel ranges from 786 to 2150. 

In total, these publications appeared in 200 to 395 different journals, and were distributed over 

54 to 80 WoS SCs. There is no shared authorship between panel members and research groups in 

any of the cases. None of the panels have any co-authored publications among the respective 

panel members, except for two Chemistry panel members with two co-authored publications.  

3.2 Methods 

Our methods are based on the assumptions that for the evaluation of a research group by a panel, 

the shorter the cognitive distances or the higher the similarity between a research group and 

panel (members) the better the fit of the expert panel. We use the global map of sciences based 

on WoS data, with the subject categories (SCs) or the journals as nodes.  
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WoS SCs cover all disciplines and may comprise a wide array of different subfields and topics 

(Bornmann, Mutz, Marx, Schier, & Daniel, 2011). In addition, most journals cover closely 

related subfields and topics (Tseng & Tsay, 2013). The methods take into account the similarity 

between WoS SCs and between journals: If the publications of a panel member and a research 

group appear in similar or closely related journals, they may still cover the same or similar 

subfield or topic.  

The global map of science is based on a matrix of similarity measures computed from correlation 

functions among the SCs. The similarity matrix contains two structures: a cited and a citing one. 

Loet Leydesdorff, Ismael Rafols and colleagues (Leydesdorff & Rafols, 2009; Rafols et al., 

2010; Leydesdorff, Carley, et al., 2013) created a matrix of citing to cited WoS SCs based on the 

SCIE and the SSCI, which was subsequently normalized in the citing direction with a threshold 

cutoff at a cosine similarity > 0.15 between two SCs. The result is a symmetric N×N similarity 

matrix (here, N=224). If we interpret it as an adjacency matrix, we see that it is equivalent to a 

weighted network, in which similar categories are linked (the higher the link weight, the stronger 

the similarity). The file ‘map10.paj’ contains this weighted network of WoS SCs (available at 

http://www.leydesdorff.net/overlaytoolkit/map10.paj). The information in the network file can be 

visualized. The subfield of bibliometric mapping is dedicated to the visualization, clustering, and 

interpretation of similarity matrices or networks like the one we use. Many different algorithms 

or layout techniques have been developed for this purpose, for example, Kamada-Kawai 

(Kamada & Kawai, 1989) or VOS (visualization of similarities) (van Eck & Waltman, 2007). 

We also use a global map of science based on journal similarity. We have received the data of 

the underlying similarity matrix from Loet Leydesdorff in the context of a joint paper (Rahman, 

Guns, Leydesdorff and Engels, 2016). While we did not construct this similarity matrix 

ourselves, we briefly outline the main steps that were taken to create it. The data was harvested 

from Thomson Reuters’ (currently Clarivate Analytics) Journal Citation Reports (JCR) of the 

Science and Social Science Editions 2011.  
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An aggregated journal-journal citation matrix of 10,675 journals1 was constructed with a grand 

total of 35,295,459 citations over the entire matrix, which was subsequently normalized in the 

citing direction. The similarities between journals are calculated using the cosine similarity 

between their citing distributions respectively (see Leydesdorff, Rafols, et al., 2013 for details). 

The resulting journal similarity matrix can again be considered as an adjacency matrix, and thus 

is equivalent to a weighted network where similar journals are linked and link weights increase 

with similarity strength. However, as some of the journal names underwent a name change over 

time, we had to find a way to handle these changes in a uniform way. For the detailed guidelines, 

we refer to Chapter VI of this thesis.  

Leydesdorff & Rafols (2012)  used the JCR 2009 of the SCIE and SSCI, containing 9162 

journals in total, to generate global maps of science at the journal level from the aggregated 

journal–journal citation. Based on the data the authors created two base maps – a citing map 

(8860 journals) and a cited map (9162 journals). The data was harvested from JCR 2009 and an 

aggregated journal–journal citation matrix was constructed. The matrix was transformed into a 

cosine-normalized matrix both in the cited and in the citing dimensions. Simultaneously, to 

create citing and cited overlay maps two corresponding computer programs (citing.exe and 

cited.exe) are made available. These programs can process data downloaded from WoS to 

generate overlay maps (see http://www.leydesdorff.net/journalmaps for details). Updated maps 

(both citing and cited) were created based on the JCR 2011 (SCIE and SSCI). This edition of the 

JCR contains 10,675 journals. This time, a third program (analyze.exe) was made available, 

which uses the results of the option ‘Analyze Results’ in WoS directly. This program no longer 

requires downloading the data sets and is hence more efficient (Leydesdorff, Rafols, & Chen, 

2013; see http://www.leydesdorff.net/journals11 for details). Later, Leydesdorff and 

collaborators created an update that was based on the JCR 2012 (SCIE and SSCI), containing 

10,936 journals in total. This time a citing map (10,546 journals) is offered with two programs 

(citing.exe and crciting.exe) for creating overlay maps. They also made available the third 

                                                 

1 The Science and Social Science Editions 2011 contain 8281 and 2943 journals respectively. Of these journals, 549 

are contained in both databases. 
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program (analyze.exe, see http://www.leydesdorff.net/journals12 for details) (Leydesdorff, de 

Moya-Anegón, & de Nooy, 2016) for the same purpose. 

The citing and cited maps based on the JCR 2009 require downloading all records, while the 

maps based on the JCR 2011 do not require to download all records. The citing base map based 

on the JCR 2011 includes more journals (10,673 journals) than the cited base map (10,256 

journals). Moreover, the majority of our research groups’ publications data are close to the JCR 

2011. For these reasons, we use the 2-dimensional citing journal base map based on JCR 2011 

and that is available at http://www.leydesdorff.net/journals11/citing_all.txt (see 

http://www.leydesdorff.net /journals11).  

3.2.1 Overlay maps 

We created overlay maps based on a base map of science derived from WoS SCs (Leydesdorff & 

Rafols, 2009; Rafols et al., 2010) and journals (Leydesdorff & Rafols, 2012; Leydesdorff, 

Rafols, et al., 2013). Combining the base maps described in the previous section with publication 

data (how many publications in which SCs?), one can create overlay maps as the visual 

representation of the expertise of a research unit.  

In an overlay map, the original map – referred to as the base map – provides the location (and 

sometimes cluster) of each SC/journal, whereas publication data is used to visualize the unit’s 

publication intensity for each SC/journal. Typically, this is done by scaling the size of each node 

according to the number of publications. Hence, overlay maps can also be used for visual 

comparison and estimation of the degree of overlap of two or more entities in exploratory 

analysis.  

During WoS SCs data collection for each entity (individual research groups, panel members, 

research groups together and panel) the resulting files are downloaded using the default name 

‘analyze.txt’ for all research groups and panel members. We download the ‘WC10.exe’ program 

from http://www.leydesdorff.net/overlay toolkit. 
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Figure 1: BIOL-B research group’s publication overlay map in WoS SCs 

 

Figure 2: Journal overlay map of the BIOL-B research group 

This file ‘analyze.txt’ is transformed by the mini-program ‘WC10.exe’ to ‘WC10.vec’ for upload 

into Pajek as a vector, and generates files like ‘vos4.csv’, ‘vos6.csv’, and ‘vos19.csv’ for use in 

VOSviewer (with 4, 6 or 19 base colors for the clusters, respectively) following the instruction 

given in (Riopelle, Leydesdorff, & Jie, 2014). We use the VOSviewer software for visualization 
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of overlay maps. For example, Figure 1 shows BIOL-B  research group’s publications overlay 

map in WoS SCs.  

Subsequently, the journals data for each entity’s resulting files were downloaded from WoS. We 

followed the instruction of creating journal overlay maps available at 

http://www.leydesdorff.net/journals12. We obtain journal overlay maps by using VOSviewer. 

For example, Figure 2 shows the journal overlay map of the BIOL-B research group. 

We prepare both the WoS SCs and journal overlay maps for each research group, each panel 

member, research groups together and panel. The maps are reported in the online technical 

reports (The full reference is mentioned at the end of this chapter) of each department. 

3.2.2 The benchmark 

The panel members and the research groups are represented as N-dimensional publication 

vectors. As a start (benchmark) we just calculate the Euclidean distance between the L1-

normalized (Golub & Van Loan, 1996) (see section 3.2.4)  arrays of each panel member and 

each research group. The Euclidean distance between two vectors a = (an)n=1,…,k and b = 

(bn)n=1,…k in Rk , for any strictly positive integer k, is given as: 

 𝑑(𝑎, 𝑏) = √(𝑎1 − 𝑏1)2 + ⋯ + (𝑎𝑘 − 𝑏𝑘)2 (1) 

In this thesis, we will use formula (1) for k = 2, k=3 and k = N. It is mentionable that the 

benchmark does not consider the similarity of WoS SCs or journals, while our proposed methods 

consider the similarity. We have used and present results of this benchmark method in the 

chapter VII, where we compare each of the methods we have developed.  

3.2.3 Barycenter method 

A barycenter is an entity’s weighted average location on a map. The barycenter method - the 

center of publication or publication barycenter is introduced by (Rousseau, 1989a, 1989b). Jin & 

Rousseau (2001) applied the method in a practical situation to identify the mean center of 
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Chinese publications. Later, using barycenter places of publication of monographs, edited books 

and book chapters, Verleysen & Engels (2014b) measured internationalization of peer reviewed 

and non-peer reviewed book publishing in the Social Sciences and Humanities (SSH) as 

practiced at universities in Flanders. Further, they used barycenters to compare the geographic 

center of weight of book publishing between the SSH (Verleysen & Engels, 2014a) 

In our case, an entity’s barycenter is the center of weight (Rousseau, 1989a, 1989b, 2008; Jin & 

Rousseau, 2001) of the WoS SCs or journals in which it has publications. The weight is the 

number of publications of the panel member or the research group in the WoS SCs or in the 

journals in which it has publications. In the 2-dimensional WoS SCs map or journal map each 

SC/journal has a place on this map, characterized by the corresponding coordinates, denoted as 

(Lj,1, Lj,2), j = 1, …, N. For each panel member and for each research group a barycenter is 

calculated and Euclidean distances between barycenters can be determined. Coordinates of these 

barycenters (in 2-dimension) are given as the point 𝐶 = (𝐶1, 𝐶2), where 

 
𝐶1 =

∑ 𝑚𝑗𝐿𝑗,1
𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
 

(2) 

In the case of WoS SCs, mj is the number of publications of the unit under investigation (panel 

member, research group) belonging to category j; this category j has coordinates (Lj,1, Lj,2) in the 

base map and  𝑇 = ∑ 𝑚𝑗
𝑁
𝑗=1 . Note that T is larger than the total number of publications as we use 

full counting of WoS SCs: if a publication appears in a journal belonging to two categories, it 

will be counted twice. 

In the case of journals, Lj,1 and Lj,2 are the horizontal and vertical coordinates of journal j on the 

map, 𝑚𝑗 is the number of publications in journal 𝑗 of the unit under investigation (panel member, 

research group), and 𝑇 = ∑ 𝑚𝑗
𝑁
𝑗=1  is the total number of publications of the entity.  

We point out that the term ‘barycenter’ taken on its own, has no meaning. Any point can be the 

barycenter of infinitely many sets of points, possibly using sets of weights. We refer to a formal 

description of the notion of a barycenter: A barycenter is the result of an operation performed on 

a set of vectors. Let X = (Xn)n=1,…,k be a set of vectors in m-dimensional space, Rm. Then its 

barycenter BX is the result of the following mapping: 
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𝐵: (𝑹𝑚)𝑘  →  𝑅𝑚: (𝑋𝑛)𝑛=1,…,𝑘  →  𝐵𝑋 =
1

𝑘
∑ 𝑋𝑛

𝑘
𝑛=1                                        (3) 

An example: let m = 2, k = 4 and 𝑋1 = (
0
0

) , 𝑋2 = (
0
1

) , 𝑋3 = (
2
1

) and 𝑋4 = (
2
0

). Then the 

barycenter of this set of four vectors is: 
1

4
((

0
0

) + (
0
1

) + (
2
1

) + (
2
0

)) =
1

4
(

4
2

) = (
1

0.5
). This is 

the standard barycenter of the set of vertices X1, X2, X3 and X4 of a rectangle in the plane. More 

generally, one may assign a positive weight to each vector. If mn is the weight assigned to vector 

Xn then the (generalized) barycenter (or center of gravity) is the result of the following mapping:  

1,...,

1

1
: (R , ) : ( , )

n k

k
m k m

n n x n n

n

B R R m X B m X
T





                                     (4) 

where 𝑇 =  ∑ 𝑚𝑛
𝑘
𝑛=1 . If all weights are set equal to 1 then one recovers formula (3).  

Clearly, any vector can be the barycenter of infinitely many sets of vectors and weights. This is 

the main reason why the term ‘barycenter’ has no meaning on its own. In an extremely formal 

way, one may even say that any vector X0 is the barycenter of itself, by taking the set of vectors 

equal to the singleton set {X} and weight equal to 1.  

We further note that in order to obtain meaningful distances these values must be scale-invariant. 

This means that the distance between points P and Q must be the same as the distance between 

the points P and cQ, where c is a strictly positive number. Indeed: the total output of a research 

group can be several orders of magnitude larger than that of one expert. This difference must not 

play a role in determining cognitive distances. The barycenter method explained above and in 

particular formulae (2) satisfy this requirement as multiplying all mjs with the same strictly 

positive factor leads to the same barycenter.  

Although it is convenient to perform visualization and to determine cognitive distance in the 

plane, there is no theoretical reason to perform these acts in two dimensions. Likewise, there are 

no strong reasons to do both in the same dimension. The barycenter method can, at least in 

theory, be applied in any strictly positive dimension smaller than or equal to N. In Chapter VII, 
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we compare barycenters in two and three dimensions; in the remainder of the thesis we limit 

ourselves to barycenters in two dimensions.  

For three dimensions, we use the VOS algorithm, but resulting in a three-dimensional base map. 

This map was based on the network in http://www.leydesdorff.net/overlaytoolkit /map10.paj and 

obtained using Pajek, which implements the VOS algorithm both in two and three dimensions. 

Again, each SC has a place on this map, characterized by corresponding coordinates, denoted as 

(Lj,1, Lj,2, Lj,3), j = 1, …, N, and for each panel member and for each research group a barycenter 

derived from their publication profiles is calculated. Coordinates in 3-dimensions are given as 

𝐶1 =
∑ 𝑚𝑗𝐿𝑗,1

𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
;  𝐶3 =

∑ 𝑚𝑗𝐿𝑗,3
𝑁
𝑗=1

𝑇
                                         (5) 

The meaning of the symbols T and mj in formula (5) is the same as in formula (2). The Euclidean 

distance between barycenters is calculated with the formula (1). We have used the barycenter 

method in chapters V to VIII. The 3-dimensional variant of the barycenter method is used in 

chapter VII.  

3.2.4 Similarity-adapted publication vector method  

A regular publication vector simply counts publications per journal (or subject category), 

whereas in a SAPV these counts are adapted to account for similarity between WoS SCs or 

journals. We use normalized SAPVs, such that there is scale invariance and publication vectors 

of entities of varying size can be meaningfully compared.  

We calculate SAPVs for each entity, starting from the original journal similarity matrix, (where 

N = 10,675) and original WoS SCs similarity matrix (where N = 224) is the number of rows or 

columns in the matrix. Based on their respective SAPVs, the distance can be calculated between 

the expert panel, panel members, groups, and separate groups.  

A SAPV is determined as the vector C = (𝐶1, 𝐶2, … , 𝐶𝑁), where: 

 
𝐶𝑘 =

∑ 𝑠𝑘𝑗𝑚𝑗
𝑁
𝑗=1

∑ ∑ 𝑠𝑖𝑗𝑚𝑗
𝑁
𝑗=1

𝑁
𝑖=1

=
(𝑆 ∗ 𝑀)𝑘

‖𝑆 ∗ 𝑀‖1
  

(6) 
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In case of WoS SCs,  𝑠𝑗,𝑘 denotes the similarity value between the 𝑘-th and the 𝑗-th WoS SC, and 

𝑚𝑗 is the number of publications in WoS SC 𝑗. The numerator of Equation (6) is equal to the 𝑘-th 

element of 𝑆 ∗ 𝑀, the multiplication of the WoS SCs similarity matrix 𝑆 and the column matrix 

of publications 𝑀 =  (𝑚𝑗)
𝑗
. The denominator is the L1-norm of the unnormalized vector. We 

observe that the L1-norm of the normalized vector C is indeed equal to 1. 

In case of journals, 𝑠𝑗,𝑘 denotes the 𝑘-th coordinate of journal 𝑗 and 𝑚𝑗 is the number of 

publications in journal 𝑗. The numerator of Equation (6) is equal to the k-th element of  𝑆 ∗ 𝑀, 

the multiplication of the journals similarity matrix S and the column matrix of publications 𝑀 =

 (𝑚𝑗)
𝑗
.  

 

Figure 3: Workflow for determining distances between SAPVs 

 

The multiplication 𝑆 ∗ 𝑀, i.e. applying the linear map with matrix representation S to the 

publication vector M leads to a new vector that we termed a SAPV. If we ignore similarity then S 

is the identity matrix and publication columns stay unchanged. We consider the SAPV method to 

be quite interesting as it provides a solution to the problem that WoS SCs overlap and are 

sometimes poorly defined, the SC Information Science & Library Science being a well-known 

example. 



51 

 

Figure 3 shows the workflow for determining distances between SAPVs. In particular, scale-

invariance can be obtained through normalization as illustrated (for 3-dimensions) in Figure 4. 

All points situated on the straight line through the origin are represented by the point in the plane 

with equation x + y + z = 1. 

This is so-called L1-normalization: by dividing each coordinate by the sum of all coordinates, 

one obtains a new array for which the sum of all coordinates is one (taking into account that no 

coordinate is negative). One could equally well divide by an array’s Euclidean length (so-called 

L2-normalization (Golub & Van Loan, 1996) but as we do not see an advantage for any of the 

two approaches, we applied L1-normalization as is done in diversity studies.  

 

Figure 4: Normalization, leading to a scale invariant approach 

Subsequently, we determine the Euclidean distance between the SAPVs of panel members, 

individual research groups, panel and research groups together using formula (1). Although the 

matrix and vectors are large, the calculation of SAPV and distances is relatively fast, due to the 

use of efficient matrix procedures implemented in NumPy and SciPy.2 

                                                 

2 http://www.numpy.org and http://scipy.org  
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The distances thus obtained through barycenter and SAPV methods should be interpreted as 

having arbitrary units on a ratio scale (Egghe & Rousseau, 1990). This means there is a fixed 

meaningful zero (distance zero in the map), and distances can be compared in terms of 

percentage or fraction (e.g. the distance between A and B is 1.5 times larger than the distance 

between C and D). 

We have used the SAPV method in chapters VI, VII, and VIII.  

3.2.5 Weighted cosine similarity method 

We also consider a weighted similarity method (generalized cosine similarity). The weighted 

cosine similarity (WCS) between panel member (PM) k and research group m, according to 

Zhou et al. (2012) is: 

      
∑ 𝑀𝑖

𝑘𝑁
𝑖=1 (∑ 𝑅𝑗

𝑚𝑠𝑗𝑖
𝑁
𝑗=1 )

√(∑ 𝑀𝑖
𝑘𝑁

𝑖=1 (∑ 𝑀𝑗
𝑘𝑠𝑗𝑖

𝑁
𝑗=1 )).(∑ 𝑅𝑖

𝑚𝑁
𝑖=1 (∑ 𝑅𝑗

𝑚𝑠𝑗𝑖
𝑁
𝑗=1 )) 

 

=  
  * *

t
k mM S R

√   * *
t

k kM S M .√   * *
t

m mR S R

                                                       (7) 

The numerator is the matrix multiplication:   * *
t

k mM S R , where t denotes matrix transposition, 

S is the journal/WoS SCs similarity matrix, Mk denotes the column matrix of publications of 

panel member k and Rm denotes the column matrix of publications of research group m. 

Similarly, the two products under the square root in the denominator are:   * *
t

k kM S M  and  

  * *
t

m mR S R . The result is the WCS value between panel member k and research group m. 

This value is calculated for each panel member and each research group. The larger the value the 

more similar they are. 

Formula (7) is scale-invariant: multiplying Mk or Rm with a fixed constant does not change the 

result. Note that if S is the identity matrix (similarity is not taken into account), formula (7) 

reduces to regular cosine similarity (see chapter IV section 4.2.3). A similarity or proximity can 
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be considered as the opposite of a distance: the higher the similarity the better the match – the 

closer the distance – between a panel member and a research group. This value too is calculated 

for each panel member and each research group.  

We note that this method may lead to mathematical problems when applied in general vector 

spaces, but that these problems do not occur in the particular framework used in this thesis (in 

mathematical terms: we work in the positive cone (R+)N, where R denotes the real numbers). In 

the following example, we show that WCS cannot be used with any similarity matrix but that the 

problem does not occur for the similarity matrices (WoS SCs and journals) used by us. We 

illustrate this with the regular cosine similarity (the numerator of formula 7). 

In a general (real or complex) vector space it is possible that if expressions of the form 

  * *
t

k mM S R  , with S a symmetric matrix, are used as similarity measures, some non-null 

vectors have similarity zero to themselves. This excludes this type of construction as a general 

method for calculating similarities.  

We consider the symmetric matrix 

1 0.8 0.9

S = 0.8 1 0

0.9 0 1

 
 
 
 
 

, see (Zhou et al., 2012), and want to 

find a vector X = (u,v,w)t, (u,v,w: real numbers) such that   * *
t

X S X  = 0. Replacing X by 

(u,v,w)t leads to the requirement: u2 + 1.6uv + 1.8uw + v2 + w2 = 0. Taking u = 1, v ≈ -1.44031 

and w = -1.1 provides an (approximate) solution. In fact, this is just one solution among 

infinitely many. 

If u = 1 and w = K then v1 =   2- -K -1.8* K - 0.36 + 0.8  and v2 =  2-K -1.8* K - 0.36 - 0.8 always 

provide solutions (some of which may be complex numbers). The one given above is v1 with K = 

-1.1. This solution was obtained using TI-nspire software.   

We check now that v1 and v2 as given above, indeed lead to the perfect null solution. Writing 

2-K -1.8* K - 0.36  as R and using v1 we find:  
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u2 + 1.6 uv + 1.8uw + v2 + w2  

= 1 - 1.6R – 1.28 + 1.8K  + (- K2 - 1.8K - 0.36) + 1.6R + 0.64 + K2  

= (1 - 1.28 - 0.36 + 0.64) + (1.8 - 1.8)K + (- K2 + K2)  + R (- 1.6 + 1.6)  =  0 

Similarly, with v2 we obtain:  

 u2 + 1.6uv + 1.8uw + v2 + w2  

= 1 +1.6 R – 1.28 + 1.8 K  + (- K2 – 1.8K - 0.36) – 1.6 R + 0.64 + K2  

= (1 - 1.28 - 0.36 + 0.64) + (1.8 - 1.8) K + (K2- K2) + R (1.6 - 1.6) = 0.  

However, this problem cannot occur when the matrix S has non-negative values and when, 

moreover, the vector X has only non-negative values, which is precisely the context in which we 

work. Indeed: under these circumstances the expression    * *
t

X S X  is always non-negative and 

only zero when X = 0 (the zero-vector) and this in any dimension. Note that the example 

presented above led to a vector X with two negative coordinates. 

We have used the WCS method in chapters VII and VIII.  

3.2.6 Bootstrapping and confidence intervals 

The barycenter and SAPV methods determine cognitive distance, on the basis of the WoS 

SCs/journals in which the groups and panel members have published. In the same way, the WCS 

method determines similarity on the basis of the WoS SCs/journals in which the groups and 

panel members have published. However, such information is not entirely deterministic; it is, for 

instance, dependent on the database used as well as environmental factors like the speed with 

which a journal processes a submission. It logically follows that small differences in Euclidean 

distances or similarity bear little meaning.  

 



55 

 

To study this problem in a more systematic way, we employ a bootstrapping approach in order to 

determine 95 % confidence intervals (CIs) to each Euclidean distance (both between barycenters 

and SAPVs) and similarity. If two CIs do not overlap, the difference between the distances is 

statistically significant at the 0.05 level. Although it is possible for overlapping CIs to have a 

statistically significant difference between the corresponding distances, the difference between 

the distances is less likely to have practical meaning. If the confidence interval of the panel 

member who is closest to a given research group overlaps with that of the panel member who 

ranks second (and maybe even with the panel members ranking third or fourth) we say that there 

is no (statistical) difference in cognitive distance. 

Bootstrapping (Efron & Tibshirani, 1998) is a simulation-based method for estimating standard 

error and confidence intervals. Bootstrapping depends on the notion of a bootstrap sample. To 

determine a bootstrap sample for a panel member or research group with N publications, we 

randomly sample with replacement N publications from its set of publications. In other words, 

the same publication can be chosen multiple times. Some publications in the original data set will 

not occur in the bootstrap data set, whereas others will occur once, twice or even more times. 

From the bootstrap sample, one can calculate a bootstrap replication, in our case a benchmark 

using formula (1), barycenter 2D using formula (2), barycenter 3D using formula (5), SAPV 

using formula (6), and WCS using formula (7). 

By generating a large amount of independent bootstrap samples (in our case 1000) and each time 

calculating the bootstrap replication, we can approximate the variability within the data set. 

Since we have a two-sample problem (distance between two entities; Efron & Tibshirani, 1998, 

Ch. 8), we calculate the distances between pairs of bootstrap replications, from which we obtain 

a CI using a bootstrap percentile approach (Efron & Tibshirani, 1998, Ch. 13). In the case of 

WCS, we generate 1000 independent bootstrap samples for both entities and calculate the 

similarity between them using formula (7). A more detailed explanation can be found online 

(Guns, 2016a, 2016b). 

The bootstrap replications of barycenters are used to add a 95% confidence region for each 

barycenter to the maps. For each barycenter, we have a cloud of 1000 points (bootstrapped 

barycenters) surrounding it. The confidence region is an ellipse that covers 95% of the 
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bootstrapped barycenters. The larger the confidence region, the less stable the barycenter is. 

Although the CI of the distance between two barycenters and their confidence regions are 

related, the two should not be conflated. In particular, we stress that overlapping confidence 

regions do not correspond to overlap between CIs for distances. 

The maps were plotted using Matplotlib (http://matplotlib.org). First, the base map was plotted 

using the pre-existing coordinates. Next, the barycenters were added as slightly larger red or 

green points. Finally, a partially translucent confidence region (ellipse) was calculated and 

superimposed on the map. Calculation of the confidence region was done using an 

implementation by Kington (2014). We briefly outline what elements determine the location and 

placement of such a confidence ellipse. The center of the ellipse is simply the mean of all 

bootstrapped barycenters. The width and height of the ellipse (or its axes) depend on the variance 

in the cloud of points. Finally, the orientation of the ellipse is obtained from the largest 

eigenvector. 

3.2.7 Methods at a glance 

In total, we introduced five methods: a benchmark, two methods using barycenters (one in two 

and one in three dimensions), SAPV and WCS. The benchmark and the SAPV and WCS 

calculations are applied in N dimensions, where N denotes the total number of WoS 

SCs/journals. One of the main components of the proposed methods is that they take into account 

the similarity matrix of WoS SCs and journals. The benchmark method, however, does not take 

this relatedness of WoS SCs or journals into account. The 3-dimensional barycenter is a variant 

of the 2-dimensional barycenter method. Therefore, we consider that we have introduced three 

main methods (barycenter in two dimensions, SAPV and WCS). 

For each of these three methods we have two levels of aggregation – WoS SCs and journals. For 

each level, there is a similarity matrix (N-dimensions, with N the number of WoS SCs or 

journals) and a 2-dimension base map derived from the respective similarity matrix.  
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Figure 5: Main components of the six approaches at a glance 

The SAPV and WCS methods operate at the level of N-dimensions, whereas the barycenter 

method uses the 2-dimensional base map. For the case of SAPV and barycenter, first we 

determine the location of an entity in the similarity matrix or in the 2-dimensional base map 

based on entities publication profile. Later we calculate the Euclidian distances between the 

locations (SAPV or barycenter) of the entities. 

Further, with the bootstrapping approach we determine the confidence intervals of the distance 

between two entities. Subsequently, for the case of WCS, we calculate the similarity between the 

entities and, using bootstrapping approach, we determine the confidence intervals of the 

similarities. All together, these leads to six informetric approaches. Figure 5 illustrates the main 

components of the six approaches at a glance.  

3.2.8 Technical reports 

In the frame of the journal articles included as chapter V to VIII, it was not possible to include 

data from all six departments both due to time constraints and to space limitations. For the entire 

thesis, we have done all calculations for the six departments included in the thesis. Therefore, we 
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have prepared technical reports on each of the six departments. In the technical reports, we 

described step by step the data collection, correlation calculations, barycenter calculation, SAPV 

calculation, WCS calculation, Euclidean distance calculation, WoS SCs and journal overlay map 

creation and programming codes. These technical reports are self-sufficient to understand the 

technical details from data collection to calculation. The reports are available online as depicted 

below:  

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: a case study of Biology 

department (Technical report) (p. x, 77). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431560151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: a case study of Biomedical 

Sciences department (Technical report) (p. xii, 93). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431570151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: a case study of Chemistry 

department (Technical report) (p. x, 87). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431580151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: a case study of 

Pharmaceutical Sciences department (Technical report) (p. x, 79). Antwerp: University 

of Antwerp. http://hdl.handle.net/10067/1431590151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: a case study of Physics 

department (Technical report) (p. xii, 80). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431600151162165141 
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Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: a case study of Veterinary 

Sciences department (Technical report) (p. x, 68). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431610151162165141  
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Chapter IV: Correlation and similarity between publication 

profiles of panels and research groups 

4.1 Introduction 

Across all disciplines, we find that both the panel and the research groups have publications in 

the same or similar WoS SCs or journals. As a preliminary exploration, in this chapter we focus 

on the correlation to measure the strength and direction (positive/negative) of the association 

between the publication profile of the research groups and the panel. With respect to a specific 

journal or WoS SC, three situations can occur: (i) both the panel and the research groups have 

publications in it; (ii) either the panel or the research groups (but not both) have publications in 

it; or (iii) neither the panel nor the research groups have publications in it. For the first two cases, 

we determine the correlation between the publication output of two entities using Pearson’s 

correlation coefficient and Spearman’s rank correlation coefficient. Since situation (iii) is usually 

the most common one, we adopt top-down correlation (Iman & Conover, 1987), a correlation 

coefficient that is better able to handle zero-inflated situations. Salton’s cosine measure (Salton 

& McGill, 1986) has also been shown to be insensitive to common zeros (Ahlgren, Jarneving, & 

Rousseau, 2003). Its use to determine the similarity between publication profiles is explored in 

sections 4.2.3 and 4.3.3. 

4.2 Comparison of panel and research group profiles at the level of 

subject categories 

Table 15 shows that together, the Chemistry panel and groups have published in 108 WoS SCs; 

when considered separately, panel publications appear in 66 categories, and group publications 

in 94 categories. Similarly, the Physics panel and group publications are found in 112 WoS SCs, 

with the Physics panel publications appearing in 46 categories, and the groups’ publications in 

108 categories.  
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Table 15: Distribution of the panels’ and research groups’ publications in WoS SCs 

Department Panel and groups total Panel and groups common Groups Panel 

Biology 101  43  90  54  

Biomedical Sciences 112  71  103  80  

Chemistry 108  51  94  66  

Pharmaceutical Sciences 86  49  67  68  

Physics 112  42  108  46  

Veterinary Sciences  71  45  61  55  

The Biology and Biomedical panels have respectively 43 and 71 WoS SCs in common with the 

research groups in these disciplines. For five of the six disciplines, the research groups’ 

publications fall in more WoS SCs than the panels’ publications; Pharmaceutical Sciences being 

the exception. 

Table 15 shows that there are common WoS SCs where both the panel and research groups from 

the same department have publications. Simultaneously, there are some WoS SCs where either 

the panel or the research groups have publications. The WoS SCs where neither the panel nor the 

research groups have publications are excluded. 

We ranked the WoS SCs in decreasing order of the number of records for each department and 

each panel. Table 16 presents a direct comparison of the top five WoS SCs for each panel and 

the research groups (i.e., all research groups of a department taken together). There are two 

common WoS SCs in the top five between the panel and the department in Chemistry, while 

there are three common WoS SCs between the panel and the department in the Physics, Biology, 

Biomedical Sciences, Veterinary Sciences, and Pharmaceutical Sciences.  

We determine the correlation between the rankings of WoS SCs in two publication portfolios 

using Pearson’s correlation coefficient (r) and Spearman’s rank order correlation coefficient (ρ). 

To calculate correlation, the value zero was kept on the corresponding categories in which either 

the panel or the groups had no publications (but not both). 
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Table 16: Comparison of top five WoS SCs for panels’ and research groups’ per department 

Panel publications Research groups publications 

WoS SCs Records WoS SCs Records 

Biology department 

 Ecology 187 Ecology 256 

 Plant sciences 102 Environmental sciences 215 

 Biochemistry molecular biology 99 Zoology 170 

 Zoology 95 Plant sciences 136 

 Entomology 89 Evolutionary biology 113 

Biomedical Sciences department    

 Biochemistry molecular biology 301 Neurosciences 264 

 Cell biology 165 Genetics heredity 227 

 Neurosciences 155 Clinical neurology 210 

 Genetics heredity 131 Biochemistry molecular biology 142 

 Biophysics 91 Pharmacology Pharmacy 82 

Chemistry department    

 Chemistry inorganic & nuclear 798 Chemistry physical 198 

 Chemistry organic 458 Chemistry analytical 194 

 Chemistry analytical 350 Spectroscopy 164 

 Chemistry multidisciplinary 324 Physics atomic molecular & chemical 100 

 Chemistry physical 177 Physics applied 77 

Pharmaceutical Sciences department 

 Pharmacology pharmacy 509 Pharmacology pharmacy 91 

 Chemistry multidisciplinary 260 Chemistry medicinal 53 

 Biochemistry molecular biology 99 Environmental sciences 48 

 Chemistry analytical 98 Chemistry analytical 36 

 Chemistry medicinal 95 Plant sciences 32 

Physics department 

 Physics condensed matter 410 Physics condensed matter 515 

 Physics multidisciplinary 188 Physics applied 252 

 Chemistry physical 182 Physics multidisciplinary 231 

 Physics applied 159 Materials science multidisciplinary 226 

 Optics 124 Chemistry physical 193 

Veterinary Sciences 

 Veterinary sciences 455 Veterinary sciences 42 

 Reproductive biology 202 Reproductive biology 29 

 Agriculture dairy animal science 107 Cell biology 28 

 Anatomy morphology 67 Neurosciences 27 

 Immunology 62 Agriculture dairy animal science 20 
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4.2.1 Correlation coefficient 

An obvious improvement to this rather crude approach consists in taking more than just the top 

five (or some other threshold) into account.  

  

  

  

Figure 6: Log-log plots of the number of publications (log-log scale) per WoS SC for the panel 

(horizontal axis) and research groups together (vertical axis) for all the six departments 
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Figure 6 presents log-log plots of the correlation between panel and corresponding department’s 

publications occurrence in the WoS SCS. The correlation coefficient between the panel and the 

department in Biology is (r = 0.78, ρ = 0.53), Biomedical Sciences (r = 0.63, ρ = 0.57), 

Chemistry (r = 0.39, ρ = 0.37), Pharmaceutical Sciences (r = 0.70, ρ = 0.29), Physics (r = 0.92, ρ 

= 0.52), Veterinary Sciences (r = 0.70, ρ = 0.30). Pearson correlation is strong to moderate while 

the Spearman’s rank order correlation coefficient is moderate to low. An overview of the 

correlations is shown in the Table 19.  

4.2.2 Top-down correlation coefficient 

In our data, there is a large number of zeros. For example, in total there are 𝑁 WoS SCs. If 𝑥 is 

the number of WoS SCs in which either research group or panel (member) has published, then 

typically 𝑥 ≪ 𝑁. Since traditional correlation coefficients like Pearson and Spearman are not 

well-adapted to zero-inflated data (i.e., data with a large amounts of zeroes; Tu, 2006), we adopt 

the top-down correlation coefficient (Iman & Conover, 1987). For this case, all 𝑁 WoS SCs are 

considered, including the ones with common zeros. The top-down coefficient places emphasis on 

the higher ranked data by computing the correlation using Savage scores derived from the ranked 

data.  

Savage scores are calculated as follows:  

𝑆𝑖 =  ∑ 1/𝑗𝑛
𝑗=𝑖   (8) 

where 𝑖 is an item’s rank among a set of 𝑛 items. For instance, if n = 3, the three Savage scores 

are 𝑆1 = 1 +
1

2
+

1

3
, 𝑆2 =

1

2
+

1

3
, and 𝑆3 =

1

3
. The top-down correlation coefficient is calculated as:  

𝑟𝑡𝑑 = (∑ 𝑆𝑅𝑖

𝑛

𝑖=1

 𝑆𝑄𝑖
− 𝑛)/(𝑛 −  𝑆1) (9) 

where 𝑆 is the Savage score, 𝑅𝑖 and 𝑄𝑖 are the ranks of the data in the two samples, and n is the 

sample size. In case of ties, we use the average Savage score. This correlation coefficient was 
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found to be an adequate rank correlation coefficient for zero-inflated data (Huson, 2007). For a 

full description of the top-down correlation coefficient we refer to Iman and Conover (1987). 

We find positive, moderate correlations between the panel and the department of Chemistry 

(0.54), Pharmaceutical Sciences (0.53), Veterinary Sciences (0.52) and rather low correlations in 

Physics (0.39), Biomedical Sciences (0.30), and Biology (0.23).  

4.2.3 Cosine similarity  

We measure cosine similarity (Salton & McGill, 1986) between the publication vectors of panel 

and research groups. Cosine similarity is a measure of similarity between two non-zero vectors. 

Common zeros do not affect the cosine similarity value (Ahlgren et al., 2003). In our case, we 

represent panel and research group by vectors in which each item represents the number of 

publications in a particular WoS SC (or journal). We use the following formula:  

Cosine similarity (A, B) = 
1

2 2

1 1

n

i ii

n n

i ii i

A B

A B



 



 
 (10) 

where A and B are the vectors for group and panel. In cosine similarity, the value ranges from -1 

to 1, therefore we have three classes of similarities (1: the same, 0: dissimilar, -1: opposite in 

nature). It is mentionable that in our case, the publication vector has only non-negative values. 

Therefore, the cosine similarity value ranges from 0 to 1.  

We find high similarity between the panel and the research groups of Chemistry (0.94), moderate 

similarity for Pharmaceutical Sciences (0.58) and Veterinary Sciences (0.45), and low similarity 

for Biology (0.32), Biomedical Sciences (0.17) and Physics (0.14). We have done the same 

exercise at the journal level as explained in the next section. 

A weighted generalization of cosine similarity (Zhou et al., 2012) is discussed in chapter III, 

section 3.2.5.   
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4.4.3 Comparison of panel and research group profiles at the level of 

journals 

Table 17 shows that together, the Biomedical Science panel and groups have published in 744 

journals, when considered separately, panel publications appear in 395 journals, and group 

publications in 476 journals. Chemistry and Physics panel and groups have 79 and 98 journals in 

common respectively.  

Table 17: Distribution of the panels’ and groups’ publications in journals  

Department Panel and groups total Panel and groups common Groups Panel 

Biology 496  93  372  217  

Biomedical Sciences 744  127  476  395  

Chemistry 506  79  293  292  

Pharmaceutical Sciences 419  61  180  299  

Physics 514  98  355  257  

Veterinary Sciences  318  28  146  200  

In Biology, 124 journals contained panel publications, but no group publications, and 279 

journals have group publications but no panel publications. The Pharmaceutical Sciences and 

Veterinary Sciences panels have published in more journals than the research groups, while for 

Chemistry the number of journals used is almost equal. For the remainder of the disciplines it 

appears that the groups have published in more journals than their respective evaluation panels.  

We ranked the journals in decreasing order of the number of records for each department and 

each panel. Table 18 presents a direct comparison of the top five journals for each panel and the 

research groups (i.e., all research groups of a department taken together).  

There are no common journals in the top five journals between the panels and departments in the 

Chemistry, Biomedical Sciences, and Pharmaceutical Sciences. For Biology, Physics and 

Veterinary Sciences, Table 18 shows that there are journals in the top 5 where both the panel and 

the department have publications.  
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Table 18: Comparison of top five journals for panel and research groups per department 

Panel publications Research groups publications 

Journal Title Records Journal Title Records 

Biology 

Experimental and Applied Acarology 35 Environmental Pollution 40 

General and Comparative Endocrinology 33 Biological Journal of the Linnean Society 33 

Journal of Experimental Biology 30 Journal of Experimental Biology 26 

Proceedings of the Royal Society B: 
Biological Sciences 

22 Aquatic Toxicology 23 

New Phytologist 22 Environmental Science Technology 22 

Biomedical Sciences 

Magnetic Resonance in Medicine 36 PLoS ONE 33 

Journal of Virology 27 Human Mutation 32 

Journal of Biological Chemistry 26 Neurology 28 

Science 24 Neurobiology of Aging 20 

Acta crystallographica Section d 
Biological Crystallography 

22 American Journal of Human Genetics 20 

Chemistry department 

Inorganic Chemistry 
213 

Spectrochimica Acta Part B Atomic 
Spectroscopy 37 

Organometallics 174 Journal of Physical Chemistry A 37 

Journal of Organometallic Chemistry 106 Journal of Analytical Atomic Spectrometry 35 

Analytical Chemistry 94 X ray Spectrometry 27 

Journal of the American Chemical Society 86 Analytical Chemistry 26 

Pharmaceutical Sciences 

Pharmaceutical Research 52 Kidney International 13 

British Journal of Clinical Pharmacology 35 Planta Medica 11 

Archiv der Pharmazie 35 Environmental Science Technology 8 

Clinical Pharmacology Therapeutics 27 Journal of Mass Spectrometry 7 

Monatshefte Fur Chemie 23 Chemosphere 7 

Physics department 

Physical Review B 246 Physical Review B 291 

Physical Review Letters 98 European Physical Journal C 108 

Surface Science 56 Physics Letters B 72 

Applied Physics Letters 54 Physical Review Letters 60 

Physics Letters B 51 Physica C Superconductivity and its Applications 43 
Veterinary Sciences  

Veterinary Sciences 

Theriogenology 71 Theriogenology 11 

Reproduction in Domestic Animals 47 Reproduction in Domestic Animals 10 

Animal reproduction science 40 Neurogastroenterology and Motility 7 

Berliner und Munchener Tierarztliche 
Wochenschrift 

38 Histochemistry and Cell Biology 5 

Kleintierpraxis 30 Vlaams Diergeneeskundig Tijdschrift 4 
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More precisely Table 18 shows that there is one common journal – Journal of Experimental 

Biology – between the Biology panel and department, two common journals – Theriogenology 

and Reproduction in Domestic Animals – between the Veterinary panel and department, and 

three common journals – Physical Review B, Physical Review Letters, Physics Letters B – in the 

case of Physics. The Physics, Biology and Veterinary Sciences departments fare somewhat better 

than the other three disciplines. We conclude that, overall, the overlap between the top five of 

journals used by the department and the panel is quite low. 

4.3.1 Correlation coefficient 

We determine the correlation between the rankings of journals in two publication portfolios 

using Pearson’s correlation coefficient and Spearman’s rank order correlation coefficient. Scatter 

plots of correlation between panel and corresponding department’s publications occurrence in 

the journals are shown in Figure 7.  

Values for the Pearson’s correlation coefficient vary from high to low – Physics (r = 0.85), 

Veterinary Sciences (r = 0.29), Biology (r = 0.26), Chemistry (r = 0.16), Biomedical Sciences (r 

= 0.13), except Pharmaceutical Sciences where the correlation is negative (r = -0.05). The 

Spearman’s rank correlation coefficient between the panel and the department is negative in all 

cases: Biology (ρ = - 0.28), Chemistry (ρ = -0.36), Physics (ρ = -0.24), Biomedical Sciences        

(ρ = - 0.43), Pharmaceutical Sciences (ρ = - 0.47) and Veterinary Sciences (ρ = - 0.66). 

We find that the two correlation coefficients are very different in this case. For the same data, the 

Pearson’s correlation coefficient is positive in five cases, while Spearman’s rank correlation 

coefficient is negative in all the cases. The difference between the correlations is large for the 

case of Physics due to an outlier – Physical Review B – where both the sides have over 250 

publications. If we exclude that outlier the Pearson’s correlation coefficient drops (r = 0.51) 

while Spearman’s rank correlation coefficient remains the same. 
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Figure 7: Scatter plot of the number of publications (log-log scale) per journals for the panel 

(horizontal axis) and research groups together (vertical axis) for all the six departments 
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4.3.2 Top-down correlation coefficient 

We also determine the correlation between the rankings of journals using the top-down 

correlation. As explained earlier, we employ the top-down correlation to account for the large 

number of zeroes in our data (Huson, 2007). We find a positive but very low correlation in all 

cases: Chemistry (0.14), Biology (0.15), Physics (0.16), Biomedical Sciences (0.16). 

Pharmaceutical Sciences (0.09), Veterinary Sciences (0.06). 

4.3.3 Cosine similarity  

Using formula (10), we measure the cosine similarity at the journal level. For all the cases, we 

find low similarity values: Biology (0.19), Biomedical Sciences (0.16), Pharmaceutical Sciences 

(0.14), Chemistry (0.10), Veterinary Sciences (0.04) and Physics (0.03). 

4.4 Conclusion 

We have determined the association between the publication output of two entities using 

Pearson’s correlation coefficient and Spearman’s rank correlation coefficient, the top-down 

correlation coefficient, and cosine similarity.  

Table 19 summarizes the obtained correlation and similarity values between each department and 

corresponding panel. At the level of WoS SCs, both the Spearman and top-down correlations are 

moderate to low. The Pearson’s correlation coefficients are strong to moderate. The cosine 

similarity for Chemistry is remarkably high, while the others have moderate to low similarity 

values. At the level of journals, all the values are high to low for Pearson’s correlation except 

Pharmaceutical Sciences; however, values are negative in all cases for Spearman correlation. 

Top-down correlation and cosine similarity are low in all the cases at the level of journals. 

The correlation coefficients and cosine similarity in WoS SCs are strong to moderate while in 

journals it is low to negative. This is likely due to the fact that the total number of WoS SCs (224 

SCs) is lower than the total number of journals (10,675 journals). Hence, two publications are far 

more likely to be in the same WoS SC than in the same journal.  
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Table 19: Correlation and similarity in the six departments 

 WoS SCs Journals 

Name of the Department Pearson Spearman 
Top-

Down 

Cosine 

Similarity 
Pearson Spearman 

Top-

Down 

Cosine 

Similarity 

Biology 0.78 0.53 0.23 0.32 0.26 -0.28 0.15 0.19 

Biomedical Sciences 0.63 0.57 0.30 0.17 0.13 -0.43 0.16 0.16 

Chemistry 0.39 0.37 0.54 0.94 0.16 -0.36 0.14 0.10 

Pharmaceutical Sciences 0.70 0.29 0.53 0.58 -0.05 -0.47 0.09 0.14 

Physics 0.92 0.52 0.39 0.14 0.85 -0.24 0.16 0.03 

Veterinary Sciences 0.70 0.30 0.52 0.45 0.29 -0.66 0.06 0.04 

We argue that such correlation and similarity measures are insufficient, since they do not take 

into account the relatedness of WoS SCs or journals. One can intuitively understand that some 

categories are much more closely related than others. If a panel member has many publications 

in closely related WoS SCs or journals, she may still have relevant expertise, even if she has no 

publications in the exact same category or journal as the group to be evaluated. This is 

reminiscent of the way diversity is sometimes studied using only the dimensions of variety and 

balance. As discussed by Stirling (2007), the additional dimension of disparity – the opposite 

concept of similarity – is needed to provide a complete picture. Likewise, a comparison of 

journal publication profiles that does not take WoS SC similarity or journal similarity into 

account might yield distorted results. 
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Chapter V: Is the expertise of evaluation panels congruent 

with the research interests of the research groups: A 

quantitative approach based on barycenters3 

5.1 Introduction 

Using data collected in the framework of two completed research evaluations, this chapter 

focuses on the expertise overlap between expert panels and the research groups involved in the 

evaluation. An expert panel typically consists of independent specialists, and is multidisciplinary 

and/or interdisciplinary in its composition; each of the members are recognized experts in at least 

one of the fields addressed by the department under evaluation. Surprisingly, the degree to which 

the expertise of the panel (members) overlaps with the expertise of the research groups has not 

been quantified to date. The goal of this chapter is therefore to present a bibliometric 

methodology to assess the congruence of panel expertise and research interests in the units under 

assessment. As such, we present a bibliometric analysis of the overlap of expertise between 

research groups in the Departments of Chemistry and Physics and the respective expert panels 

based on two research evaluations carried out at the University of Antwerp. We focus on the 

following research questions: 
 

v) How can one visualize the expertise of two entities (e.g., a research group and a 

panel) using publication data? 

vi) How can one quantify the cognitive distances (overlap of expertise) between two 

entities (e.g., a research group and a panel) using the WoS SCs to which their 

publications belong?  

                                                 

3 This chapter is based on Rahman, Guns, Rousseau & Engels (2015) and takes into account the 

correction published in Rahman, Guns, Rousseau & Engels (2016).  



74 

 

We address these questions in the context of expert panel reviews. Specifically, we focus on 

comparing: 

- panel and individual research group; 

- panel member and individual research group (even if the panel does not cover a group’s 

expertise well, it may suffice that one panel member does); 

- panel and all reviewed research groups (e.g., all physics research groups). 

5.2 Data 

The data in this chapter stem from the 2009 assessment of the twelve research groups (referred to 

as CHEM-A, CHEM-B and so on) belonging to the Department of Chemistry, and the 2010 

assessment of the nine research groups (referred to as PHYS-A, PHYS-B and so on) belonging to 

the Department of Physics, University of Antwerp.  

 

The reference period encompasses eight years preceding the evaluation. In principle all articles, 

letters, notes, proceedings papers, and reviews by the research groups published during the 

reference period were considered in the evaluation. In this thesis, we only consider the 

publications that are indexed in SCIE and SSCI of WoS. 

 

Table 20 lists the number of publications of the research groups during the eight years preceding 

their evaluation. The Chemistry research groups published 920 publications in 300 journals, 

including 43 joint publications between two Chemistry research groups. In total, their 

publications are distributed over 94 WoS SCs. While the Physics research groups generated 1739 

publications in 353 journals, with 150 publications co-authored by members of two and seven 

publications co-authored by members of three research groups. In total, their publications are 

distributed over 108 WoS SCs. 

 

The Chemistry and Physics panels were composed of seven and six members (both including the 

chair), respectively. All the publications of the individual panel members up to the year of 

assessment were taken into account.  
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Table 20: Publication profile of the Chemistry and Physics research groups 

Group code Number of Publications Number of Journals Number of WoS SCs 

Chemistry research groups (2001-2008) 
 CHEM-A 129  47  27  
 CHEM-B 65  24  17  
 CHEM-C 156  52  26  
 CHEM-D 32  17  13  
 CHEM-E 70  39  23  
 CHEM-F 21  17  8  
 CHEM-G 161  47  42  
 CHEM-H 62  33  28  
 CHEM-I 51  24  19  
 CHEM-J 27  11  15  
 CHEM-K 97  66  48  
 CHEM-L 92  42  24  
Total 920  300  94  
Physics research groups (2002-2009) 
 PHYS-A 125  53  44  
 PHYS-B 486  66  25  
 PHYS-C 525  147  46  
 PHYS-D 269  17  7  
 PHYS-E 159  55  28  
 PHYS-F 42  23  13  
 PHYS-G 43  26  12  
 PHYS-H 132  31  12  
 PHYS-I 115  63  49  
Total 1739  353  108  

 

The Chemistry panel members’ publication output amounts to 2150 publications in 248 different 

journals and are assigned to 66 different WoS SCs. The number of publications per panel 

member ranges from 113 to 694. Panel members one and seven have two joint publications. The 

combined publication output of the Physics panel members is 1104 publications, none of which 

are co-authored publications between panel members. The number of publications per panel 

member ranges from 117 to 282. In total, these publications appeared in 204 different journals 

and are assigned to 46 different WoS SCs.  
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5.3 Methods 

5.3.1 Subject category similarity matrix and maps 

Each journal in WoS is assigned to one or more WoS SCs. Our method is based on the 

assumption that entities with more publications in the same or similar WOS SCs have greater 

expertise overlap. While WoS SCs have been criticized for being crude (Leydesdorff & Rafols, 

2009; Leydesdorff & Bornmann, 2016) they are considered sufficient for evaluation of a given 

discipline (van Leeuwen & Medina, 2012), and are widely accepted and used by bibliometric 

practitioners. Moreover, the categories cover all disciplines (Rehn, et. al., 2014; Leydesdorff & 

Bornmann, 2015). 

To operationalize the relatedness or similarity of WoS SCs, we draw upon data made available 

by Rafols, et al. (2010) at http://www.leydesdorff.net/overlaytoolkit/map10.paj. These authors 

created a matrix of citing to cited SCs based on the SCIE and SSCI, which was subsequently 

normalized in the citing direction. Only cosine values > 0.15 were retained. The result is a 

symmetric N×N similarity matrix (here, N=224). If we interpret it as an adjacency matrix, we see 

that it is equivalent to a weighted network, in which similar categories are linked (the higher the 

link weight, the stronger the similarity). The two most similar SCs are Nanoscience & 

Nanotechnology and Materials Science, Multidisciplinary, which have a cosine similarity of 

0.978. 

The information in the similarity matrix can be visualized. The subfield of bibliometric mapping 

is dedicated to the visualization, clustering and interpretation of similarity matrices or networks 

like the one we use. Many different algorithms or layout techniques have been developed for this 

purpose. In this chapter, we use two: 

• Kamada-Kawai (Kamada & Kawai, 1989) is a spring-based layout algorithm for networks, 

which is implemented in, among others, Pajek (de Nooy et al., 2012). Kamada-Kawai is the 

algorithm used by (Rafols et al., 2010). 
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• VOS  (van Eck & Waltman, 2007) stands for ‘visualization of similarities’ and is a variant 

of multidimensional scaling (Borg & Groenen, 2005; van Eck, Waltman, Dekker, & van den 

Berg, 2010). It is implemented in VOSviewer and in recent versions of Pajek. 

 

Figure 8: Overview of similarity matrix and maps 

 

Figure 8 provides an overview of the relations between similarity matrix, network and the two 

maps. Since the source data include all research fields included in the SCIE and SSCI, the 

resulting maps are global maps of science (as opposed to local maps of science, which focus on 

one or a few disciplines). 
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5.3.2 Overlay maps 

Combining the maps described in the previous section with publication data (how many 

publications in which SCs?), one can create overlay maps as visual representation of the 

expertise of a research unit (Leydesdorff & Rafols, 2009; Leydesdorff, Carley, et al., 2013; 

Rafols et al., 2010). To answer the first research question of this chapter, we created overlay 

maps based on a base map of science. In an overlay map, the original map – referred to as the 

base map – provides the location (and sometimes cluster) of each SC, whereas publication data is 

used to visualize the unit’s publication intensity for each SC. Typically, this is done by scaling 

the size of each node according to the number of publications. Hence, overlay maps can also be 

used for visual comparison and estimation of the degree of overlap of two or more entities in 

exploratory analysis. These overlay maps provide an answer to the first research question. 

In the ‘Results’ section, we present several overlay maps. Some of these are zoomed in to better 

highlight places of interest. All distances presented are based on the coordinates in the original 

maps and hence independent of whether the figures are enlarged. 

For our purposes, however, overlay maps have an important limitation. Despite their value in an 

exploratory analysis, overlay maps are hard to compare. It is not always obvious, for instance, 

which of several candidate panel members has better overlap of expertise with a given group or 

department. This is especially the case if the entities publish in many different categories or in 

categories that are quite close to one another.  

In order to answer the second research question of this chapter, we use the barycenter approach 

to estimate an entity’s ‘average’ or ‘overall’ position. Consequently, one can determine and 

compare the cognitive distance between entities, thus adding a measure to the qualitative visual 

comparison facilitated by overlay maps. 
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5.3.3 Barycenter and distance calculation 

An entity’s barycenter is the center of weight (Rousseau, 1989a, 1989b; Jin & Rousseau, 2001; 

Rousseau, 2008) of the SCs in which it has published, where a SC’s weight is the entity’s 

number of publications therein. Now for each panel member and for each research group a 

barycenter is calculated and Euclidean distances between barycenters can be calculated. The 

coordinates of these barycenters on a two-dimensional base map is defined as the point 𝐶 =

(𝐶1, 𝐶2) where 

𝐶1 =
∑ 𝑚𝑗𝐿𝑗,1

𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
                                                        (11) 

where mj is the number of publications of the unit under investigation (panel member, research 

group) belonging to category j; this category j has coordinates (Lj,1, Lj,2) in the base map, and 

𝑇 = ∑ 𝑚𝑗
𝑁
𝑗=1 . Note that T is larger than the total number of publications as we use full counting 

of WoS SCs: if a publication appears in a journal belonging to two categories, it will be counted 

twice.  

Having obtained barycenters for each entity, we can determine the distance between (the 

barycenters of) the expert panel as a whole, individual panel members, the combined group, and 

individual groups. The Euclidean distance between points 𝐶 = (𝐶1, 𝐶2) 𝑎𝑛𝑑 𝐷 = (𝐷1, 𝐷2) is 

calculated with the formula: 
 

 𝑑 = √(𝐶1 − 𝐷1)2 + (𝐶2 − 𝐷2)2. (12) 

The distances thus obtained should be interpreted as having arbitrary units on a ratio scale 

(Egghe & Rousseau, 1990). This means there is a fixed meaningful zero (distance zero in the 

map), and distances can be compared in terms of percentage or fraction (e.g. the distance 

between A and B is 1.5 times larger than the distance between C and D). 

This two-dimensional approach allows for easy visualization of barycenters: 𝐶1 and 𝐶2 are, 

respectively, horizontal and vertical coordinates. 
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5.4 Results 

We start by calculating barycenters and Euclidean distances between the barycenters to gauge 

the differences between the Kamada-Kawai and VOS mapping techniques for both case studies. 

We can use both the VOS map and Kamada-Kawai map as a basis for visual exploration and 

barycenter calculation and comparison. We use a Kamada-Kawai map for the global map of 

science as introduced by Leydesdorff and Rafols (2009) and VOS map that is readily available 

(http://www.leydesdorff.net/overlaytoolkit) and applied for creating overlay maps (Leydesdorff, 

Carley, et al., 2013; Rafols et al., 2010). In the second part of this section, we focus on the two 

cases of research assessment at the university of Antwerp. 

5.4.1 Euclidean distances between barycenters  

Table 21 and Table 23 provide the distances based on the VOS map for the cases of Chemistry 

and Physics, respectively, while the distances based on the Kamada-Kawai map are provided in 

Table 22 and Table 24.  

Comparing the results for the two approaches, we find that 5 out of 12 Chemistry groups are 

most closely located to the same panel member in the VOS-map and Kamada-Kawai approach. 

Likewise, 6 out of 9 Physics groups are most closely located to the same panel member. 

Table 21: Euclidean distances between barycenters of Chemistry research groups, panel members, 

panel and research groups together using the VOS map 

 
All 

groups 
CHEM-

A 
CHEM-

B 
CHEM-

C 
CHEM-

D 
CHEM-

E 
CHEM-

F 
CHEM-

G 
CHEM- 

H 

CHEM-

I 
CHEM- 

J 
CHEM- 

K 
CHEM- 

L 

Panel 0.105 0.166 0.141 0.202 0.123 0.275 0.284 0.108 0.107 0.044 0.326 0.384 0.141 

PM 1 0.168 0.167 0.129 0.217 0.165 0.329 0.337 0.179 0.165 0.111 0.394 0.454 0.127 

PM 2 0.200 0.350 0.342 0.362 0.129 0.079 0.090 0.145 0.215 0.199 0.259 0.228 0.342 

PM 3 0.054 0.171 0.161 0.192 0.129 0.252 0.263 0.053 0.061 0.020 0.269 0.330 0.161 

PM 4 0.119 0.269 0.262 0.280 0.108 0.158 0.170 0.063 0.134 0.121 0.232 0.250 0.263 

PM 5 0.106 0.056 0.055 0.091 0.232 0.367 0.378 0.154 0.093 0.099 0.315 0.411 0.057 

PM 6 0.200 0.302 0.276 0.335 0.027 0.175 0.181 0.161 0.210 0.156 0.366 0.370 0.275 

PM 7 0.186 0.116 0.072 0.172 0.235 0.395 0.404 0.216 0.178 0.144 0.410 0.491 0.070 

For each research group, we determined the panel member at the shortest distance. Average of shortest distances is 

0.087 (SD 0.070). The number in the row of this panel member is indicated in bold and underlined. 
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Table 22: Euclidean distances between barycenters of Chemistry research groups, panel members, 

panel and research groups together using the Kamada-Kawai map 

 

All 

groups 

CHEM-

A 

CHEM-

B 

CHEM-

C 

CHEM-

D 

CHEM-

E 

CHEM-

F 

CHEM-

G 

CHEM- 

H 

CHEM-

I 

CHEM- 

J 

CHEM- 

K 

CHEM- 

L 

Panel 0.047 0.055 0.039 0.093 0.025 0.044 0.055 0.013 0.058 0.056 0.125 0.109 0.036 

PM 1 0.081 0.080 0.063 0.125 0.027 0.078 0.091 0.048 0.090 0.092 0.160 0.146 0.054 

PM 2 0.050 0.080 0.079 0.077 0.082 0.028 0.016 0.062 0.062 0.033 0.084 0.045 0.085 

PM 3 0.011 0.022 0.021 0.052 0.066 0.049 0.044 0.029 0.017 0.029 0.087 0.085 0.030 

PM 4 0.049 0.058 0.043 0.095 0.022 0.042 0.054 0.015 0.060 0.056 0.126 0.109 0.040 

PM 5 0.024 0.038 0.027 0.071 0.047 0.037 0.041 0.010 0.036 0.035 0.102 0.091 0.030 

PM 6 0.089 0.090 0.073 0.134 0.024 0.078 0.093 0.054 0.099 0.097 0.166 0.148 0.066 

PM 7 0.054 0.050 0.033 0.095 0.035 0.063 0.071 0.025 0.061 0.067 0.132 0.124 0.025 

For each research group, we determined the panel member at the shortest distance. Average of shortest distances is 

0.031 (SD 0.020). The number in the row of this panel member is indicated in bold and underlined. 

 

Table 23: Euclidean distances between barycenters of Physics research groups, panel members, 

panel and research groups together using the VOS map 

 

All 

groups 
PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

Panel 0.135 1.115 0.025 0.078 0.125 0.033 0.239 0.383 0.040 0.607 

PM 1 0.230 1.173 0.123 0.215 0.017 0.145 0.208 0.495 0.120 0.664 

PM 2 0.214 1.195 0.067 0.109 0.158 0.118 0.316 0.443 0.056 0.688 

PM 3 0.131 1.041 0.146 0.194 0.116 0.113 0.104 0.387 0.157 0.532 

PM 4 0.100 1.020 0.168 0.085 0.263 0.132 0.295 0.249 0.179 0.522 

PM 5 0.156 1.136 0.046 0.055 0.159 0.069 0.281 0.385 0.050 0.629 

PM 6 0.175 1.157 0.031 0.084 0.138 0.078 0.280 0.412 0.026 0.649 

For each research group, we determined the panel member at the shortest distance. Average of shortest distances is 

0.232  (SD 0.337). The number in the row of this panel member is indicated in bold and underlined. 

 

Table 24: Euclidean distances between barycenters of Physics research groups, panel members, 

panel and research groups together using the Kamada-Kawai map 

 

All 

groups 
PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

Panel 0.050 0.349 0.018 0.047 0.154 0.009 0.118 0.093 0.015 0.127 

PM 1 0.246 0.537 0.206 0.244 0.045 0.207 0.128 0.291 0.197 0.315 

PM 2 0.023 0.322 0.022 0.027 0.180 0.020 0.136 0.070 0.029 0.101 

PM 3 0.130 0.423 0.090 0.130 0.072 0.092 0.064 0.176 0.081 0.200 

PM 4 0.044 0.309 0.065 0.017 0.214 0.053 0.179 0.034 0.071 0.103 

PM 5 0.026 0.323 0.028 0.020 0.183 0.020 0.142 0.065 0.034 0.104 

PM 6 0.047 0.346 0.017 0.044 0.158 0.006 0.120 0.090 0.015 0.124 

For each research group, we determined the panel member at the shortest distance. Average of shortest distances is 

0.067 (SD 0.095). The number in the row of this panel member is indicated in bold and underlined. 
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Figure 9: Scatter plots of the Euclidean distances between barycenters of research groups and 

individual panel members between VOS map and Kamada-Kawai map in the Chemistry 

department 

 

Figure 10: Scatter plots of the Euclidean distances between barycenters of research groups and 

individual panel members between VOS map and Kamada-Kawai map in the Physics department 

Spearman’s rank correlation coefficients (ρ) were calculated between the two techniques. For 

this, we take the Euclidean distances between barycenters of research groups and panel members 

only. Although there are co-publications between groups, the Euclidean distance between 

barycenters of research groups and individual panel members can be (or at least are) considered 

independent, and have been included in the correlation calculation. 
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Correlations for the Chemistry department (see Figure 9) are moderately strong between the 

VOS map and the Kamada-Kawai map (ρ = 0.64), and strong in the Physics department (ρ = 

0.80, see Figure 10). In summary, the barycenter distances between the VOS-map and the 

Kamada-Kawai map are fairly strongly correlated. In the remainder of this chapter, calculations 

of barycenters, Euclidean distances, comparisons, and visual explorations are based on the VOS 

map.  

5.4.2 Case studies of University of Antwerp research assessments 

5.4.2.1 Chemistry assessment 

5.4.2.1.1 Panel profile versus groups profile 

The overlay maps for the Chemistry panel (Figure 11) and the combined groups (Figure 12) 

clearly show that the publication scope of the combined chemistry groups is wider than that of 

the panel.  

 

Figure 11: Chemistry panel members’ publication overlay map 
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Figure 12: Chemistry groups’ publication overlay map 

The panel publications are strongly (74.67%) represented in the WoS SCs of Chemistry 

inorganic & nuclear, Chemistry organic, and Chemistry analytical, whereas the research group 

publications are predominantly clustered (60.43%) in Chemistry physical, Chemistry analytical, 

and Spectroscopy.   

 

5.4.2.1.2 Panel profile versus individual group profile 

Overlay maps of the publications of the individual groups were created, and subsequently 

compared with the panel overlay map (see Figure 11). We present the data for CHEM-A as an 

example. Figure 13 shows the corresponding overlay map. The majority of the publications of 

the CHEM-A group fall in Chemistry physical (48.06%) and Physics atomic molecular & 

chemical (34.88%) WoS SCs. We have found that the research output of six (CHEM-A, CHEM-

B, CHEM-D, CHEM-G, CHEM-I, and CHEM-L) of the twelve research groups, are thematically 

well covered by the panel’s expertise, i.e., the majority of the panel’s publications can be 

classified in WoS SCs, where also the majority of the corresponding group publications is found.  
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Figure 13: Overlay map of CHEM-A research group’s publications 

 

Figure 14:  Overlay map of CHEM-H research group’s publications 

Furthermore, the majority of the CHEM-C group publications falls in Physics applied (35.25%) 

and Spectroscopy (23.71%); for CHEM-H the dominant SCs are Spectroscopy (40.32%) and 

Chemistry analytical (27.41%; Figure 14). These two research groups have a large number of 

publications in WoS SCs where the publications output of the panel tends to be limited.  
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Figure 15:  Overlay map of CHEM-E research group’s publications 

Therefore, the research output of these two research groups is only partially covered by the 

panel’s expertise. 

Likewise, the majority of the publications of CHEM-E group (Figure 15) fall in Chemistry 

Analytical (38.57%) and Spectroscopy (34.28%); CHEM-F group: Chemistry analytical 

(66.66%) and Biochemical research methods (23.81%); CHEM-J group: Chemistry analytical 

(48.14%) and Instruments Instrumentation (33.33%); CHEM-K group: Microscopy (81.48%) 

and Computer science artificial intelligence (70.37%) WoS SCs. Therefore, these four research 

groups hardly have any overlap in terms of the share of their publications in WoS SCs where the 

evaluation panel has publications.  

In summary, of the twelve Chemistry groups, six groups are well covered, two groups are 

partially covered, and the remaining four groups seem poorly covered by the Chemistry panel’s 

expertise as far as publication output is described via WoS SCs. 
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5.4.2.1.3 Distances between barycenters 

Figure 16 and Table 21 provide data on the distances between the Chemistry panel’s 

barycenter/coordinates and those of the individual Chemistry groups (panel members are 

indicated by the symbol PM). The CHEM-I group is very close to the panel while CHEM-K 

group is almost 2.3 times farther away than CHEM-A group, and CHEM-F group is 2.6 times 

further away than CHEM-G group. CHEM-B (0.141), CHEM-D (0.123), CHEM-G (0.108), 

CHEM-H (0.107), and CHEM-L (0.141) are situated comparatively close to the panel’s 

coordinates. CHEM-F (0.284), CHEM-J (0.326), and CHEM-K (0.384) are located farther away, 

and CHEM-A (0.166) and CHEM-C (0.202) too are found at a considerable distance from the 

panel’s barycenter.  

A further comparison of the distances between the Chemistry groups and individual Chemistry 

panel members as presented in Table 21  reveals that the partially covered CHEM-C and CHEM-

H groups, while located moderately far away from the panel, are relatively close to PM5 (0.091) 

and PM3 (0.061), respectively.  

 

Figure 16: Barycenter overlay map of Chemistry panel, panel members (PM) and research groups 



88 

 

Similarly, the less covered groups CHEM-E and CHEM-F are found relatively close to PM2, 

CHEM-J close to PM4, and CHEM-K situated at a remote distance from the panel’s coordinates. 

In Table 21, the shortest distance between the Chemistry groups and a panel member is printed 

in bold and underlined. The average of these distances is 0.087 (SD 0.070) and can be used as a 

measure of the fit between the expertise of the Chemistry panel and the research interests of the 

Chemistry research groups. 

5.4.2.2 Physics assessment 

5.4.2.2.1 Panel profile versus group profile 

The overlay maps for physics similarly revealed a wider publication scope for the combined 

research groups (Figure 17) compared to the Physics panel (Figure 18).  

 

 

Figure 17: Physics groups’ publication overlay map 

The panel’s publications are strong (68.75%) in Physics condensed matter, Physics 

multidisciplinary, Chemistry physical, and Physics applied, whereas the groups’ publications 

tend to be mainly clustered (57.62%) in Physics condensed matter, Physics multidisciplinary, 

Physics applied, and Materials science multidisciplinary. 
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Figure 18: Physics panel members’ publication overlay map 

 

5.4.2.2.2 Panel profile versus individual group profile 

Overlay maps of the publications of the individual groups were created, and subsequently 

compared with the panel overlay maps (see Figure 18).  

PHYS-B group: Physics condensed matter (59.67%) and Physics applied (19.34%; Figure 19);  

PHYS-C: Materials science multidisciplinary (35.61%) and Chemistry physical (29.9%); PHYS- 

D: Physics particles fields  (56.87%) and Physics multidisciplinary (40.89%); PHYS- E: Physics 

multidisciplinary (25.15%), Physics particles fields (24.52%), and Physics condensed matter 

(20.75%); PHYS-H: Physics condensed matter (61.06%) and Physics applied (19.08%).  

These data show that five of the nine Physics groups (PHYS-B, PHYS-C, PHYS-E, PHYS-F, 

and PHYS-H) are thematically well covered by the panels’ expertise as the majority of the 

groups publications are found in WoS SCs where the majority of the panels’ publications have 

been classified. 
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Figure 19: Overlay map of PHYS-B group’s publications 

 

Figure 20: Overlay map of PHYS-G research group’s publications 

PHYS-F: Physics multidisciplinary (59.52%) and Physics mathematical (42.85%); PHYS-G: 

Physics atomic molecular chemical (34.88%) and Chemistry physical (32.55%; Figure 20). Two 

physics groups (PHYS-F and PHYS-G) have a large number of publications in WoS SCs where 

the publication output of their respective panels tends to be limited. The research output of these 

four groups is therefore only partially covered by the respective panels’ expertise. 
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Figure 21:  Overlay map of PHYS-A research group’s publications 

PHYS-A:  Otorhinolaryngology (51.2%) and Audiology speech language pathology (14.4%;  

Figure 21); PHYS-I: Microscopy (26.08%) and Radiology nuclear medicine medical imaging 

(20.87%) WoS SCs. There was hardly any overlap in terms of the share of their publications in 

WoS SCs between these groups and the evaluation panel.  

In summary, of the nine Physics groups, five groups are well covered, two groups are partially 

covered, and the remaining two groups seem to have been poorly covered by the Physics panel’s 

expertise.  

5.4.2.2.3 Distances between barycenters 

Figure 22 and Table 23 show the distances between the Physics panel’s barycenter and the 

different Physics groups barycenters. The Physics panel is very near to PHYS-B group, while 

PHYS-F group is 9.56 times and PHYS-I is 24.3 times further away from the panel than PHYS-

B. PHYS-B group (0.025), PHYS-C (0.078), PHYS-E (0.033), and PHYS-H (0.040) are found 

closest to the panel’s coordinates, while PHYS-D (0.123), PHYS-F (0.239) and PHYS-G (0.383) 

are still moderately close. 
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Figure 22: Barycenter overlay map of Physics panel, panel members (PM) and research groups 

It should be noted that PHYS-D emerged as well covered and PHYS-F and PHYS-G as partially 

covered by the panel’s expertise from the comparative individual group vs. panel profile. 

Furthermore, although PHYS-D is situated moderately far away from the panel’s coordinates, 

PM1 is located in the immediate (0.017) neighborhood of PHYS-D, with the majority of the 

publications of PHYS-D and PM1 belonging to the same SCs. 

Similar observations can be made for the other moderately close groups, PHYS-G and PHYS-F, 

which also have individual panel members in their immediate neighborhood, i.e., PM4 (0.249) 

and PM3 (0.104), respectively, and also have the majority of their publications in the same WoS 

SCs as these two panel members. Further, PHYS-A (1.115), and PHYS-I (0.607) are located at a 

considerable distance from the panel’s coordinates, have no individual panel members in their 

neighborhoods, and are poorly covered by the panel’s expertise. 

Table 23 shows that the distances between PHYS-A and PM3 (1.041) and PM4 (1.020), and 

between PHYS-I and PM3 (0.532) and PM4 (0.522) are smaller compared to other panel 

members. The average of the shortest distances of the barycenters of the Physics panel members 

to the barycenters of the Physics research group is 0.232 (SD 0.0337). 
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5.5. Conclusion 

We have explored not only overlap of expertise between research groups and an expert panel but 

also applied the barycenter method to calculate the distances between groups and panel 

(members). The barycenter method is well compatible with the WoS SCs-based overlay 

mapping, since it offers a simple way of representing the location of the panel and groups in a 

global science map based on WoS SCs. Each map of science “contains a projection from a 

specific perspective” (Leydesdorff & Rafols, 2009). Therefore, different layout techniques may 

produce different outputs. An exploration of two different layout techniques from the similarity 

matrix exposes that the Kamada-Kawai map is fairly strongly correlated with the VOS-map. 

Overlay maps constitute an interesting tool to visualize the position of panel and group 

publications in a fixed map based on WoS SCs. The results reveal a number of discrepancies in 

WoS SCs between panel and group publications in both the Chemistry and Physics departments. 

This could be expected, since panel members are selected primarily because of their expertise 

and not necessarily because of the match thereof with the research in the groups. Overall, group 

publications are found in a wider range of SCs than panel publications, which might be due to 

the interdisciplinary orientation of some of the groups. 

In chapter IV, we found that correlation coefficients and cosine similarity point to a varied – 

ranging from high to low – overlap of expertise between the Chemistry panels and research 

groups, and between the Physics panel and groups. The barycenter analysis showed that six 

Chemistry groups and five Physics groups are in fact well covered by the respective panels’ 

expertise and are located close to the panel’s coordinates while the remaining groups are not, 

although this gap is sometimes filled by the expertise of individual panel members. Furthermore, 

in some cases, neither the individual panel members nor the panels (as a whole) are situated 

close to the groups, in which case the panel seems to possess only partial expertise to evaluate 

these research groups. These barycenter findings are hence well in line with the results of the 

comparative analysis of individual group versus panel profile. Overall, the Chemistry panel, with 

an average barycenter distance of the nearest panel member to the research groups of 0.087 

seemed to be better aligned with the research interest of the units under assessment studied in 

this paper. Note that the conclusion from plain correlations is the opposite (see chapter IV for 
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details). This confirms the necessity of a method that moves beyond correlation coefficients, 

since they do not capture relatedness between SCs. The application of the barycenter method in 

the VOS-map and Kamada-Kawai allows to identify the Euclidean distances between the panel, 

combined research groups, individual panel members and individual research groups. It also 

allows calculation of average distances, comparison of distance and visual exploration of the 

barycenters of the map. Thus, the barycenter method provides information about the relevance of 

the expertise of an individual panel member to the assessment of both individual and combined 

research groups in a coherent way. 

A similar, though less pronounced difference emerges from the comparison of the distance 

between the combined Chemistry groups and the Chemistry panel (0.105, see Table 21), and that 

between the combined Physics groups and the panel (0.135, see Table 23). These findings clearly 

demonstrate that in both cases, the majority of the panel publications appears in the categories in 

which group publications are found, while the groups have publications in a substantial number 

of WoS SCs that have no panel publications. There is a visible discrepancy between panel and 

group publications as far as WoS SCs are concerned. Overall, group publications are found in a 

wider range of subject categories than panel publications, which might be due to the 

interdisciplinary orientation of some of the groups.  

In this investigation, we used distances between barycenters as a determinant for the 

correspondence between the publications by the group of panel members and the publications of 

a research group. Within this framework, a distance of zero would mean a perfect 

correspondence. As pointed out by a reviewer of the original paper (Rahman et al., 2015) one 

could envision other frameworks. One such framework would measure the correspondence 

between these two sets of publications by the similarity-weighted cosine measure as introduced 

in (Zhou et al., 2012). In this framework, perfect correspondence would be obtained when the 

similarity is one.  We believe that this too is a valid approach in particular because the barycenter 

and the weighted-similarity approach, as illustrated in (Zhou et al., 2012), use the same input. 

Further investigations will have to show which of these two leads in practice to the best results 

(discussed in chapter VII).  
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A limitation arises from the question whether it is really relevant to have panel and groups 

publishing in the same subject categories, since one category may comprise a wide array of 

different subfields and topics. At present, this question cannot be answered with the methods 

outlined in this chapter, but instead would require a journal level analysis, as journals cover more 

closely related subfields and topics. A subsequent analysis will hence focus on overlay maps at 

the journal level (Leydesdorff & Rafols, 2012; Leydesdorff, Rafols, et al., 2013), with special 

attention to the quantification of similarity between groups and panel at this level for different 

disciplines (discussed in chapter VI). This comprehensive approach should allow us to define 

which overlap leads to the best standards for evaluation and hence permit us to propose the most 

appropriate expert panel composition for a collection of units of assessment. More generally, the 

matching of research expertise in several contexts might benefit from a comprehensive 

informetric approach.   
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Chapter VI: Measuring the match between evaluators and 

evaluees: Cognitive distances between panel members and 

research groups at the journal level 4 

6.1 Introduction 

In this chapter, we study the problem of composing an expert panel, such that the individual 

panel members’ expertise covers the specific subdomains in the discipline where the units of 

assessment have publications. In the chapter V, we explored expertise overlap between panel and 

research groups through publishing in the same or similar WoS SCs  (Rahman et al., 2014, 

2015). Since one subject category may comprise a wide array of different subfields and topics 

(Bornmann et al., 2011), it is up for discussion how relevant it is to have panel members and 

research group members publishing in the same subject categories. As journals cover more 

closely related subfields and topics (Tseng & Tsay, 2013), we present a journal level analysis to 

explore the issue.   

The analysis relies on the journal similarity matrix and the overlay map derived from it. Science 

overlay maps (Rafols et al., 2010) have received considerable attention from the field of 

informetrics (Grauwin & Jensen, 2011; Gorjiara & Baldock, 2014; Boyack & Klavans, 2014a; 

Fields, 2015; Chen, Arsenault, Gingras, & Lariviere, 2015). We present two informetric methods 

to assess the cognitive distances between research groups in the Department of Biomedical 

Sciences, Veterinary Sciences, Pharmaceutical Sciences, Biology, and the respective expert 

panels based on research evaluations carried out at the University of Antwerp. We have used the 

data collected in the frame of research evaluation by the University of Antwerp. We explore the 

cognitive distance between expert panel and research groups. The research questions are: 

                                                 

4 This chapter is based on Rahman, Guns, Leydesdorff & Engels (2016). 
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1) How can one quantify the cognitive distances between two entities using the journals in 

which they have published? How can one estimate the uncertainty inherent to these 

cognitive distances?  

 

2) To what extent was each individual research group’s expertise covered by the panel’s 

expertise? 

 

3) To what extent does each individual panel member’s expertise cover the individual 

research groups? 

6.2 Data  

In this chapter, we consider data from the research assessments of all the research groups 

belonging to four departments of the University of Antwerp, Belgium. 

Table 25: Publication profile of the panel members 

Panel member 

code 

Number of 

journals 

Number of 

publications 

Panel member 

code 

Number of 

journals 

Number of 

publications 
 

Biomedical Sciences  
 

 

Pharmaceutical Sciences 

BIOM-PM1 78 153 PHAR-PM1 39 122 
BIOM-PM2 81 201 PHAR-PM2 93 351 
BIOM-PM3 79 261 PHAR-PM3 91 259 
BIOM-PM4 86 240 PHAR-PM4 67 124 
BIOM-PM5 37 74 PHAR-PM5 86 180 

      BIOM-PM6 35 109 All Panel members together 300 1,036 
BIOM-PM7 68 194    
BIOM-PM8 32 101    

All Panel members together 395 1,333    

 

Veterinary Sciences  
 

Biology  
 

VETE-PM1 50 313 BIOL-PM1 48 146 
VETE-PM2 66 121 BIOL-PM2 49 177 
VETE-PM3 46 272 BIOL-PM3 35 76 
VETE-PM4 53 131 BIOL-PM4 49 185 

All Panel members together 200 837 BIOL-PM5 76 262 

   All Panel members together 217 786 

 

 



99 

 

Table 26: Publication profile of the research groups 

Group code Number of 

Journals 

Number of 

Publications 

Group code Number of 

Journals 

Number of 

Publications 

Biomedical Sciences (2006-2013) Pharmaceutical Sciences (2001-2008) 

BIOM-A 55 96 PHAR-A 22 40 

BIOM-B 27 43 PHAR-B 32 62 

BIOM-C 47 107 PHAR-C 35 61 

BIOM-D 95 201 PHAR-D 17 32 

BIOM-E 34 70 PHAR-E 42 64 

BIOM-F 17 27 PHAR-F 21 34 

BIOM-G 115 241 PHAR-G 31 67 

BIOM-H 29 50 PHAR-H 27 39 

BIOM-I 55 89 PHAR-I 10 29 

BIOM-J 27 47 PHAR-J 9 11 

BIOM-K 43 74 All groups together 180 376 

BIOM-L 11 12    

BIOM-M 67 164    

BIOM-N 43 114    

BIOM-O 32 60    

All groups together 476 1,234    

Veterinary Sciences (2006-2013) Biology (2004-2010) 

VETE-A 102 144 BIOL-A 53 168 

VETE-B 33 41 BIOL-B 33 58 

VETE-C 21 52 BIOL-C 75 212 

All groups together  146 231 BIOL-D 68 176 

   BIOL-E 69 169 

   BIOL-F 35 58 

   BIOL-G 139 280 

   BIOL-H 42 67 

   BIOL-I 52 86 

   All groups together 372 1,158 

These are the 2011 assessment of the nine research groups of the department of Biology, the 

2014 assessment of 15 research groups belonging to the department of Biomedical Sciences, the 

2009 assessment of the 10 research groups of the department of Pharmaceutical Sciences, and 

the 2014 assessment of the three research groups of the Veterinary Sciences department. The 

group names will be standardized using the first four letters of the corresponding department, for 

example BIOM-A for Biomedical Sciences group A, VETE-C for Veterinary Sciences group C, 

etc. The reference period encompasses eight years preceding the evaluation. We considered all 

the articles, letters, notes, proceedings papers, and reviews by the research groups published 

during the reference period and included in the SCIE and SSCI of the WoS in the evaluation.  
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Table 25 lists the number of publications of the research groups. The numbers reported for all 

groups together are smaller than the sum of the individual research groups’ publication or journal 

counts, because of joint publications between groups.  

The entire WoS publication record of the individual panel members up to the year of assessment 

was taken into account. The Veterinary Sciences and Biomedical Sciences panels were 

composed of four and eight members respectively. Both the Pharmaceutical Sciences and 

Biology panels were composed of five members including the chair. There are no co-authored 

publications between panel members and research groups in any of the cases. None of the panel 

members has co-authored publications with another member of the same panel. Table 26 lists the 

number of publications of the research groups.  

6.3 Methods 

6.3.1 Journal similarity matrix and maps 

Our method is based on the assumption that the cognitive distance between entities decreases as 

they have more publications in the same or similar journals, since journals cover closely related 

subfields and topics. The similarity between journals should be taken into account: if a panel 

member publishes in different journals than the research groups, they may still have relevant 

expertise, if their publications are in similar or closely related journals. This requirement rules 

out a number of approaches, including direct comparison of the top n journals in which two 

entities have published and correlations between journal portfolios (discussed in chapter IV). 

We have harvested data from Thomson Reuters’ (currently Clarivate Analytics) WoS JCR of the 

Science and Social Science Editions 2011. An aggregated journal-journal citation matrix of 

10,675 journals5 was constructed with a grand total of 35,295,459 citations over the entire 

matrix, which was subsequently normalized in the citing direction. The distances between 

journals are calculated using the cosine similarity between their citing distributions respectively 

                                                 

5 The Science and Social Science Editions 2011 contain 8,281 and 2,943 journals respectively. Of these journals, 

549 are contained in both databases. 
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(see Leydesdorff, Rafols, & Chen (2013) for details). The resulting journal similarity matrix can 

be considered as an adjacency matrix, and thus is equivalent to a weighted network where similar 

journals are linked and link weights increase with similarity strength. At the moment, it is not yet 

entirely clear how intense citation traffic around journals such as PLoS ONE (Leydesdorff & de 

Nooy, 2016) affects the journal similarity matrix. 

The journal similarity matrix consists of 10,6752 = 113,955,625 cells. The matrix was stored 

using the HDF5 format (Hierarchical Data Format version 5), which was found to be the most 

efficient way of storing the data in terms of speed and memory requirements. 

We used the full title of the journals for matching journals in the panel’s publication list with 

journals in the research groups’ publication lists. However, journals are not static entities and 

may undergo a name or organizational changes over time. Possible changes include: 

- The journal title is changed, shortened or extended; 

- Two or more journals merge into a new journal; 

- One journal splits into two or more new journals; 

- A journal is excluded from the WoS, discontinued, or not listed during the construction of 

the aggregated journal-journal citation matrix. 

While cross-matching, we found 165 journals in our data set that belong to any of the above-

mentioned categories. We developed the following guidelines to handle these uniformly: 

- If journal A is renamed to B then treat both as equivalent.   

- If journals A1 and A2 are merged into journal B, we treat both A1 and A2 as equivalent 

to B. 

- If journal X splits into multiple journals, we look up which research groups or panel 

members have publications in journal X and determine which of the new journals best 

corresponds to the specialty of the authors, then change all occurrences of the journals in 

the WoS exported data with the best fitting latter journals. This was necessary in 15 

cases; each time the decision was quite clear. 
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- If a journal is discontinued or excluded from WoS, or not included in the aggregated 

journal-journal citation matrix and there is no equivalent for some other reason, then it is 

removed from the sample. 

From the journal similarity matrix, one can construct a global journal map (Leydesdorff & 

Rafols, 2012), in which similar journals are located more closely together. When used as a 

portfolio map, the size of the nodes depends on the number of publications in each node, and 

helps to compare the degree of overlap of multiple entities visually (Leydesdorff, Heimeriks, & 

Rotolo, 2016). The overlay of research group and panel publications can be visualized on the 

global journal map based on the retrieved publications data, using the visualization program 

VOSviewer (van Eck & Waltman, 2010). However, in the process of visualization, the multi-

dimensional space is reduced to a projection in two dimensions. Moreover, comparison of 

overlay maps is difficult, specifically when the journals are located (very) closely to one another 

or when a panel member or research group has published in many different journals. Therefore, 

we will explore two methods to create a ‘profile’ of a panel member or research group: (i) 

barycenters on the overlay map (Rahman et al., 2015), and (ii) similarity-adapted publication 

vectors (SAPVs) (Rousseau, Rahman, Guns, & Engels, 2016). Subsequently, we can determine 

and compare the distances between entities, with overlay maps providing additional qualitative 

context.  

6.3.2 Barycenter and distance calculation 

Our barycenter method is based on the journal map. The barycenter is an entity’s weighted 

average location on the map. More specifically, an entity’s barycenter is the center of weight 

(Rousseau, 1989a, 1989b, 2008; Jin & Rousseau, 2001) of the journals in which it has published, 

where a journal’s weight is the entity’s number of publications in that journal. The barycenter is 

defined as the point 𝐶 = (𝐶1, 𝐶2), where 

 
𝐶1 =

∑ 𝑚𝑗𝐿𝑗,1
𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
 

(13) 
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Here,  Lj,1 and Lj,2 are the horizontal and vertical coordinates of journal j on the map, 𝑚𝑗 is the 

number of publications in journal 𝑗, and 𝑇 = ∑ 𝑚𝑗
𝑁
𝑗=1  is the total number of publications of the 

entity.  

The Euclidean distance between points 𝐶 = (𝐶1, 𝐶2) and 𝐷 = (𝐷1, 𝐷2) is calculated as follows: 

 𝑑 = √(𝐶1 − 𝐷1)2 + (𝐶2 − 𝐷2)2. (14) 

Many different algorithms and layout techniques have been developed for visualization of 

matrices. Rahman et al., (2015) found that at least two strongly different techniques – Kamada-

Kawai (Kamada & Kawai, 1989) and VOS (van Eck & Waltman, 2007; van Eck et al., 2010) – 

yielded very similar results in terms of barycenter distances. The journal map used in this chapter 

was created using the VOS algorithm as implemented in VOSviewer (van Eck & Waltman, 

2010). Subsequently, we determine and compare the cognitive distance between entities, with 

overlay maps providing additional qualitative context through visual comparison. In the Results 

section, we present several overlay maps (see Figure 23, Figure 24, Figure 25, and Figure 26) 

including barycenters and corresponding confidence regions (see section 6.3.4 for details). These 

maps are zoomed in to better highlight places of interest, hence independent of the zoom level of 

the figures.  

6.3.3 Similarity-adapted publication vectors and distance calculation 

Similarity-adapted publication vectors (SAPVs), a regular publication vector simply contains 

publication counts per journal/SC (Rousseau, Rahman, Guns, & Engels, 2016) , in a SAPV these 

counts are adapted to account for similarity between journals. We will use normalized SAPVs, 

such that there is scale invariance and publication vectors of entities of varying size can be 

meaningfully compared.  

We calculate SAPVs for each entity, starting from the original journal similarity matrix, where N 

= 10,675 is the number of rows or columns in the matrix. Based on their respective SAPVs, the 

distance can be calculated between the expert panel, panel members, groups, and separate 

groups.  
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A similarity-adapted publication vector is determined as the vector C = (𝐶1, 𝐶2, … , 𝐶𝑁), where: 

 
𝐶𝑘 =

∑ 𝑠𝑘𝑗𝑚𝑗
𝑁
𝑗=1

∑ ∑ 𝑠𝑖𝑗𝑚𝑗
𝑁
𝑗=1

𝑁
𝑖=1

=
(𝑆 ∗ 𝑀)𝑘

‖𝑆 ∗ 𝑀‖1
  

(15) 

Here 𝑠𝑗,𝑘 denotes the 𝑘-th coordinate of journal 𝑗 and 𝑚𝑗 is the number of publications in journal 

𝑗. The numerator of Equation (15) is equal to the k-th element of 𝑆 ∗ 𝑀, the multiplication of the 

similarity matrix S and the column matrix of publications 𝑀 =  (𝑚𝑗)
𝑗
. The denominator is the 

L1-norm of the unnormalized vector. 

Subsequently, we determine the distance between the expert panel as a whole and individual 

panel members on the one hand, and the department (the combined groups), and individual 

groups on the other. The Euclidean distance between vectors a and b in RN is: 

 𝑑(𝑎, 𝑏) = √(𝑎1 − 𝑏1)2 + ⋯ + (𝑎𝑁 − 𝑏𝑁)2 (16) 

Although the matrix and vectors are large, the calculation of SAPV and distances is relatively 

fast, due to the use of efficient matrix procedures implemented in NumPy and SciPy.6 

Both the SAPV method and barycenter method can be used to determine an entity’s ‘profile’. 

One can then calculate the distance between profiles as an indicator of cognitive distance. For 

each research group, we find the shortest distance to one of the panel members. We use the 

average and standard deviation of the shortest distances as a comparative measure. All the 

distances are shown up to the third decimal. The distances are arbitrary units on a ratio scale 

(Egghe & Rousseau, 1990). Hence, one can meaningfully compare them in terms like ‘x is twice 

as large as y’. 

                                                 

6 http://www.numpy.org and http://scipy.org  
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6.3.4 Bootstrapping and confidence intervals 

The barycenter and SAPV methods determine cognitive distance on the basis of the journals in 

which the groups and panel members have published. However, such information is not entirely 

deterministic; it is, for instance, dependent on the database used as well as environmental factors 

like the speed with which a journal processes a submission. It logically follows that small 

differences in Euclidean distances bear little meaning. To study this problem in a more 

systematic way, we employ a bootstrapping approach in order to determine 95% confidence 

intervals (CIs) to each Euclidean distance (both between barycenters and between SAPVs). If 

two CIs do not overlap, the difference between the distances is statistically significant at the 0.05 

level. Although it is possible for overlapping CIs to have a statistically significant difference 

between the corresponding distances, the difference between the distances is less likely to have 

practical meaning. 

Bootstrapping (Efron & Tibshirani, 1998) is a simulation-based method for estimating standard 

error and confidence intervals. Bootstrapping depends on the notion of a bootstrap sample. To 

determine a bootstrap sample for a panel member or research group with N publications, we 

randomly sample with replacement N publications from its set of publications. In other words, 

the same publication can be chosen multiple times. Some publications in the original data set will 

not occur in the bootstrap data set, whereas others will occur once, twice or even more times. 

From the bootstrap sample, one can calculate a bootstrap replication, in our case a barycenter 

using formula (13) or SAPV using formula (15). 

By generating a large amount of independent bootstrap samples (in our case 1000) and each time 

calculating the bootstrap replication, we can approximate the variability within the data set. 

Since we have a two-sample problem (distance between two entities; Efron & Tibshirani, 1998, 

Ch. 8), we calculate the distances between pairs of bootstrap replications, from which we obtain 

a CI using a bootstrap percentile approach (Efron & Tibshirani, 1998, Ch. 13). A more detailed 

explanation and implementation of our method is available on Github (Guns, 2016a, 2016b). 
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The bootstrap replications of barycenters are also used to add a 95% confidence region for each 

barycenter to the maps. For each barycenter, we have a cloud of 1000 points (bootstrapped 

barycenters) surrounding it. The confidence region is an ellipse that covers 95% of the 

bootstrapped barycenters and is obtained using an implementation by Kington (2014). The larger 

the confidence region, the less stable the barycenter is. Although the CI of the distance between 

two barycenters and their confidence regions are related, the two should not be conflated. In 

particular, we stress that overlapping confidence regions as seen in e.g. Figure 23 does not 

correspond to overlap between CIs for distances. 

6.4 Results 

We present the results in four parts. In the first (section 6.4.1) and the second part (section 6.4.2), 

we will discuss the results of Euclidean distances between barycenters and distances between 

SAPVs respectively. In the third part (section 6.4.3), we discuss the CIs of both the methods. 

However, for the intelligibility we show all the relevant tables of the Euclidean distance of 

barycenter and SAPV in the section 6.4.1 and 6.4.2, where the CIs are included through the 

typography of the values. In the last part (section 6.4.4), we make a comparison between the two 

methods.  

6.4.1 Barycenter and distances 

For each discipline, the barycenters of the panel, panel members, individual research groups and 

department, as well as Euclidean distances between barycenters are calculated. For each research 

group, we also calculate the average shortest distance to one of the panel members. The 

visualizations of barycenters and their confidence regions are added to the overlay maps. In the 

Table 27 to Table 30, the shortest distances between a group and a panel member are bold and 

underlined. The distances whose CIs overlap with that of the shortest distance are in bold. 

Table 27 provide data on the distances between the Biology panel’s barycenter and individual 

research groups. The average of the shortest distances between the Biology groups and panel 

members is 0.09. The Biology panel as a whole is closer to BIOL-I (0.087) and BIOL-G (0.065).  
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Table 27: Euclidean distances between barycenters of Biology individual research groups, panel 

members, panel and groups together in the journal VOS-map 

 
Groups BIOL- A BIOL- B BIOL-C BIOL D BIOL-E BIOL -F BIOL- G BIOL- H BIOL- I 

Panel 0.136 0.128 0.242 0.271 0.220 0.208 0.136 0.087 0.262 0.087 

PM1 0.072 0.154 0.125 0.198 0.105 0.169 0.239 0.056 0.146 0.164 

PM2 0.087 0.016 0.249 0.168 0.190 0.090 0.257 0.091 0.227 0.217 

PM3 0.248 0.223 0.336 0.382 0.326 0.316 0.029 0.199 0.368 0.075 

PM4 0.148 0.205 0.163 0.279 0.175 0.245 0.187 0.110 0.211 0.106 

PM5 0.253 0.195 0.374 0.373 0.348 0.297 0.104 0.211 0.390 0.145 

Average shortest distance is 0.09 (SD 0.05).  

 

 

Figure 23: Barycenter overlay map of Biology panel, panel members (PM), research groups and 

research groups together (groups) with their confidence regions 
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Table 28: Euclidean distances between barycenters of Biomedical Sciences individual research 

groups, panel members, panel and groups together in the journal VOS-map 

 

Groups BIOM-

A 

BIOM-

B 

BIOM-

C 

BIOM-

D 

BIOM-

E 

BIOM-

F 

BIOM-

G 

BIOM-

H 

BIOM-

I 

BIOM-

J 

BIOM-

K 

BIOM-

L 

BIOM-

M 

BIOM-

N 

BIOM-

O 

Panel 0.177 0.225 0.132 0.146 0.109 0.263 0.064 0.396 0.354 0.133 0.303 0.268 0.383 0.312 0.371 0.282 

PM1 0.265 0.350 0.180 0.224 0.110 0.242 0.081 0.473 0.319 0.159 0.445 0.387 0.471 0.397 0.436 0.344 

PM2 0.085 0.176 0.038 0.046 0.201 0.177 0.119 0.302 0.267 0.234 0.297 0.208 0.294 0.221 0.272 0.181 

PM3 0.413 0.390 0.397 0.397 0.241 0.530 0.303 0.611 0.621 0.194 0.356 0.438 0.586 0.527 0.599 0.522 

PM4 0.389 0.391 0.355 0.365 0.168 0.479 0.243 0.600 0.568 0.119 0.390 0.440 0.580 0.515 0.582 0.498 

PM5 0.149 0.250 0.058 0.107 0.183 0.144 0.095 0.348 0.233 0.227 0.371 0.280 0.348 0.274 0.311 0.220 

PM6 0.189 0.295 0.177 0.184 0.383 0.072 0.295 0.236 0.086 0.426 0.442 0.291 0.258 0.207 0.187 0.135 

PM7 0.251 0.367 0.173 0.217 0.282 0.103 0.209 0.395 0.148 0.331 0.500 0.385 0.407 0.342 0.348 0.271 

PM8 0.275 0.171 0.363 0.314 0.497 0.445 0.445 0.238 0.502 0.504 0.154 0.140 0.199 0.213 0.271 0.281 

Average shortest distance is 0.132 (SD 0.06).  

 

 

 

 

Figure 24: Barycenter overlay map of Biomedical Sciences panel, panel members (PM), research 

groups and research groups together (groups) with their confidence regions 
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Table 29: Euclidean distances between barycenters of Pharmaceutical Sciences research groups, 

panel members, panel and groups together in the journal VOS-map 

 
Groups PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

Panel 0.078 0.410 0.240 0.536 0.096 0.325 0.239 0.381 0.120 0.769 0.495 

PM1 0.559 0.101 0.267 1.017 0.413 0.807 0.271 0.262 0.471 1.251 0.972 

PM2 0.268 0.750 0.581 0.205 0.428 0.021 0.579 0.689 0.398 0.429 0.162 

PM3 0.156 0.339 0.163 0.610 0.043 0.402 0.162 0.332 0.110 0.844 0.573 

PM4 0.160 0.332 0.161 0.616 0.052 0.408 0.160 0.322 0.120 0.850 0.577 

PM5 0.318 0.186 0.057 0.773 0.170 0.566 0.062 0.242 0.233 1.008 0.735 

Average shortest distance is 0.143 (SD 0.124).  

 

 

Figure 25: Barycenter overlay map of Pharmaceutical Sciences panel, panel members (PM), 

research groups and research groups together (groups) with their confidence regions. 
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Table 30: Euclidean distances between barycenters of Veterinary Sciences individual research 

groups, panel members, panel and groups together in the journal VOS-map 

 
Groups VETE-A VETE-B VETE-C 

Panel 0.092 0.179 0.076 0.156 

PM1 0.178 0.260 0.160 0.124 

PM2 0.088 0.141 0.108 0.227 

PM3 0.195 0.273 0.182 0.145 

PM4 0.306 0.272 0.310 0.469 

                                    Average shortest distance is 0.124 (SD 0.013).  

 

 

 

Figure 26: Barycenter overlay map of the Veterinary Sciences panel, panel members (PM), 

research groups and research groups together (groups) with their confidence regions 
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BIOL-B (0.242), BIOL-C (0.271), BIOL-D (0.228) and BIOL-H (0.262) are the furthest from the 

panel. BIOL-A and BIOL-E are found at a considerable distance from the panel’s barycenter but 

PM2 is in their immediate neighborhood. Similar conclusions can be drawn from the 

visualization in Figure 23. Here, ‘PM’ stands for ‘panel member’, ‘Panel’ represents the 

barycenter location of the publication profile of the entire panel, and ‘Groups’ does the same for 

the research groups taken together (the department). The advantage of the visual representation 

consists in providing an easily interpretable overview of how the panel and research groups 

relate, which is much less straightforward from a table of distances. 

Table 28 provides data on the distances between the barycenters of the panel and its members on 

the one hand and those of the department and individual research groups on the other. Figure 24 

visualizes the situation. The Biomedical panel is very near to BIOM-F (0.064), while BIOM-G 

(0.396), BIOM-H (0.354), BIOM-L (0.383), and BIOM-N (0.371) are almost 5 to 6 times farther 

away from the panel than BIOM-F. BIOM-C (0.146), BIOM-D (0.109), BIOM-I (0.133) groups 

are situated comparatively close to the panel’s coordinates, while BIOM-E (0.263) is found at a 

considerable distance from the panel’s barycenter. 

In Table 28, the average of the shortest distance between the Biomedical Sciences groups and 

panel members is 0.132 (SD 0.06) and can be used as a measure of the fit between the expertise 

of the Biomedical Sciences panel and the research groups. Groups BIOM-G, BIOM-H, BIOM-

M, and BIOM-N are situated moderately far away from the panel’s coordinates, but PM2 and 

PM6 are located in their immediate neighborhood.  

Table 29 provides data on the distances between the Pharmaceutical sciences panel’s barycenter 

and individual research groups. Figure 25 visualizes the situation. The average of the shortest 

distance between the Pharmaceutical groups and panel members is 0.143. PHAR-C (0.536) and 

PHAR-I (0.769) are 5.58, and 8.01 times farther away respectively from the panel than PHAR-D 

(0.096).  

PHAR-B (0.240), PHAR-F (0.239), PHAR-H (0.120) are situated comparatively close to the 

panel’s coordinates, while PHAR-A (0.410) and PHAR-J (0.495) are found at a considerable 

distance from the panel’s barycenter. The case of PHAR-A reinforces our assertion that the mere 
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overlap of journals is not sufficient to quantify the cognitive distance: although 60% of the 

journals in which this group has published are also covered by the panel, it is located relatively 

far away from the panel. PHAR-I and the panel do not share any common journals. PHAR-I is 

located far away from the panel as a whole as well as from any individual panel member. In 

summary, the Pharmaceutical Sciences panel appears to cover most research groups adequately, 

with the exception of two. 

Table 30 provides data on the distances between the Veterinary science panel’s barycenter and 

those of the individual research groups. The Veterinary panel is the closest to VETE-B, while 

VETE-A is 1.9 times and VETE-C is 1.7 times farther away from the panel than VETE-B. The 

overlay map (Figure 26) shows that the panel members are generally quite close to the research 

groups. Only PM4 is located a bit further away from the groups. Although the fit in this case is 

fairly good, an even better fit could be obtained if PM4 were replaced with a different person 

with publications in journals that are more closely related to the groups’ publication profile. 

6.4.2 Similarity-adapted publication vectors and distances 

For each discipline, the SAPV of the panel, panel members, individual research groups and 

department, as well as Euclidean distances between SAPVs are calculated. For each research 

group, we also calculate the average shortest distance to one of the panel members.  

The Biology panel is closer to BIOL-A (0.005) and BIOL-G (0.006), while BIOL-B (0.010) and 

BIOL-C (0.012) are at least 2 times farther away from the panel (Table 31). The average of the 

shortest distances between the Biology groups and panel members is 0.006. Table 32 provides 

data on the Euclidean distances between (SAPVs of) Biomedical Science research groups, panel 

and panel members. BIOM-F, and BIOM-I are in the immediate neighborhood of the panel while 

BIOM-N (0.010) is located farthest away from the panel. PM2 and PM5 are closer to nine and 

ten research groups respectively, while PM8 is situated moderately far away from all the 

research groups.  
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Table 31: Euclidean distances between SAPV of Biology individual research groups, panel 

members, panel and groups together in the journal similarity matrix 

 
Groups BIOL- A BIOL- B BIOL-C BIOL D BIOL-E BIOL -F BIOL- G BIOL- H BIOL- I 

Panel 0.004 0.005 0.010 0.012 0.007 0.008 0.007 0.006 0.010 0.008 

PM1 0.004 0.007 0.009 0.013 0.004 0.008 0.008 0.006 0.009 0.008 

PM2 0.005 0.003 0.010 0.015 0.009 0.005 0.012 0.005 0.011 0.012 

PM3 0.009 0.011 0.015 0.013 0.011 0.014 0.003 0.013 0.015 0.004 

PM4 0.007 0.006 0.009 0.016 0.009 0.006 0.014 0.004 0.010 0.013 

PM5 0.009 0.009 0.013 0.012 0.012 0.012 0.008 0.011 0.014 0.009 

Average shortest distance is 0.006 (SD 0.003).  

 

Table 32: Euclidean distances between SAPV of Biomedical Sciences individual research groups, 

panel members, panel and groups together in the journal similarity matrix 

 

Groups BIOM-

A 

BIOM-

B 

BIOM-

C 

BIOM-

D 

BIOM-

E 

BIOM-

F 

BIOM-

G 

BIOM-

H 

BIOM-

I 

BIOM-

J 

BIOM-

K 

BIOM-

L 

BIOM-

M 

BIOM-

N 

BIOM-

O 

Panel 0.004 0.004 0.004 0.004 0.006 0.005 0.003 0.009 0.008 0.003 0.008 0.005 0.009 0.006 0.010 0.007 

PM1 0.006 0.007 0.006 0.006 0.007 0.007 0.003 0.011 0.009 0.002 0.009 0.007 0.011 0.008 0.012 0.009 

PM2 0.005 0.004 0.006 0.007 0.008 0.007 0.003 0.008 0.010 0.005 0.005 0.006 0.009 0.006 0.010 0.007 

PM3 0.007 0.007 0.006 0.007 0.008 0.008 0.006 0.011 0.011 0.006 0.008 0.006 0.011 0.008 0.011 0.009 

PM4 0.007 0.007 0.007 0.007 0.007 0.008 0.004 0.011 0.010 0.002 0.009 0.007 0.011 0.009 0.012 0.009 

PM5 0.004 0.005 0.002 0.003 0.007 0.006 0.005 0.009 0.009 0.005 0.008 0.004 0.009 0.006 0.009 0.006 

PM6 0.006 0.008 0.008 0.007 0.008 0.003 0.009 0.009 0.006 0.009 0.012 0.008 0.011 0.009 0.011 0.009 

PM7 0.007 0.008 0.008 0.007 0.005 0.007 0.009 0.010 0.007 0.008 0.012 0.008 0.011 0.009 0.011 0.009 

PM8 0.011 0.009 0.012 0.013 0.014 0.013 0.013 0.009 0.014 0.014 0.011 0.011 0.010 0.010 0.010 0.010 

Average shortest distance is 0.005 (SD 0.002).  
 

 

Table 33: Euclidean distances between SAPV of Pharmaceutical Sciences individual research 

groups, panel members, panel and groups together in the journal similarity matrix 

 
Groups PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

Panel 
0.003 0.009 0.008 0.007 0.009 0.004 0.007 0.017 0.005 0.013 0.011 

PM1 
0.013 0.011 0.011 0.017 0.015 0.015 0.008 0.020 0.012 0.021 0.020 

PM2 
0.005 0.012 0.010 0.005 0.011 0.004 0.011 0.018 0.008 0.011 0.008 

PM3 
0.006 0.010 0.009 0.009 0.007 0.007 0.008 0.018 0.007 0.015 0.013 

PM4 
0.006 0.010 0.008 0.009 0.011 0.007 0.006 0.018 0.007 0.014 0.012 

PM5 
0.007 0.007 0.008 0.010 0.012 0.008 0.007 0.017 0.007 0.017 0.014 

Average shortest distance is 0.008 (SD 0.004).  
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Table 34: Euclidean distances between SAPV of Veterinary Sciences individual research groups, 

panel members, panel and groups together in the journal similarity matrix 

 
Groups VETE-A VETE-B VETE-C 

Panel 
0.007 0.008 0.005 0.006 

PM1 
0.011 0.013 0.010 0.005 

PM2 
0.005 0.005 0.005 0.011 

PM3 
0.015 0.016 0.013 0.013 

PM4 
0.010 0.010 0.010 0.015 

                                     Average shortest distance is 0.005 (SD 0.000).  

The average of the shortest distances between the Biomedical Sciences groups and panel 

members is 0.005 (SD 0.002), which can be used as a measure of the fit between the expertise of 

the panel members and the research groups. In Table 31 to Table 34, the shortest distances 

between a group and a panel member are bold and underlined. The distances whose CIs overlaps 

with that of the shortest distance are in bold. 

Table 33 provides data on the distances between the Pharmaceutical Sciences panel and 

individual research groups. The average shortest distances between the panel and individual 

research groups is 0.008 (s.d. 0.042). PHAR-E (0.004) and PHAR-H (0.005) are closer to the 

panel while PHAR-I (0.013) is located moderately far away from all panel members except PM2. 

PHAR-I (0.011) and the panel do not share any common journals, but PM2 is also closer to this 

group than other panel members. The Veterinary panel is the closest to VETE-B (0.005). The 

average shortest distances between the panel and individual research groups is 0.005 (SD 0.002). 

In the Veterinary department, the panel members are quite close to the research groups except for 

PM3 and PM4 (Table 34). PM3 and PM4 could be replaced with other potential panel members 

who have publications in journals that are more closely related to the groups’ publication profile 

to obtain a better panel fit. 

6.4.3 Confidence intervals 

To get an idea of the reliability of our barycenter and SAPV distances, we apply a bootstrapping 

approach to obtain 95% CIs. Comparison of the CIs can then inform the analysis. Specifically, if 

two distances are not equal but their CIs overlap, the difference may not be meaningful. 
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Figure 27:  Histogram of 1000 bootstrapped distances between the barycenters of VETE-B and 

VETE-PM1 (Veterinary Sciences) 

 

 

Figure 28: Confidence intervals for barycenter distances for Biomedical Sciences research group D 
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Figure 29: Confidence intervals for SAPV distances for Pharmaceutical Sciences research group A 

 

Table 35: Percentage of overlapping CI’s for barycenters and SAPVs in each of the four disciplines 

Department Barycenter method SAPV method 

Biology 28% 28% 

Biomedical Sciences 36% 34% 

Pharmaceuticals Sciences 43% 55% 

Veterinary Sciences 44% 0% 

 

As explained in the Methods section, we calculate distances for 1000 bootstrap samples. The 

resulting distances tend to be normally distributed, as illustrated in Figure 27. In Figure 27, the 

blue line indicates the empirically found distance; the dashed red lines indicate the CI. A similar 

image emerges for all disciplines and for both barycenters and SAPVs. It can be seen that the CI 

is a reliable approximation of the variability across the bootstrap samples. In Figure 28 and 

Figure 29, the highlighted part indicates the confidence interval of the shortest distance to the 

research group. 
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We illustrate the interpretation of the CIs using a few examples. Our focus will be on the task of 

finding the panel members that are cognitively closest to a given research group. Figure 28 

displays the CIs for the distances between the barycenter of BIOM-D and the barycenters of all 

panel members in Biomedical Sciences. Ignoring the panel as a whole, the panel member for 

which we find the closest distance to BIOM-D is PM1 but we cannot simply conclude that this 

panel member is cognitively closest to the group: both PM4 and PM5 have CIs that partially 

overlap with PM1. Hence, PM4 and PM5 should be treated as viable alternatives to PM1 if one 

is seeking a panel member with expertise similar to that of research group BIOM-D. 

Likewise, Figure 29 displays CIs for SAPV distances, using the example of Pharmaceutical 

Sciences research group PHAR-A. In this case, it turns out that the differences between the panel 

members are relatively small. The result is that, with the exception of PM2, all panel members 

are eligible candidates. CI plots like Figure 28 and Figure 29 are available in the appendix for all 

research groups and for both barycenters (appendix A) and SAPVs (Appendix B). 

We calculated the rate of overlap of CIs in the case of the barycenter approach and the case of 

the SAPV approach in all the four departments (see Table 35) in order to get a feel of the extent 

they might give rise to different conclusions. Overall, the degree of overlap due to the CIs of the 

barycenter approach seems similar to that of the SAPV approach. 

6.4.4 Comparison between two methods 

To more directly compare the results, we obtained from both methods, we calculated the Pearson 

correlation coefficient (r) and the Spearman rank correlation coefficient (ρ) between the 

distances obtained through the barycenter method and SAPV method. The correlation calculation 

is based on all distances between research groups and individual panel members. Correlations for 

the Biomedical department (r = 0.60, ρ = 0.56), Biology department (r = 0.73, ρ = 0.71), 

Pharmaceutical department (r = 0.63, ρ = 0.62) and Veterinary department (r = 0.64, ρ = 0.66) 

are moderately strong (Figure 30).  

We now turn to the question how the barycenter method and the SAPV method compare. Both 

try to quantify the cognitive distance by determining the Euclidean distance between 
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representations or ‘profiles’ of an entity, but the way these profiles are obtained is quite different. 

The barycenter method has the benefit of visualization, but the reduction of dimensionality that 

is inherent to creating a two-dimensional map may cause distortions in some cases. In this 

respect, the SAPV distances are the most reliable measure. We hypothesize that this advantage 

plays a larger role at the journal level than it did at the level of WoS SCs, since there are many 

more dimensions in the former case. In general, we recommend using the SAPV method for 

distance calculation and consider the barycenter approach more appropriate for visual 

exploration. 

 

Figure 30: Scatter plot of the barycenter and SAPV distances between groups and individual panel 

members in the Biology, Biomedical Sciences, Pharmaceutical Sciences, and Veterinary Sciences 

departments 

From the discussion on the composition of the four expert panels, it follows that a group can be 

far away from the panel as a whole. However, some individual panel members may have 

sufficient expertise to evaluate a single group, as indicated by publications in closely related or 

similar journals. 



119 

 

For example, as discussed in section 6.4.1 and shown in Figure 24, the barycenter of PM8 for 

Biomedical Sciences is in the immediate neighborhood of research groups BIOM-A, BIOM-J, 

BIOM-K and BIOM-L, while other panel members are farther away from them. On the other 

hand, according to the SAPV method, BIOM-PM8 is situated moderately far away from all the 

research groups. In the same way, the barycenter of VETE-PM4 is far away from all the groups, 

while in the SAPV method this is the case for PM3. These examples illustrate that, while the two 

methods are clearly correlated, they may yield rather different results at the level of individual 

groups or panel members.  

Even if a research group has no publications in the journals where the panel has publications, the 

panel might be able to evaluate the research group. For example, as discussed in section 6.4.1 

and 6.4.2, there is no overlap between the journal portfolio of group PHAR-I and the 

Pharmaceutical Sciences panel, but PM2 is still fairly close to this research group (Figure 25) 

both in the barycenter and the SAPV method (Table 29 and Table 33). 

Both methods give the opportunity to assess the composition of the panel in terms of cognitive 

distance if one or more panel members are replaced and compare the relative contribution of 

each potential panel member to the panel fit as a whole, by observing the changes to the distance 

between the panel’s and the groups’. In future research, we intend to compare these methods, as 

well as some others, with external data to gain more insight in their ‘practical’ merits (discussed 

in chapter VIII). 

6.5 Conclusion 

We have considered two potential methods of determining the match between research groups 

and expert panel members based on the journals in which they have published: distances 

(including confidence intervals) between barycenters on the map and distances (also including 

confidence intervals) between SAPVs. Both the barycenter and SAPV methods hold serious 

advantages over a simple comparison of publication portfolios. Visualizations in the form of 

overlay maps can provide an intuitive picture of an entity’s publication profile and include 

information on journal similarity, but they are less suited for actually distinguishing between, 

say, a few different panel members. In these cases, we have argued, distances between profiles 
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that take similarity into account (like barycenters and SAPVs) constitute a method with more 

‘actionable’ results. 

6.5.1 Discussion 

A research group may deliberately hire other professionals, e.g., a biology research group might 

hire a physicist or computer scientist who continues to publish in their own discipline. In that 

case, the group’s publication profile may change somewhat. We argue that it is the choice of the 

research group whether or not to include such publications in their research group profile during 

the period of research evaluation. As the formation of expert panel considers the focus of the 

research groups, the application of the barycenter and SAPV methods are not affected.  

In our case, the panel members have no prior involvement with the research groups, but the 

barycenter method and SAPV method can also be applied if the panel members have already 

collaborated with a research group or unit of assessment. The involvement of the panel member 

with the research group may result in a much better panel fit, but the research assessment itself 

might be subject to bias. However, such influence is outside the scope of the thesis, as the 

formulation of criteria for selection of the panel members depends on the objectives of the 

concerned authority.  

The scope of journals can vary significantly; some journals focus on rather specific topics, 

whereas others, such as PLoS ONE, are multidisciplinary in nature. One might therefore question 

whether journals are the adequate level of analysis. We suggest two possible routes for future 

research in this regard. First, it would be interesting if a comparison could be made between an 

analysis that considers all journals and one that leaves out multidisciplinary or otherwise broadly 

scoped journals. Second, one could replace journals with clusters of cognitively related articles. 

For instance, one could use the CWTS (Centre for Science and Technology Studies) article-level 

classification (Waltman & van Eck, 2012), which groups related articles together on the basis of 

direct citations regardless of the journal in which they were published. While we consider this an 

interesting idea, we also point out that it harbors its own set of theoretical and practical problems. 
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6.5.2 Normative implications 

Our proposed expert panel composition methods based on journal data allow the panel 

composition authority to see in advance about the panel’s fit to the research groups that are going 

to be evaluated. The distance between units of assessment can be used as an indicator of 

cognitive distance. Therefore, the concerned authority will have the opportunity to replace 

outliers among the panel members to make the panel fit well with the research groups to be 

evaluated. For example, the authority can find a best-fitting expert panel by replacing a more 

distant panel member with a potential panel member located closer to the groups, in addition to 

the other panel member to cover the expertise of the PHAR-I research group. Also, the distances 

between panel members and research groups could be used to facilitate the division of labor 

among the panel members. In our opinion, adequate coverage can be considered a necessary 

condition for the quality of an evaluation. Both the barycenter and SAPV methods for measuring 

cognitive distance can be used to inform the process of expert panel composition for a collection 

of research groups.   
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  Chapter VII: Measuring cognitive distance between 

publication portfolios7 

7.1 Introduction 

In this chapter, we address the research question: How can we obtain, using publication data, a 

meaningful distance or proximity measure which represents the cognitive distance or proximity 

between two units? This is in fact a rephrased version of a problem we discussed in the chapter 

V, where we asked, ‘How can one quantify the cognitive distances (overlap of expertise) 

between two entities (e.g., a research group and a panel) using the WoS SCs to which their 

publications belong?’ 

In our investigation, entities or units are either experts, panels of experts, or research groups. One 

can easily think of other informetric contexts in which the calculation of cognitive distances is 

relevant, e.g. the search of suitable peer reviewers for the evaluation of journal submissions, for 

grant applications or in hiring/promotion decisions, the exploration of potential collaborations, 

and distinguishing between different ‘modalities’ of interdisciplinarity (Molas-Gallart, Rafols & 

Tang, 2014). Rafols, et al., (2010) suggest several possible uses of overlay maps in research 

management that depend on cognitive distance, such as benchmarking and comparing the 

research profiles of organizations, and exploring complementarities and possible collaborations. 

In this regard, they point out that “successful collaborations tend to occur in a middle range of 

cognitive distance, whereupon collaborators can succeed at exchanging or sharing 

complementary knowledge or capabilities, while still being able to understand and coordinate 

with one another.” Our quantitative approaches are complementary to visual approaches like 

overlay maps (Leydesdorff, & Rafols, 2009; Rafols, et al., 2010; Leydesdorff, Carley, et al., 

2013). 

                                                 

7This chapter is based on Rousseau, Guns, Rahman & Engels (2017).  
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In this chapter, we focus on theoretical-logical aspects of the calculation of cognitive distance. 

As an application and to keep a clear link with chapter V, we re-use the data and framework. In 

that chapter, publications were assigned to WoS SCs. We admit that the use of WoS SCs was a 

convenience approach, which has meanwhile been refined by applying a journal level approach 

in the chapter VI. More precisely, instead of assigning publications to WoS SCs, publications 

were assigned to the journal in which they were published. 

7.2 Measuring cognitive distance 

Here, we consider the publication portfolio of the involved researchers to reflect the position of 

the unit in cognitive space and, hence, to determine cognitive distance. Expressed in general 

terms we measure cognitive distance between units based on how often they published in the 

same or similar journals. Similarity between journals can be measured in a direct way or via the 

WoS SCs to which they belong. Details are provided further on.  

In the case study presented in this chapter, similarity is determined by the citation-based 

similarity of WoS SCs to which journals belong. The research groups are either research groups 

in physics or in chemistry working at the University of Antwerp, Belgium. For details, we refer 

to chapter V.  

One can think of other informetric ways to determine cognitive distance between scientists. 

Wang & Sandström (2015) for example use bibliographic coupling and topic modelling to 

determine cognitive distance between publication portfolios. Besides using publication 

portfolios, one could also measure cognitive distance between patent portfolios, in terms of 

conference participation, in terms of diplomas, and so on. Moreover, cognitive distance is 

relevant in many other social and political contexts as well, e.g. when hiring employees, when 

comparing the programs of political parties, or to understand cultural differences.    

We recall chapter III that in order to obtain meaningful cognitive distances these values must be 

scale-invariant. This means that the distance between points P and Q must be the same as the 

distance between the points P and cQ, where c is a strictly positive number. Indeed: the total 

output of a research group can be several orders of magnitude larger than that of one expert. For 
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the applications, we have in mind this difference must not play a role in determining cognitive 

distances. Scale-invariance can be obtained through normalization as illustrated (for 3 

dimensions) in Figure 31. All points situated on the straight line through the origin are 

represented by the same point in the plane with equation x + y + z = 1.  

 

Figure 31: Normalization, leading to a scale invariant approach 

This is so-called L1-normalization: by dividing each coordinate by the sum of all coordinates one 

obtains a new array for which the sum of all coordinates is one (taking into account that no 

coordinate is negative). One could equally well divide by an array’s Euclidean length (so-called 

L2-normalization) but as we do not see an advantage for any of the two approaches, we applied 

L1-normalization as is done in diversity studies.  

7.3 Representing researchers’ publication profiles 

Researchers’ publication profiles and their (dis)similarities will be represented in five different 

ways: a benchmark, two methods using barycenters (one in two and one in three dimensions), a 

fourth method using SAPVs and a fifth one using weighted cosine similarities (WCS). The 

benchmark and the last two values are applied in N dimensions, where N denotes the total 

number of SCs. In each case we start from a publication vector M = (mj)j, with j=1,…,N. The 

coordinates of this vector are the number of publications belonging to category j. Each panel 
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member and each research group has a corresponding publication vector. In the applications only 

publications during a specific publication window and included in the WoS are considered, but 

the approach is independent of the used publication window or data source.  

Throughout the remainder of the chapter, we will work with the example of determining 

cognitive distances between expert panels and their members on the one hand and research 

groups on the other (in the context of research evaluation). However, we stress the fact that the 

methods presented are more general and can also be applied in other contexts and for other 

purposes. 

7.3.1 First method: The benchmark 

Scientists and research groups are represented as N-dimensional publications vectors. As a start 

(benchmark) we just calculate the Euclidean distance between the L1-normalized arrays of each 

panel member and each research group.  Recall that the Euclidean distance between two vectors 

a = (an)n=1,…,k and b = (bn)n=1,…k in Rk , for any strictly positive integer k, is given as: 

 𝑑(𝑎, 𝑏) = √(𝑎1 − 𝑏1)2 + ⋯ + (𝑎𝑘 − 𝑏𝑘)2 (17) 

In this chapter, we will use formula (17) for k = 2, k=3 and k = N. 

7.3.2 Second and third method: Barycenters  

To answer our research question, the second method uses a 2-dimensional base map. We note 

that this base map can be considered to be universal and hence has nothing to do with the 

concrete data at hand. Each SC has a place on this map, characterized by corresponding 

coordinates, denoted as (Lj,1, Lj,2), j = 1, …, N. In the application that will follow, the 2-

dimensional barycenter approach is based on a VOS (visualization of similarities) (Van Eck & 

Waltman, 2007) map (taken from Leydesdorff et al., 2013), but other 2-dimensional mappings 

are feasible. Now for each panel member and for each research group a barycenter derived from 

their publication profiles is calculated. Coordinates of these barycenters (in 2-dimensions) are 

given as 
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𝐶1 =
∑ 𝑚𝑗𝐿𝑗,1

𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
                                                        (18) 

where mj is the number of publications of the unit under investigation (panel member, research 

group) belonging to category j; this category j has coordinates (Lj,1, Lj,2) in the base map and  

𝑇 = ∑ 𝑚𝑗
𝑁
𝑗=1 . We note that in the case study performed further on, T is larger than the total 

number of publications as full counting of WoS SCs has been used, which means that 

publications belonging to multiple WoS SCs are counted multiple times. Euclidean distances 

between units, as represented by their barycenters, can be calculated leading to quantitative 

results answering our research question.  

The barycenter method explained above and in particular formulae (18) satisfy the scale-

invariance requirement as multiplying all mjs with the same strictly positive factor leads to the 

same barycenter. Although it is convenient to perform visualization and to determine cognitive 

distance in the plane, there is no theoretical reason to perform these acts in two dimensions. 

Likewise, there are no strong reasons to do both in the same dimension. The barycenter method 

can, at least in theory, be applied in any strictly positive dimension smaller than or equal to N. 

Not wanting to go too deep into this largely theoretical issue we will just check how results for 

our case studies compare in 2-dimensions and 3-dimensions, leading to the third method, namely 

the use of barycenters in three dimensions. 

For 3-dimensions, we again use the VOS algorithm, but now resulting in a 3-dimensional base 

map. This map was based on the network in http://www.leydesdorff.net/overlaytoolkit 

/map10.paj and obtained using Pajek, which implements the VOS algorithm both in 2 and 3 

dimensions. 

Again, each SC has a place on this map, characterized by corresponding coordinates, denoted as 

(Lj,1, Lj,2, Lj,3), j = 1, …, N, and for each panel member and for each research group a barycenter 

derived from their publication profiles is calculated. Coordinates in 3-dimensions are given as 

𝐶1 =
∑ 𝑚𝑗𝐿𝑗,1

𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
;  𝐶3 =

∑ 𝑚𝑗𝐿𝑗,3
𝑁
𝑗=1

𝑇
                                         (19) 

The meaning of the symbols T and mj in formulae (19) is the same as in formulae (18).  
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7.3.3 Fourth method: Similarity-adapted publication vectors  

In this method, we used a matrix of similarity values between the WoS SCs as made available by 

Rafols, et al., (2010) at http://www.leydesdorff.net/overlaytoolkit/map10.paj. These authors 

created a matrix of citing to cited SCs based on the SCIE and SSCI that was cosine-normalized 

in the citing direction. The result is a symmetric N×N similarity matrix (here, N=224) which we 

denote by S = (sij)ij.  

 

Figure 32: Workflow for determining distances between SAPVs 

The multiplication  𝑆 ∗ 𝑀 , i.e. applying the linear map with matrix representation S to the 

publication vector M leads to a new vector which we termed a similarity-adapted publication 

vector, SAPV in short. If we ignore similarity then S is the identity matrix and publication 

columns stay unchanged. We consider the SAPV method to be quite interesting as it provides a 

solution to the problem that WoS SCs overlap and are sometimes poorly defined, the SC 

Information Science & Library Science being a well-known example. 

We determined the distance for SAPVs through normalization. It suffices though, to follow the 

workflow shown in Figure 32. Hence, a normalized SAPV of a research group or panel member 

is determined as the vector 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑁), with coordinates Ck determined as:  
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𝐶𝑘 =

∑ 𝑠𝑘𝑗𝑚𝑗
𝑁
𝑗=1

∑ ∑ 𝑠𝑖𝑗𝑚𝑗
𝑁
𝑗=1

𝑁
𝑖=1

=
(𝑆 ∗ 𝑀)𝑘

‖𝑆 ∗ 𝑀‖1
  

(20) 

where 𝑠𝑘𝑗 denotes the similarity value between the 𝑘-th and the 𝑗-th WoS SC, and 𝑚𝑗 is the 

number of publications in WoS SC 𝑗 of the research group or the panel member. The numerator 

of Equation (20) is equal to the 𝑘-th element of 𝑆 ∗ 𝑀, the multiplication of the similarity matrix 

𝑆 and the column matrix of publications 𝑀 =  (𝑚𝑗)
𝑗
. The denominator is the L1-norm of the 

unnormalized vector. We observe that the L1-norm of the normalized vector C is indeed equal to 

1. 

7.3.4 Fifth method: Weighted cosine similarity 

Finally, we mention a weighted cosine similarity (WCS) method. The WCS between panel 

member (PM) k and research group m, according to Zhou et al. (2012) is: 

      
∑ 𝑀𝑖

𝑘𝑁
𝑖=1 (∑ 𝑅𝑗

𝑚𝑠𝑗𝑖
𝑁
𝑗=1 )

√(∑ 𝑀𝑖
𝑘𝑁

𝑖=1 (∑ 𝑀𝑗
𝑘𝑠𝑗𝑖

𝑁
𝑗=1 )).(∑ 𝑅𝑖

𝑚𝑁
𝑖=1 (∑ 𝑅𝑗

𝑚𝑠𝑗𝑖
𝑁
𝑗=1 )) 

 

=  
  * *

t
k mM S R

√   * *
t

k kM S M .√   * *
t

m mR S R

                                                     (21) 

The numerator is nothing but the matrix multiplication:   * *
t

k mM S R , where t denotes matrix 

transposition, S is the similarity matrix, Mk denotes the column matrix of publications of panel 

member k and Rm denotes the column matrix of publications of research group m. Similarly, the 

two products under the square root in the denominator are:   * *
t

k kM S M  and    * *
t

m mR S R . 

The result is the WCS value between panel member k and research group m. Formula (21) is 

clearly scale-invariant: multiplying Mk or Rm with a fixed constant does not change the result. 

Note that if S is the identity matrix (similarity is not taken into account), formula (21) reduces to 

regular cosine similarity. A similarity or proximity can be considered as the opposite of a 

distance: the higher the similarity the better the match – the closer the distance – between a panel 
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member and a research group. This value too is calculated for each panel member and each 

research group. We note that this fifth method may lead to mathematical problems when applied 

in general vector spaces, but that these do not occur in the particular framework used in this 

article (in mathematical terms: we work in the positive cone (R+)N, where R denotes the real 

numbers). Details are provided in chapter III (see section 3.2.5). 

7.4 Results 

As in chapter V, we calculate the cognitive distance between different research groups and panel 

members. Group names have been standardized using the first four letters of the corresponding 

department, for example, CHEM-A for chemistry research group A, PHYS-B for physics 

research group B. The panel member names are standardized as PM1, PM2 etc., but refer to 

different colleagues depending on the panel in question. 

Yet, another problem must be solved before we can really state that one panel member is closer 

to a research group than another. Small differences in distance or similarity bear little meaning 

and should not be used to make claims that, for instance, one panel member is a ‘better’ choice 

than another. We therefore use a bootstrapping method (Efron & Tibshirani, 1998) leading to 

95% CIs for distances and similarities. Details of the bootstrapping method we applied and 

explained in Chapter III and chapter VI respectively. A more detailed explanation can be found 

online (Guns, 2016a, 2016b). If the CI of the panel member who is closest to a given research 

group overlaps with that of the panel member who ranks second (and maybe even with the panel 

members ranking third or fourth) we say that there is no (statistical) difference in cognitive 

distance.  

In order to facilitate a comparison between the five methods, results for the barycenter method in 

2-dimension (Table 38 and Table 39) are re-considered and information about the calculated CIs 

is added. Hence, we begin the presentation of shortest distances between panel members and 

research groups with the benchmark case (Table 36 and Table 37), followed by the 3-

dimesnional barycenter case (Table 40 and Table 41), the SAPV method (Table 42 and Table 43) 

and finally the WCS method (Table 44 and Table 45). 
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Table 36: Euclidean distances in N dimensions between normalized publication arrays of research 

groups and panel members of the Chemistry department 

 CHEM
-A 

CHEM
-B 

CHEM
-C 

CHEM
-D 

CHEM
-E 

CHEM
-F 

CHEM
-G 

CHEM
- H 

CHEM
-I 

CHEM
- J 

CHEM
- K 

CHEM
- L 

PM1 0.607 0.697 0.646 0.459 0.627 0.743 0.656 0.652 0.674 0.646 0.607 0.667 

PM2 0.507 0.565 0.402 0.588 0.300 0.240 0.316 0.377 0.269 0.356 0.445 0.531 

PM3 0.540 0.573 0.381 0.598 0.279 0.405 0.288 0.257 0.242 0.350 0.468 0.561 

PM4 0.542 0.601 0.441 0.608 0.331 0.340 0.217 0.372 0.336 0.360 0.464 0.556 

PM5 0.180 0.157 0.482 0.604 0.500 0.659 0.547 0.499 0.515 0.520 0.500 0.368 

PM6 0.715 0.762 0.726 0.255 0.693 0.809 0.738 0.731 0.749 0.729 0.693 0.745 

PM7 0.684 0.770 0.741 0.758 0.732 0.825 0.746 0.744 0.761 0.741 0.713 0.739 

 

Table 37: Euclidean distances in N dimensions between normalized publication arrays of research 

groups and panel members of the Physics department 

 
PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.716 0.793 0.699 0.114 0.519 0.786 0.730 0.806 0.662 

PM2 0.953 0.466 0.788 1.048 0.801 1.008 0.956 0.457 0.899 

PM3 0.639 0.741 0.654 0.819 0.634 0.759 0.701 0.705 0.621 

PM4 0.600 0.663 0.476 0.738 0.481 0.663 0.278 0.662 0.523 

PM5 0.510 0.376 0.171 0.667 0.296 0.559 0.494 0.410 0.387 

PM6 0.618 0.224 0.388 0.736 0.379 0.576 0.568 0.241 0.531 

 

Table 38: Euclidean distances between barycenters of research groups and panel members of the 

Chemistry department using the 2-dimensional WoS SCs map 

 CHEM
-A 

CHEM
-B 

CHEM
-C 

CHEM
-D 

CHEM
-E 

CHEM
-F 

CHEM
-G 

CHEM
- H 

CHEM
-I 

CHEM
- J 

CHEM
- K 

CHEM
- L 

PM 1 0.167 0.129 0.217 0.165 0.329 0.337 0.179 0.165 0.111 0.394 0.454 0.127 

PM 2 0.350 0.342 0.362 0.129 0.079 0.090 0.145 0.215 0.199 0.259 0.228 0.342 

PM 3 0.171 0.161 0.192 0.129 0.252 0.263 0.053 0.061 0.020 0.269 0.330 0.161 

PM 4 0.269 0.262 0.280 0.108 0.158 0.170 0.063 0.134 0.121 0.232 0.250 0.263 

PM 5 0.056 0.055 0.091 0.232 0.367 0.378 0.154 0.093 0.099 0.315 0.411 0.057 

PM 6 0.302 0.276 0.335 0.027 0.175 0.181 0.161 0.210 0.156 0.366 0.370 0.275 

PM 7 0.116 0.072 0.172 0.235 0.395 0.404 0.216 0.178 0.144 0.410 0.491 0.070 
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Table 39: Euclidean distances between barycenters of research groups and panel members of the 

Physics department using the 2-dimensional WoS SCs map 

 
PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

PM 1 1.173 0.123 0.215 0.017 0.145 0.208 0.495 0.120 0.664 

PM 2 1.195 0.067 0.109 0.158 0.118 0.316 0.443 0.056 0.688 

PM 3 1.041 0.146 0.194 0.116 0.113 0.104 0.387 0.157 0.532 

PM 4 1.020 0.168 0.085 0.263 0.132 0.295 0.249 0.179 0.522 

PM 5 1.136 0.046 0.055 0.159 0.069 0.281 0.385 0.050 0.629 

PM 6 1.157 0.031 0.084 0.138 0.078 0.280 0.412 0.026 0.649 

 

Table 40: Euclidean distances between barycenters of research groups and panel members of the 

Chemistry department using the 3-dimensional WoS SCs map 

 CHEM
-A 

CHEM
-B 

CHEM
-C 

CHEM
-D 

CHEM
-E 

CHEM
-F 

CHEM
-G 

CHEM
- H 

CHEM
-I 

CHEM
- J 

CHEM
- K 

CHEM
- L 

PM1 0.037 0.032 0.043 0.033 0.064 0.059 0.018 0.006 0.014 0.043 0.103 0.033 

PM2 0.110 0.108 0.114 0.045 0.017 0.022 0.062 0.075 0.063 0.060 0.035 0.110 

PM3 0.051 0.047 0.056 0.019 0.050 0.044 0.006 0.015 0.007 0.040 0.090 0.048 

PM4 0.069 0.063 0.074 0.012 0.037 0.032 0.013 0.033 0.023 0.050 0.084 0.064 

PM5 0.030 0.027 0.034 0.040 0.069 0.064 0.028 0.007 0.019 0.038 0.103 0.029 

PM6 0.057 0.052 0.062 0.013 0.044 0.038 0.007 0.021 0.010 0.039 0.085 0.054 

PM7 0.023 0.016 0.028 0.049 0.080 0.075 0.034 0.018 0.030 0.053 0.117 0.017 

 

Table 41: Euclidean distances between barycenters of research groups and panel members of the 

Physics department using the 3-dimensional WoS SCs map 

 
PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.453 0.054 0.084 0.011 0.067 0.064 0.162 0.048 0.257 

PM2 0.408 0.007 0.032 0.043 0.016 0.044 0.112 0.008 0.211 

PM3 0.392 0.024 0.037 0.050 0.026 0.013 0.105 0.026 0.196 

PM4 0.361 0.049 0.018 0.091 0.035 0.061 0.062 0.054 0.163 

PM5 0.393 0.014 0.017 0.056 0.003 0.041 0.096 0.019 0.195 

PM6 0.409 0.006 0.034 0.040 0.017 0.041 0.113 0.004 0.211 
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Table 42: Euclidean distances between SAPVs of research groups and panel members of the 

Chemistry department using the similarity matrix of WoS SCs 

 CHEM
-A 

CHEM
-B 

CHEM
-C 

CHEM
-D 

CHEM
-E 

CHEM
-F 

CHEM
-G 

CHEM
- H 

CHEM
-I 

CHEM
- J 

CHEM
- K 

CHEM
- L 

PM 1 0.081 0.079 0.108 0.061 0.124 0.119 0.116 0.104 0.093 0.129 0.141 0.085 

PM 2 0.082 0.074 0.079 0.054 0.036 0.032 0.055 0.046 0.036 0.075 0.071 0.070 

PM 3 0.082 0.074 0.080 0.066 0.057 0.058 0.040 0.040 0.042 0.075 0.086 0.073 

PM 4 0.106 0.099 0.104 0.085 0.064 0.070 0.027 0.063 0.071 0.085 0.094 0.091 

PM 5 0.015 0.013 0.034 0.074 0.100 0.102 0.077 0.053 0.050 0.082 0.096 0.024 

PM 6 0.093 0.087 0.111 0.025 0.085 0.080 0.096 0.090 0.080 0.113 0.116 0.088 

PM 7 0.068 0.068 0.097 0.072 0.128 0.125 0.113 0.099 0.089 0.125 0.140 0.075 

Table 43: Euclidean distances between SAPVs of research groups and panel members of the 

Physics department using the similarity matrix of WoS SCs 

 
PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

PM 1 0.376 0.358 0.373 0.098 0.328 0.301 0.371 0.358 0.367 

PM 2 0.172 0.019 0.038 0.272 0.054 0.127 0.115 0.019 0.133 

PM 3 0.156 0.065 0.080 0.256 0.069 0.100 0.116 0.063 0.111 

PM 4 0.144 0.060 0.039 0.271 0.051 0.129 0.066 0.063 0.103 

PM 5 0.157 0.023 0.016 0.271 0.044 0.125 0.095 0.027 0.115 

PM 6 0.165 0.012 0.035 0.258 0.037 0.111 0.106 0.015 0.125 

Table 44: WCS values of research groups and panel members of the Chemistry department using 

the similarity matrix of WoS SCs 

 CHEM
-A 

CHEM
-B 

CHEM
-C 

CHEM
-D 

CHEM
-E 

CHEM
-F 

CHEM
-G 

CHEM
- H 

CHEM
-I 

CHEM
- J 

CHEM
- K 

CHEM
- L 

PM1 0.709 0.667 0.445 0.922 0.469 0.449 0.395 0.440 0.507 0.323 0.273 0.661 

PM2 0.670 0.713 0.726 0.675 0.914 0.945 0.837 0.847 0.947 0.703 0.527 0.713 

PM3 0.594 0.655 0.673 0.569 0.839 0.831 0.866 0.880 0.894 0.711 0.403 0.604 

PM4 0.459 0.517 0.504 0.484 0.781 0.777 0.951 0.758 0.769 0.626 0.315 0.549 

PM5 0.983 0.990 0.842 0.669 0.581 0.475 0.614 0.747 0.758 0.573 0.512 0.933 

PM6 0.613 0.600 0.377 0.973 0.545 0.519 0.391 0.410 0.484 0.294 0.280 0.603 

PM7 0.758 0.713 0.503 0.850 0.460 0.439 0.440 0.494 0.550 0.373 0.290 0.700 

For each research group, we determine the panel member at the shortest distance. The number in 

the row corresponding to this panel member is indicated in bold and underlined. Distances whose 

confidence intervals overlap with that of the shortest distance are in bold (same column). We use 

the same way of showing results for all the tables. 
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Table 45: WCS values of research groups and panel members of the Physics department using the 

similarity matrix of WoS SCs 

 
PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.030 0.155 0.043 0.996 0.561 0.508 0.028 0.154 0.052 

PM2 0.151 0.982 0.920 0.127 0.806 0.513 0.543 0.977 0.497 

PM3 0.220 0.714 0.625 0.211 0.668 0.526 0.440 0.762 0.544 

PM4 0.182 0.729 0.829 0.129 0.757 0.436 0.895 0.741 0.479 

PM5 0.182 0.965 0.986 0.158 0.852 0.475 0.656 0.957 0.567 

PM6 0.164 0.989 0.930 0.272 0.903 0.643 0.631 0.985 0.516 

Table 44 and Table 45 contain the WCS results, where we recall that this is a similarity approach 

(not a distance-based one) and hence largest values refer to entities that are closest. 

7.5 Correlations between distances/similarities based on the five 

methods 

We calculated the Pearson correlation coefficient (r) and the Spearman rank correlation 

coefficient (ρ) between distances/similarities based on the five methods. These calculations are 

based on all distances between research groups and individual panel members. For calculations 

involving WCS we show absolute values, as distances and similarities are each other’s opposites, 

and hence correlations are negative.  

Table 46: Chemistry: Pearson and Spearman correlations for all cognitive distances between 

research groups and individual panel members 

Pearson 

Spearman 

Benchmark Barycenter 2D Barycenter 3D SAPV WCS 

Benchmark 1.00 0.38 0.09 0.72 0.72 

Barycenter 2D 0.34 1.00 0.81 0.75 0.64 

Barycenter 3D 0.06 0.82 1.00 0.42 0.31 

SAPV 0.67 0.72 0.42 1.00 0.92 

WCS 0.67 0.62 0.30 0.92 1.00 
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Table 47: Physics: Pearson and Spearman correlation for all cognitive distances between research 

groups and individual panel members 

Pearson 

Spearman 

Benchmark Barycenter 2D Barycenter 3D SAPV WCS 

Benchmark 1.00 0.12 (0.34) 0.22 (0.27) 0.50 (0.56) 0.63 (0.54) 

Barycenter 2D 0.37(0.48) 1.00 0.99 (0.99) 0.29 (0.87) 0.60 (0.89) 

Barycenter 3D 0.34(0.38) 0.94 (0.96) 1.00 0.35 (0.81) 0.61 (0.85) 

SAPV 0.60(0.56) 0.64 (0.94) 0.71 (0.86) 1.00 0.86 (0.97) 

WCS 0.65(0.58) 0.71 (0.91) 0.74 (0.83) 0.94 (0.97) 1.00 

In Table 46 and Table 47, the upper triangle refers to Pearson correlations while the lower 

triangle refers to Spearman correlations. Clearly, SAPV and WCS results in Table 46 and Table 

47 are highly correlated. This also applies to correlations between barycenter in two and three 

dimensions. 

Values between brackets in Table 47 are correlations calculated after removal of PHYS-D and 

PM1; an explanation for doing this is provided further. Correlations for the benchmark case 

(ignoring all similarities) and the other approaches are moderate at best.  

 

Figure 33: Scatter plot of the cognitive distances between research groups and individual panel 

members for the 2-dimensional barycenter and SAPV methods in the physics department 
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Figure 34: Scatter plot of the cognitive distances between research groups and individual panel 

members obtained by the 2-dimensional barycenter and SAPV methods in the physics department 

excluding PHYS-D and PM1 

Not surprisingly, the two N-dimensional approaches (SAPV and WCS) are more correlated with 

the benchmark case than the lower dimensional ones. Correlations between the 2-dimensional 

and the 3-dimensional approach are high in all cases.  

This illustrates that the number of dimensions chosen has only limited influence on the results 

based on barycenters. Most other correlations can be described as moderate to high. For 

chemistry we note, however, that the correlations between barycenter 3-dimension on the one 

hand, and SAPV and WCS on the other, are lower than expected. Moreover, these values are 

lower than for the 2-dimension case. We were not able to find an explanation for this unexpected 

difference. We further note a low correlation between SAPV and the barycenter methods in 

physics. For this case, however, we found a convincing explanation. Figure 33 illustrates what 

happened. 

This low Pearson correlation is due to the 13 points (including two times two points that overlap 

and cannot be seen) in the upper half of Figure 33. All these points correspond to distances 

involving research group PHYS-D and PM1 (but not both). This group and this panel member 
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are active in the same field (Physics, Particles & Fields) and have different scientific interests 

than the other groups or panel members: 99.1% of PM1’s publications belong to the SC Physics, 

Particles & Fields, while for PHYS-D, this SC covers 83.6% of its publications. Moreover, their 

publications cover only four (117 publications) and seven (269 publications) WoS SCs 

respectively while other panel members cover 12 to 26 WoS SCs, and other research groups 26 

to 50 SCs. Figure 34 presents the same data as Figure 33, but leaves out distances involving 

PHYS-D and PM1. In this case, all correlations increase considerably. 

A more detailed comparison between the five methods follows in the next section. 

7.6 Comparison between the five methods  

A comparison would be easy if a gold standard existed. Clearly, it does not, but we used the 

labour division decided upon by the panel chair as a proxy. Prior to a site visit  ( see  Engels et 

al., 2013 for details), the panel chair appointed a main assessor for each of the research groups to 

be evaluated. This main assessor studied the profile and performance of the research group in 

detail, asked the majority of questions during the site visit and wrote the (first draft of) the final 

assessment of the research group.  

For chemistry, the barycenter methods score slightly better than SAPV and WCS, while for 

physics there is hardly any difference between the four (even five) methods. Especially in the 

case of chemistry, we have several cases where most confidence intervals overlap. The 

barycenter method in 3-dimension clearly has very low discriminatory power leading to cases 

where all confidence intervals overlap (CHEM-F and CHEM-J). In these cases, the 3-dimension 

barycenter cannot distinguish between panel members. 

We see that for some research groups the five methods and the chosen assessor coincide (taking 

confidence intervals into account). This perfect result was attained for CHEM-B, CHEM-E, 

CHEM-J, PHYS-C, PHYS-D, PHYS-G and PHYS-H; while only the benchmark case missed 

PHYS-A and PHYS-L.  
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Hence, this is the case for 3 of the 12 chemistry groups and for 4 (or 6) of the 9 physics groups. 

The smaller number of perfect results in chemistry is largely due to the WCS method. For some 

other groups, no method leads to the chosen assessor. This is the case for CHEM-A, CHEM-K, 

and PHYS-E.  

Table 48 and Table 49 show the research groups, the corresponding main assessor, and the panel 

members with the closest distance (for the five methods). The first one in each cell is the panel 

member closest to the corresponding research group; the others are panel members whose 

distances are statistically not different from this shortest distance.  

Assuming that panel chairs assigned the best suited panel member as main assessor, a perfect 

method would always rank this main assessor first. However, remember that neither have panel 

members and research groups ever collaborated nor do they belong to the same university, so this 

assumption does not necessarily always hold in practice.  

Mainly due to the overlapping confidence intervals the barycenter method in 3-dimension is the 

only one which included the main assessor for CHEM-C and CHEM-I (and the benchmark has 

PM3 as closest to CHEM-C). In all these negative cases, the results obtained by the five methods 

largely agree. A possible explanation for this surprising result might simply be that the panel 

chair included other factors - than pure scientific affinity - in the decision to assign a panel 

member to a research group. 

In the case of chemistry where the suggested labor division was partly contested by PM3, PM5 is 

identified as the closest to CHEM-C. A possible explanation for this specific case could be that 

PM5 was already the main assessor for two groups so that, for purely practical reasons, PM3 

became the main assessor of CHEM-C. 
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Table 48: Chemistry: Top ranked panel members according to five methods 

Research 

group 

Main 

assessor 
Benchmark Barycenter 2D Barycenter 3D SAPVs WCS 

CHEM-A PM6 PM5 PM5-PM7 

PM7- PM5- 

PM1 PM5 PM5 

CHEM-B PM5 PM5 

PM5-PM7-

PM1 

PM7- PM5- 

PM1 PM5 PM5 

CHEM-C PM7/PM3 

PM3-PM2-

PM4 PM5 

PM7- PM5- 

PM1 

 

PM5 

 

PM5 

 

CHEM-D 

 

PM2 PM6- PM1 

PM6-PM4-

PM3-PM2-

PM1 

PM4- PM6- 

PM3- PM1- 

PM5- PM2- 

PM7 

PM6-PM2-

PM1 PM6-PM1 

 

CHEM-E 

 

PM2 

PM3-PM2-

PM4 

 

PM2-PM4-

PM6 

 

PM2- PM4- 

PM6- PM3 PM2-PM3 PM2-PM3 

CHEM-F PM3 
PM2-PM4-
PM3 

 
PM2-PM6-
PM4-PM3 

 
PM2- PM4- 
PM6- PM3- 
PM1- PM5- 
PM7 PM2-PM3 PM2 

CHEM-G PM3 PM4-PM3 PM3-PM4 

 
PM3- PM6- 
PM4- PM1 PM4-PM3 PM4 

 
CHEM-H 

 
PM5 

PM3-PM4-
PM2 

 
PM4-PM3-
PM5 

 
PM1- PM5- 
PM3- PM7- 
PM6- PM4 

PM3-PM2-
PM5 

PM3-PM2-
PM4 

 
CHEM-I 

 
PM4 

PM3-PM2-
PM4 

 
PM3-PM5 

 
PM3- PM6- 
PM1- PM5- 
PM4- PM7 

PM2-PM3-
PM5 PM2-PM3 

CHEM-J PM4 
PM3-PM2-
PM4 

 
PM4-PM2-
PM3-PM5 

 
PM5- PM6- 
PM3- PM1- 
PM4- PM7- 
PM2 

PM3-PM2-
PM5-PM4 

PM3-PM2-
PM4-PM5 

 
CHEM-K 

 
PM6 

PM2-PM4-
PM3-PM5 

 
PM2-PM4 

 
PM2 

 
PM2-PM3 

 
PM2- PM5-
PM3- 

 
CHEM-L 

 
PM1 PM5 

 
PM5-PM7-
PM1 

 
PM7- PM5- 
PM1 

 
PM5 

 
PM5 

score  7/12 (2/12) 8/12 (4/12) 10/12 (3/12) 7/12 (2/12) 3/12 (2/12) 
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Table 49: Physics: Top ranked panel members according to five methods 

Research 

group 

Main 

assessor 
Benchmark Barycenter 2D Barycenter 3D SAPVs WCS 

PHYS-A PM3 PM5 

PM4-PM3-

PM5-PM6 

PM4- PM3- 

PM5- PM2- 

PM6 

PM4-PM3-

PM5-PM6 

PM3-PM5-

PM4-PM6-

PM2 

 

PHYS-B 

 

PM2 PM6 

 

PM6-PM5 

 

PM6- PM2 

 

PM6 

 

PM6-PM2 

 

PHYS-C 

 

PM5 PM5 

 

PM5-PM4 

 

PM5- PM4 

 

PM5 

 

PM5 

 

PHYS-D 

 

PM1 PM1 

 

PM1 

 

PM1 

 

PM1 

 

PM1 

PHYS-E 

 

PM4 PM5-PM6 

 

PM5-PM6 

 

PM5- PM2- 

PM6 

 

PM6-PM5 

 

PM6-PM5 

 

 

PHYS-F 

 

PM1 

PM5-

PM6-PM4 

 

PM3-PM1 

 

PM3 

 

PM3-PM6 

 

PM6 

 

PHYS-G 

 

PM4 PM4 

 

PM4-PM3-

PM5-PM6 

 

PM4- PM5- 

PM3- PM2- 

PM6 

PM4-PM5-

PM6 PM4 

 

PHYS-H 

 

PM6 PM6 

 

PM6-PM5 

 

PM6- PM2 

 

PM6-PM2 

 

PM6-PM2 

 

 

PHYS-I 

 

PM3 PM5 

 

PM4-PM3-

PM5 

 

PM4- PM5- 

PM3- PM2- 

PM6 

PM4-PM3-

PM5 

PM5-PM3-

PM6-PM2-

PM4 

Score  4/9 (4/9) 7/9 (4/9) 7/9 (4/9) 6/9 (4/9) 7/9 (4/9) 

Considering now the individual panel members, we see that some are close to several research 

groups, while others are not close to any. For chemistry, we see that, according to the 2-

dimensional barycenter method PM4 and PM5 are close to seven research groups, while PM2, 

PM3 and PM5 are closest to seven research groups according to the SAPV method. PM5 is 

closest to six research groups according to the WCS method. Clearly, PM5 was an essential 

panel member. According to the two barycenter-based methods, all chemistry panel members are 

closest to at least three groups, but according to the SAPV and the WCS method PM7 is closest 

to none. 
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For physics, PM5 and PM6 are closest to at least four research groups, and this for the four 

similarity-based methods. PM2 is closest to none according to the 2D barycenter method, but 

closest to four groups according to the WCS method. We observe the special role of PM1 in 

physics who is the only one closest to PHYS-D and this according to the five methods. This 

observation confirms the results seen in the correlation analysis. It, moreover, contains a warning 

that correlation analyses may suggest wrong conclusions. In this case, the poor correlations 

between the results obtained by the SAPV method and those obtained by the barycenter methods 

for groups and panel members that have no real importance (they are cognitively unrelated) 

should not distract from the generally better correlations for pairs that matter. 

7.7 Conclusion 

In this chapter, we showed that, besides using barycenters in a two- and three-dimensional base 

map, it is possible to derive cognitive distances in N-dimensions using the SAPVs and WCS 

methods. Our approach is rather general: it can in principle be applied to all cases where units 

produce publications, which can be situated on a base map or counted in relation to a similarity 

matrix. Of course, other approaches are also possible, such as the one proposed by Wang & 

Sandström (2015) which is based on bibliographic coupling and topic modelling. 

Operationalizing the notion of cognitive distance is essential to several topics in informetrics, 

e.g. peer review processes, evaluation procedures, exploration of collaboration, and the study of 

interdisciplinarity. Indeed, cognitive distance could also be derived from other objects than 

publications, such as patents. Cognitive distance is also of essence in other contexts such as 

hiring decisions, political programs, and cultural differences.  

As pointed out in this chapter, calculating cognitive distances between units should be scale-

invariant. Barycenters in a two- and three dimensional base maps satisfy this requirement. We 

note though that distances in a 2- or 3-dimensional map are artificial; for instance, Pajek uses 

coordinates in the interval [0, 1] (this also applies to its VOS implementation), whereas 

coordinates in VOSviewer may refer to a wider interval. Hence, only comparisons between 

distances and not their absolute values have meaning. Proper normalization in N dimensions also 

leads to scale-invariant distances.  
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We have shown that the barycenter method is relatively insensitive to the number of dimensions 

in which it is used. Yet, especially in 3D the barycenter method has little discriminatory power. 

Distances between normalized SAPVs in N dimensions are probably less distorted and hence 

more meaningful. A similar observation applies to the WCS method. Hence, our preference, 

based on mathematical logic, goes to the SAPVs and WCS methods. Yet, WCS scores badly in 

the case of chemistry, so that our final preference goes to the SAPV method. Admitting that in 

our case studies the barycenter methods score slightly better and that differences between the 

results obtained by different methods are rather small, it is obvious that the result of this 

comparison should not be generalized. In future research, we intend to make a similar empirical 

comparison for more disciplines. 

In a chapter V, besides using a VOS map, we also investigated if a map based on the algorithm 

by Kamada and Kawai (1989) could be used. We found out however that a Kamada-Kawai map 

(in two and in three dimensions) can yield very different results, depending on the random seed 

used. For this reason, we turned to a VOS map, which is much more stable. We hope that this 

warning will prevent colleagues from making wrong inferences. 

Finally, our investigations led to two unsolved problems. The first one is the unexplained low 

correlation between the barycenter method in 3-dimension and the SAPV and WCS methods for 

chemistry. We checked all calculations related to the barycenter method in 3-dimesnion but did 

not detect any error. Moreover, consequent investigations related to other departments, in 

particular the biomedical sciences, gave similar low correlations. The second problem is the use 

of the main assessor, as appointed by the panel chair, as a “gold standard”. We admit that this is 

a problematic approach, since it relies on assumptions that are not always met. Yet, for the 

moment, we have not found a better solution.  
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Chapter VIII: Cognitive distances between evaluators and 

evaluees in research evaluation: A comparison between 

three informetric methods at the journal and subject 

category aggregation level 8 

8.1 Introduction 

As far as we are aware there was, prior to 2013, no method to measure and quantify congruence 

of expertise or cognitive distance between panels and research groups in discipline-specific 

research evaluation (Engels et al., 2013). We started to study the problem of quantifying 

cognitive distance, such that individual panel members’ expertise covers the research domains in 

the discipline where the units of assessment (in our case: research groups) have publications. In 

the chapter V to VII, we focused on determining the cognitive distances between publication 

portfolios of an expert panel and research groups (Rahman, Guns, Rousseau, & Engels, 2015; 

Rahman, Guns, Leydesdorff, & Engels, 2016; Rousseau, Guns, Rahman, & Engels, 2017), while 

Wang & Sandström (2015) used bibliographic coupling and topic modelling to determine 

cognitive distance. 

More specifically, we explored different ways of quantifying the cognitive distance between 

panel members’ and research groups’ publication profile in discipline-specific research 

evaluation. For this we consider all the publications of the research groups and panel members 

indexed in the WoS and pursue an investigation at two levels of aggregation: WoS SCs and 

journals. For this purpose, we used the similarity matrix of WoS SCs and a 2-dimensional base 

map derived from it (for details see Leydesdorff & Rafols, 2009; Rafols et al., 2010; 

Leydesdorff, Carley, et al., 2013) and also the similarity matrix of journals and its 2-dimensional 

base map (for details see Leydesdorff & Rafols, 2012; Leydesdorff, Rafols, & Chen, 2013). 

                                                 

8 This chapter is based on Rahman, Guns, Rousseau & Engels (2017). 
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Hence, we proposed five different approaches namely a barycenter approach using WoS SCs and 

journals (chapter V and VI), SAPV approach using WoS SCs and journals (chapter VI and VII) 

and a WCS approach using WoS SCs (chapter VII). The SAPV and WCS methods use the 

similarity matrix of WoS SCs/journals while the barycenter method uses the respective two-

dimensional base map derived from the similarity matrix of WoS SCs/journals. So far, we have 

not yet applied the WCS method at the journal level. In this chapter, we cover that gap. Hence, 

three methods and two levels of aggregation lead to six informetric approaches to inform 

cognitive distances between evaluators and evaluees in research evaluation. 

Until now, we have not compared the two levels of aggregation. More generally, a systematic 

comparison and test of all six approaches has not yet been carried out. This chapter fills this gap. 

Hence, we set the following research questions:  

i) What are the correlations between the different approaches?  Which aspect (method 

vs level of aggregation) has the largest influence on the correlation?  

ii) To what extent do the approaches agree in matching the panel member at the closest 

cognitive distance from a research group? 

iii) How accurate are the approaches in matching the main assessor for each research 

group?  How accurate are they to uniquely match the main assessor? 

Firstly, we look at the influence of the level of aggregation and the number of dimensions for 

determining cognitive distances. Secondly, we explore whether or not all the methods indicate 

the same panel member as the one at the shortest cognitive distance from a research group. 

Finally, we investigate if there is any difference between the proposed methods to find the 

previously assigned main assessor.  

8.2 Data 

The data in this chapter stem from the research assessment during the period 2009 – 2014 of six 

departments belonging to the University of Antwerp. The same panel evaluates all research 

groups in a department.  
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Table 50: Publication statistics of the research groups and panels 

Name of the Department 

 
 

Asses
sment 

year 

Research groups Panel 

No. of 
research 

groups 

No. of 
journals 

No. of 
publicati

ons 

No. of 
WoS SCs 

No. of 
panel 

members 

No. of 
journals 

No. of 
public
ations 

No. of 
WoS SCs 

Biology 2011 9 372 1158 90 5 217 786 54 

Biomedical Sciences 2014 15 476 1234 103 8 395 1333 80 

Chemistry 2009 12 300 920 94 7 248 2150 66 

Pharmaceutical Sciences 2009 10 180 376 67 5 300 1036 68 

Physics 2010 9 353 1739 108 6 204 1104 46 

Veterinary Sciences  2014 3 146 231 61 4 200 837 55 

 

A research group consists of one professor assisted by junior and/or senior researchers (PhD 

students and postdocs), or of a group of professors and a number of researchers working with 

them. These evaluations consider the entire research groups’ scientific activity for a specific 

period, typically eight years preceding the year of evaluation. All articles, letters, notes, 

proceeding papers, and reviews by the research groups published during the reference period are 

included in the evaluation. In this article, we consider only the publications that are indexed in 

the SCIE and the SSCI of the WoS.  

Table 50 lists the publication statistics of the research groups during the eight years preceding 

their evaluation. Altogether, there are 58 research groups in six departments. The number of 

publications per department ranges from 231 to 1739. In total, these publications appeared in 146 

to 476 different journals and are distributed over 61 to 108 WoS SCs. Sometimes different 

research groups collaborated.  

The ADOC of the University of Antwerp organizes research evaluations. Each department can 

suggest potential panel chairs and panel members, who have the rank of full professor and have a 

considerable record of accomplishment. Preferably, they have experience with research 

evaluations, are editors or board members of reputed journals, and have academic management 

experience. ADOC checks the publication profile and curriculum vitae of the potential panel 

chair and panel members and ensures that they do not have co-publications or joint projects with 

the research groups that are evaluated. In addition, they may not have had an appointment as 

visiting professor at the University of Antwerp, and cannot be a member of an expert panel for 

the Research Foundation Flanders to avoid any potential bias. ADOC can also make suggestions 
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when the scientists proposed by the departments are not acceptable. Together the panel members 

have to cover all the sub-domains in the evaluated department. The panel chairs have the last 

word about the panel composition. The composed panel is presented to the bureau of the 

university’s research council, which has to ratify the composition.  

Table 50 also shows that in total, there are 35 panel members involved in the evaluation of the 

six departments. As publications reflect the expertise of their authors (Rybak et al., 2014), the 

entire publication profile of the panel members are included, up to the year of assessment. The 

number of panel members ranges from 4 to 8 for each department. The number of publications 

per panel ranges from 786 to 2150. In total, these publications appeared in 200 to 395 different 

journals and are distributed over 46 to 80 WoS SCs. There is no shared authorship between panel 

members and research groups in any of the cases. None of the panels has any co-authored 

publications among the respective panel members except for two Chemistry panel members who 

have two publications in collaboration. 

8.3 Methods 

Our approaches are based on the assumption that for the evaluation of a research group by a 

panel member, the shorter the cognitive distances between them the better the fit between the 

two. Since the analysis is based on Clarivate Analytics’ (formerly Thomson Reuters’) WoS data, 

only publications in journals included in the WoS are taken into account. To identify cognitive 

distances, we consider the journals and WoS SCs in which publications have appeared. An 

important characteristic of our approaches is that they take into account the similarity between 

WoS SCs and between journals: if the publications of a panel member and a research group 

appear in different yet similar or closely related journals, they may still cover the same research 

areas. Clarivate Analytics has assigned one or more subject categories to WoS indexed journals 

based on ‘subjective, heuristic methods’ and has received criticism for being crude for some 

research areas (Pudovkin & Garfield, 2002). However, WoS SCs cover all disciplines and are 

generally used by bibliometric practitioners (Rehn et al., 2014; Leydesdorff & Bornmann, 2015).  
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We use a global map of science based on WoS SCs data made available at 

http://www.leydesdorff.net/overlaytoolkit/map10.paj (Leydesdorff & Rafols, 2009; Rafols et al., 

2010; Leydesdorff, Carley, et al., 2013). These authors created a matrix of citing to cited WoS 

SCs based on the SCIE and SSCI, which was subsequently normalized in the citing direction. 

The file ‘map10. paj’ contains a weighted network of WoS SCs.  

We also use a global map of science based on journal similarity available at  

http://www.leydesdorff.net/journals11. We have received the similarity matrix data from Loet 

Leydesdorff in the context of a joint paper (Rahman, Guns, Leydesdorff and Engels 2016). The 

journal similarity matrix can be considered as an adjacency matrix, and thus is equivalent to a 

weighted network where similar journals are linked and link weights increase with similarity 

strength (see Leydesdorff, Rafols, & Chen (2013) for details). However, as some of the journals 

underwent name or other changes over time, we had to find a way to handle these changes in a 

uniform way. For detailed guidelines, we refer to chapter VI.  

We now explain how the three methods – SAPV, barycenter, and WCS – are calculated. 

Throughout the discussion, 𝑁 denotes the number of SCs (224) or the number of journals. There 

are 10,673 journals in the map, and 10,675 journals in the similarity matrix based on JCR 2011. 

8.3.1 Similarity-adapted publication vector method  

A regular publication vector counts per WoS SC or journal, whereas in a SAPV these counts are 

adapted to account for similarity between WoS SCs or journals. We use normalized SAPVs, such 

that there is scale invariance and publication vectors of entities of varying size can be 

meaningfully compared. 

We calculate SAPVs for each entity, starting from the original publication vector and similarity 

matrices. Based on their respective SAPVs, the distance can be calculated between two entities. 

A similarity-adapted publication vector is determined as the vector C = (𝐶1, 𝐶2, … , 𝐶𝑁), where: 

 
𝐶𝑘 =

∑ 𝑠𝑘𝑗𝑚𝑗
𝑁
𝑗=1

∑ ∑ 𝑠𝑖𝑗𝑚𝑗
𝑁
𝑗=1

𝑁
𝑖=1

=
(𝑆 ∗ 𝑀)𝑘

‖𝑆 ∗ 𝑀‖1
  

 

(22) 
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Here,  𝑠𝑗,𝑘 denotes the 𝑘-th coordinate of SC or journal 𝑗 and 𝑚𝑗 is the number of publications in 

SC or journal 𝑗. The numerator of Equation (22) is equal to the k-th element of 𝑆 ∗ 𝑀, the 

multiplication of the similarity matrix S and the column matrix of publications 𝑀 =  (𝑚𝑗)
𝑗
. The 

denominator is the L1-norm of the unnormalized vector. 
 

8.3.2 Barycenter method 

A barycenter is an entity’s weighted average location on a map. More specifically, an entity’s 

barycenter is the center of weight (Rousseau, 1989a, 1989b, 2008; Jin & Rousseau, 2001) of the 

WoS SCs or journals in which it has publications. The barycenter is defined as the point 𝐶 =

(𝐶1, 𝐶2), where 

 
𝐶1 =

∑ 𝑚𝑗𝐿𝑗,1
𝑁
𝑗=1

𝑇
  ;  𝐶2 =

∑ 𝑚𝑗𝐿𝑗,2
𝑁
𝑗=1

𝑇
             (23) 

Here,  Lj,1 and Lj,2 are the horizontal and vertical coordinates of SC or journal j on the map, 𝑚𝑗 is 

the number of publications in SC or journal 𝑗 of the unit under investigation (panel member, 

research group), and 𝑇 = ∑ 𝑚𝑗
𝑁
𝑗=1  is the total number of publications of the entity. Note that, in 

case of WoS SCs, T is larger than the total number of publications as we use full counting: if a 

publication appears in a journal belonging to two categories, it will be counted twice. 

Subsequently, we determine the Euclidean distance between the barycenters or the SAPVs of the 

panel members and individual research groups. The Euclidean distance between two vectors a = 

(an)n=1,…,k and b = (bn)n=1,…k in Rk , for any strictly positive integer k, is given as: 

 

 𝑑(𝑎, 𝑏) = √(𝑎1 − 𝑏1)2 + ⋯ + (𝑎𝑘 − 𝑏𝑘)2 (24) 

In this chapter, we use formula (24) for k = 2 for the barycenter method and k = N for the SAPV 

method. 
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8.3.3 Weighted cosine similarity method 

Finally, we consider a weighted similarity method (generalized cosine similarity). The WCS 

between panel member (PM) k and research group m is (Zhou et al., 2012): 

      
∑ 𝑀𝑖

𝑘𝑁
𝑖=1 (∑ 𝑅𝑗

𝑚𝑠𝑗𝑖
𝑁
𝑗=1 )

√(∑ 𝑀𝑖
𝑘𝑁

𝑖=1 (∑ 𝑀𝑗
𝑘𝑠𝑗𝑖

𝑁
𝑗=1 )).(∑ 𝑅𝑖

𝑚𝑁
𝑖=1 (∑ 𝑅𝑗

𝑚𝑠𝑗𝑖
𝑁
𝑗=1 )) 

 

=  
  * *

t
k mM S R

√   * *
t

k kM S M .√   * *
t

m mR S R

                                                  (25) 

The numerator is the matrix multiplication:   * *
t

k mM S R , where t denotes matrix transposition, 

S is the similarity matrix, Mk denotes the column matrix of publications of panel member k and 

Rm denotes the column matrix of publications of research group m. Similarly, the two products 

under the square root in the denominator are:   * *
t

k kM S M  and    * *
t

m mR S R . The result is 

the similarity between panel member k and research group m.  

The Euclidean distances and similarity values are calculated for each panel member and each 

research group. The shorter the distance or the larger the similarity the closer the cognitive 

distance. In the ‘Results’ section, we present the cognitive distances in table form. All values are 

shown up to the third decimal. Cognitive distances are expressed as arbitrary units on a ratio 

scale (Egghe & Rousseau, 1990). Hence, we can compare them in terms like ‘x is twice as large 

as y’. 

8.3.4 Bootstrapping and confidence intervals 

We further calculated 95% confidence intervals (CIs) for each Euclidean distance (both between 

barycenters and SAPVs) and similarity (for WCS) by applying a bootstrapping approach (Efron 

& Tibshirani, 1998). If two CIs do not overlap, the difference between the distances is 

statistically significant at the 0.05 level. Although it is possible for overlapping CIs to have a 

statistically significant difference between the corresponding distances, the difference between 
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the distances is less likely to have practical meaning. If the CI of two or more panel members 

overlaps, we treat them as interchangeable unless explicitly stated otherwise. 

 

Figure 35: Main components of the six approaches at a glance 

In applying the bootstrap for barycenters and SAPV distances, we generate 1000 independent 

bootstrap samples and for each sample calculate a bootstrap replication (barycenter or SAPV). 

Since we have a two-sample problem (distance between two entities), we calculate the distances 

between pairs of bootstrap replications, from which we obtain a CI using a bootstrap percentile 

approach (Efron & Tibshirani, 1998, Ch. 13). To apply the bootstrap to WCS, we again 

generated 1000 independent bootstrap samples. For each pair of samples, we calculated the 

similarity, from which we again obtain a CI using bootstrap percentiles. A more detailed 

explanation and implementation of our method is available on Github (Guns, 2016a, 2016b)  

Figure 35 illustrates the main components of the six approaches at a glance. We have used two 

levels of aggregation – WoS SCs and journals. For each level of aggregation, there is a similarity 

matrix (N dimensions, with N the number of WoS SCs or journals) and a 2-dimensional base 

map derived from the similarity matrix. The SAPV and WCS methods operate at the level of N 

dimensions, whereas the barycenter method uses the 2-dimensional base map. We calculate 
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Euclidean distances between SAPVs (in N dimensions) or barycenters (in 2 dimensions) of 

entities, i.e. panel members and research groups. For the WCS case, we do not calculate a 

distance but a similarity between entities. Furthermore, a bootstrapping method is applied to 

determine confidence intervals for the distance or similarity between two entities.  

8.3.5 Comparison of the approaches 

To answer the first research question of this chapter, we calculate Spearman’s rank-order 

correlation between the results/values of each pair of the six approaches. The distances/similarity 

values between the individual panel members and individual research groups have been included 

in the correlation calculation. Since the barycenter and SAPV approaches are distance-based 

rather than similarity-based, we determine the correlation using the distances between 

barycenters and between SAPVs, and the dissimilarity of individual research groups and panel 

members using a normalized weighted cosine dissimilarity = 1 – WCS which can more easily be 

compared with the other two. For the sake of simplicity, the results are shown under the heading 

“WCS method”. 

We created a heat map with hierarchical clustering based on the correlation results. For the 

clustering we used average linkage clustering with the UPGMA (unweighted pair group method 

with arithmetic mean) algorithm (Sokal & Michener, 1958).  

The heat map is a two-dimensional representation of data where the values are represented by 

colors. It provides a visual summary of the results. The hierarchical clustering directly shows 

which approaches are more closely related.  

To answer the second research question of this chapter – to what extent do the approaches agree 

in finding the panel member at the closest cognitive distance – we first explore whether the 

methods agree regarding the first ranked panel member ignoring the CIs overlap. 
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Table 51:  Illustrations of procedures A and B  

Research groups Main assessor 
Ranking (left to right) according to SAPV method in 

journals approach 

Procedure A       

BIOL-A PM2 PM2 PM4 PM1 PM5 PM3 

  1     

BIOL-B PM5 PM1 PM4 PM2 PM5 PM3 

  0     

BIOL-C PM3 PM5 PM1 PM3 PM2 PM4 

  1     

Procedure B       

BIOL-A PM2 PM2 PM4 PM1 PM5 PM3 

  1     

BIOL-B PM5 PM1 PM4 PM2 PM5 PM3 

  0     

BIOL-C PM3 PM5 PM1 PM3 PM2 PM4 

  0.25     

Concerning the third research question of this chapter, we recall that during the research 

evaluation exercises at the University of Antwerp, the panel chair of each panel decides which 

panel member should evaluate which research group (see  Engels et al., 2013 for details). This 

panel member is referred to as the research group’s main assessor. Lacking other information 

and practical considerations, it seems logical that in each case the closest PM is assigned to each 

group. Hence, we simply compare the closest PM with the main assessor.  

For each approach, we ranked all the panel members in decreasing order of distance or in 

increasing order of similarity to the research group. We use two procedures (procedure A and 

procedure B, see Table 51) to compare the actual main assessor, assigned by the panel chair, to 

the panel member(s) recommended by our approaches. Procedure A focuses on how accurate the 

approaches are to identify the main assessor for each research group, whereas Procedure B 

focuses on how accurate the approaches are to uniquely identify the main assessor. For the sake 

of clarity, we underline and show in bold the main assessor in our approaches. We also show in 

bold the panel members whose confidence intervals overlap with the main assessor’s. 

In procedure A, we assign a score of 1 if the main assessor ranks first; a score of one is also 

assigned if the CI of the panel member who ranks first overlaps with the CI of the main assessor. 

If neither of these cases applies a zero score is assigned. For example, PM2 is the main assessor 
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of BIOL-A and ranks first for the SAPV method applied to journals. There is no other panel 

member whose CI overlaps with PM2 in that case. Consequently, we assign a score of 1. Further, 

PM3 is the main assessor of BIOL-C; PM5 ranks first, but its CI overlaps with PM3’s, hence 

also here a score of one is assigned. Considering BIOL-B we see that PM5 is the main assessor, 

but the CI of PM1, ranking first, does not overlap with PM5’s CI. Hence, a zero score is 

assigned. In this procedure, even if the main assessor ranks last but the CI of the first ranked 

panel member overlaps with the CIs of the others, including the last ranked PM, a score of 1 is 

assigned.  

For procedure B, we assign a score of 1 if the main assessor ranks first and has no overlapping 

CI with other PMs and zero otherwise. For example, PM2 is the main assessor of BIOL-A and 

ranks first in that case. There are no panel members whose CIs overlap with PM1. Therefore, a 

score of 1 is assigned to this case. On the other hand, PM5 is the main assessor of BIOL-B but 

PM1 ranks first in that case. Therefore, this case does not warrant any score. In case of 

overlapping CIs among the closest n PMs, one of which is the main assessor, we assign a score 

of 1/n. For example, PM3 is the main assessor of BIOL-C and ranks first in that case. The CIs of 

PM5, PM1 and PM2 overlap with PM3. Therefore, we assign a score of 1/4 = 0.25 in this case. 

The rationale here is that in this case, we randomly pick one of these n PMs, and hence we have 

a chance of 1/n of picking the main assessor. 

The final score is the sum of all individual scores and ranges between zero and the total number 

of research groups in the department. 

8.4 Results 

For all six departments, the SAPVs of the panel members and individual research groups are 

calculated using the journal and WoS SCs similarity matrices by applying formula (22). We also 

calculate barycenters using the journal and WoS SC 2-dimensional base maps by applying 

formula (23). We determine the Euclidean distance between two SAPVs and two barycenters by 

applying formula (24).  
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Table 52: Euclidean distances between SAPVs of Biology panel members and individual research 

groups using the similarity matrix of WoS SCs 

 
BIOL- A BIOL- B BIOL-C BIOL D BIOL-E BIOL -F BIOL- G BIOL- H BIOL- I 

PM1 0.057 0.052 0.059 0.036 0.046 0.076 0.033 0.066 0.071 

PM2 0.017 0.091 0.073 0.089 0.023 0.071 0.038 0.104 0.073 

PM3 0.062 0.129 0.082 0.114 0.083 0.015 0.080 0.139 0.023 

PM4 0.048 0.070 0.079 0.067 0.041 0.082 0.028 0.085 0.081 

PM5 0.039 0.111 0.065 0.105 0.058 0.046 0.061 0.120 0.052 

 

Table 53: Euclidean distances between barycenters of Biology panel members and individual 

research groups using 2-dimensional base map of WoS SCs 

 
BIOL-A BIOL-B BIOL-C BIOL-D BIOL-E BIOL-F BIOL-G BIOL-H BIOL-I 

PM1 0.344 0.075 0.075 0.093 0.282 0.201 0.200 0.123 0.132 

PM2 0.042 0.409 0.317 0.444 0.088 0.317 0.165 0.454 0.353 

PM3 0.288 0.263 0.223 0.275 0.274 0.016 0.195 0.310 0.065 

PM4 0.217 0.191 0.113 0.220 0.166 0.143 0.078 0.242 0.130 

PM5 0.109 0.324 0.241 0.353 0.120 0.17 0.093 0.374 0.215 

 

Table 54:  WCS values of the Biology panel members and individual research groups using the 

similarity matrix of WoS SCs 

 
BIOL- A BIOL- B BIOL-C BIOL-D BIOL-E BIOL -F BIOL- G BIOL- H BIOL- I 

PM1 0.780 0.889 0.674 0.948 0.804 0.723 0.886 0.817 0.741 

PM2 0.969 0.686 0.540 0.607 0.972 0.545 0.910 0.597 0.514 

PM3 0.639 0.350 0.472 0.467 0.489 0.977 0.538 0.282 0.944 

PM4 0.864 0.773 0.552 0.730 0.866 0.562 0.928 0.689 0.548 

PM5 0.814 0.538 0.683 0.458 0.746 0.739 0.723 0.533 0.670 

 

Table 55:  WCS values of the Biology panel members and individual research groups using the 

similarity matrix of journals 

 
BIOL-A BIOL-B BIOL-C BIOL-D BIOL-E BIOL-F BIOL-G BIOL-H BIOL-I 

PM1 0.609 0.567 0.267 0.890 0.558 0.729 0.726 0.613 0.728 

PM2 0.816 0.430 0.199 0.453 0.896 0.33 0.824 0.429 0.314 

PM3 0.325 0.270 0.243 0.566 0.248 0.940 0.330 0.267 0.900 

PM4 0.643 0.450 0.174 0.516 0.629 0.308 0.770 0.469 0.303 

PM5 0.610 0.341 0.461 0.321 0.463 0.427 0.463 0.374 0.366 
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Finally, WCS values are calculated using the journal and WoS SCs similarity matrices by 

applying formula (25). In this chapter, we show the results of the Biology department as an 

example. The result of the rest of the departments is shown in the appendix C.  

Table 52 shows the results for the SAPV method using the WoS SC similarity matrix, Table 53 

shows the result of the barycenter method using the 2-dimensional WoS SCs, Table 54 shows the 

result of the WCS method using the WoS SC similarity matrix and Table 55 shows the result of 

the WCS method using the journal similarity matrix. For the comparison between the 

approaches, we reuse the results of the SAPV and barycenter methods at the level of journals, 

that were previously obtained in the chapter VI.  

Table 52 and Table 53 show, for each research group the panel member at the shortest distance. 

Similarly, Table 54 and Table 55 show, for each research group the panel member with the 

highest similarity. In both cases, the number in the row corresponding to this panel member is 

indicated in bold and underlined. For the former, distances whose confidence intervals overlap 

with that of the shortest distance are in bold (same column). For the latter, similarities whose 

confidence intervals overlap with that of the highest similarities are in bold (same column). 

8.4.1 Correlation coefficients between six approaches 

We explore how the six approaches are correlated. The heat map (Figure 36) represents the 

hierarchical clustering based on correlation coefficient between six approaches in the Biology 

department. Similar heat maps for other departments are available in the appendix D. The heat 

maps show that there are two clusters, except in the biology department, the ‘barycenter’ (2-

dimensional) cluster and the ‘similarity matrix cluster’ (N-dimensional). We find that, in general 

the same methods at different levels of aggregation (journals and WoS SCs) are highly 

correlated.  

At the WoS SC level of aggregation, the heat maps suggest that the correlation between the 

barycenter and the SAPV method is moderate to strong (range 0.61 to 0.73). A similar 

correlation (range r = 0.56 to 0.71) was found between the barycenter method and the WCS 
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method, while the correlation between the SAPV and WCS methods is strong to very strong (r = 

0.75 to 0.95).  

 

 

Figure 36: Heat map with hierarchical clustering based on correlation coefficient between six 

approaches in the Biology department 
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Figure 37: Heat map with hierarchical clustering based on correlation coefficient between six 

approaches in the six departments 

The correlation between the barycenter approaches at both levels of aggregation is strong 

(between 0.80 and 0.92) except for a moderate correlation (r = 0.59) for Biology. In addition, the 

correlation for SAPV is strong (range r = 0.78 to 0.93) as well, except for a moderate correlation 

(r = 0.68) in Pharmaceutical Sciences. Finally, the correlation for WSC is strong (r = 0.71 to 

0.90) in all disciplines. In total, we find a strong correlation for 16 out of 18 cases.  
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Further, at the journal level of aggregation, the correlation between the barycenter and the SAPV 

method is moderate to strong (0.56 to 0.71), and between the barycenter and the WCS method is 

low to moderate (0.36 to 0.68) except for Veterinary Science where the correlation is strong (r = 

0.80). Again, the correlation between the SAPV and the WCS methods is strong to very strong (r 

= 0.85 to 0.91).  

We combined all the cognitive distances of the six approaches of the six departments and 

calculated the correlation between them. Figure 37 shows the heat map and the hierarchical 

clustering based on correlation coefficients between six approaches in the six departments. It also 

shows that there are two clusters: the ‘barycenter’ cluster and the ‘similarity matrix’ cluster. 

When the same method is used correlations between WoS SCs and journal level of aggregation 

are strong. However, the correlation between N-dimensional and 2-dimensional cases is low to 

moderate.  

This finding suggests that different levels of aggregation tend to yield rather similar results. The 

influence of dimensionality (2-dimensions for barycenter versus N-dimensions for SAPV and 

WCS) is substantial, however. From here, we can conclude that the level of aggregation has a 

minor influence for determining cognitive distances in all the proposed six approaches, but the 

dimension matters. 

8.4.2 Agreement between the approaches 

To answer the second research question of this chapter, we explore whether the approaches agree 

regarding the panel member at the closest cognitive distance to each group. Note that, in this 

case, we ignore CIs. Without taking CIs into account, the analysis is stricter than if we take CIs 

into account. Table 56 shows the panel members with the closest cognitive distance (first ranked) 

to the research groups in the six approaches.  

Table 56 shows that there is a clear difference between 2-dimensional and N-dimensional 

approaches. At the journal level of aggregation, the SAPV and WSC methods agree in all but 

five cases (91% match, research groups BIOL-G, PHYS-A, BIOM-I, CHEM-C, and PHAR-F) 

being exceptions. 
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Table 56: First ranked panel members for six approaches 

 Journal level of aggregation WoS SC level of aggregation 

Research groups SAPV  WCS  Barycenter  SAPV  WCS  Barycenter  

Biology department 

 BIOL-A PM2 PM2 PM2 PM2 PM2 PM2 

 BIOL-B PM1 PM1 PM1 PM1 PM1 PM1 

 BIOL-C PM5 PM5 PM2 PM1 PM5 PM1 

 BIOL-D PM1 PM1 PM1 PM1 PM1 PM1 

 BIOL-E PM2 PM2 PM2 PM2 PM2 PM2 

 BIOL-F PM3 PM3 PM3 PM3 PM3 PM3 

 BIOL-G PM4 PM2 PM1 PM4 PM4 PM4 

 BIOL-H PM1 PM1 PM1 PM1 PM1 PM1 

 BIOL-I PM3 PM3 PM3 PM3 PM3 PM3 

Biomedical Sciences department 

 BIOM-A PM2 PM2 PM8 PM2 PM8 PM2 

 BIOM-B PM5 PM5 PM2 PM5 PM5 PM5 

 BIOM-C PM5 PM5 PM2 PM5 PM5 PM5 

 BIOM-D PM7 PM7 PM1 PM7 PM7 PM5 

 BIOM-E PM6 PM6 PM6 PM1 PM6 PM5 

 BIOM-F PM1 PM1 PM1 PM1 PM1 PM5 

 BIOM-G PM2 PM2 PM6 PM2 PM2 PM8 

 BIOM-H PM6 PM6 PM6 PM6 PM6 PM6 

 BIOM-I PM4 PM1 PM4 PM4 PM4 PM4 

 BIOM-J PM2 PM2 PM8 PM2 PM2 PM3 

 BIOM-K PM5 PM5 PM8 PM2 PM5 PM2 

 BIOM-L PM5 PM5 PM8 PM2 PM2 PM8 

 BIOM-M PM5 PM5 PM6 PM2 PM2 PM8 

 BIOM-N PM5 PM5 PM6 PM8 PM2 PM8 

 BIOM-O PM5 PM5 PM6 PM2 PM2 PM8 

Chemistry department 

 CHEM-A PM 5 PM5 PM 7 PM 5 PM5 PM 5 

 CHEM-B PM 5 PM5 PM 7 PM 5 PM5 PM 5 

 CHEM-C PM 5 PM3 PM 5 PM 5 PM5 PM 5 

 CHEM-D PM6 PM6 PM 6 PM 6 PM6 PM 6 

 CHEM-E PM2 PM2 PM 2 PM 2 PM2 PM 2 

 CHEM- F PM4 PM4 PM 2 PM 2 PM2 PM 2 

 CHEM-G PM4 PM4 PM 3 PM 4 PM4 PM 3 

 CHEM-H PM3 PM3 PM 5 PM 3 PM3 PM 3 

 CHEM-I PM4 PM4 PM 3 PM 2 PM2 PM 3 

 CHEM-J PM4 PM4 PM 4 PM 3 PM3 PM 4 

 CHEM-K PM2 PM2 PM 4 PM 2 PM2 PM 2 

 CHEM-L PM5 PM5 PM 5 PM 5 PM5 PM 5 



160 

 

 Journal level of aggregation WoS SC level of aggregation 

Research groups SAPV  WCS  Barycenter  SAPV  WCS  Barycenter  

Pharmaceuticals Sciences department 

 PHAR-A PM5 PM5 PM1 PM5 PM5 PM1 

 PHAR-B PM4 PM4 PM5 PM2 PM2 PM4 

 PHAR-C PM2 PM2 PM2 PM2 PM2 PM2 

 PHAR-D PM3 PM3 PM3 PM2 PM2 PM4 

 PHAR-E PM2 PM2 PM2 PM2 PM2 PM2 

 PHAR-F PM4 PM1 PM5 PM4 PM5 PM4 

 PHAR-G PM5 PM5 PM5 PM5 PM5 PM3 

 PHAR-H PM4 PM4 PM3 PM2 PM2 PM2 

 PHAR-I PM2 PM2 PM2 PM2 PM2 PM2 

 PHAR-J PM2 PM2 PM2 PM2 PM2 PM2 

Physics department 

 PHYS-A PM4 PM3 PM4 PM 4 PM3 PM 4 

 PHYS-B PM6 PM6 PM6 PM 6 PM6 PM 6 

 PHYS-C PM5 PM5 PM5 PM 5 PM5 PM 5 

 PHYS-D PM1 PM1 PM1 PM 1 PM1 PM 1 

 PHYS-E PM6 PM6 PM5 PM 6 PM6 PM 5 

 PHYS-F PM6 PM6 PM1 PM 3 PM6 PM 3 

 PHYS-G PM4 PM4 PM4 PM 4 PM4 PM 4 

 PHYS-H PM6 PM6 PM2 PM 6 PM6 PM 6 

 PHYS-I PM5 PM5 PM4 PM 4 PM5 PM 4 

Veterinary department 

 VETE-A PM2 PM2 PM2 PM2 PM2 PM2 

 VETE-B PM2 PM2 PM2 PM2 PM2 PM2 

 VETE-C PM1 PM1 PM1 PM1 PM1 PM3 

Furthermore, the barycenter method agrees in 30 cases (52%) with the SAPV method and in 27 

cases (47%) with the WCS method. Barycenter, SAPV and WCS methods agree in 27 cases 

(47%). Similarly, at the WoS SCs level of aggregation, the SAPV and the WCS methods agree in 

49 cases (84%). The barycenter method agrees in 41 cases (71%) with SAPV and 34 cases (58%) 

with WCS. Barycenter, the SAPV and the WCS methods agree in 33 cases (57%).   

We also explore whether the same method agrees at both levels of aggregation. Table 56 shows 

that the SAPV method agrees in 52 cases (90% matches), the WCS method in 53 cases (91% 

matches), and the barycenter method in 34 cases (59% matches). As the SAPV and WCS 

methods are in N dimensions, we find that they agree in 47 out of 58 cases (81%) across both 

levels of aggregation. Hence, we conclude that for finding the first ranked panel members the 
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SAPV and WCS approaches agree in most of the cases at both levels of aggregation, while the 

barycenter approaches yield considerably different results.  

8.4.3 Finding previously assigned panel members 

We have panel members’ assignment data for all departments, with the exception of 

Pharmaceutical Sciences. Therefore, the analysis is based on the other five departments. As we 

stated in the method section, we calculated the total score according to procedure A. Table 89 

and Table 90 (see appendix E) show the calculations of the Biology department panel ranked 

positions and highlighted the panel members whose CIs overlap with shortest distance panel 

members in all the six approaches. Similar tables for other departments are shown in the 

appendix E. Table 57 summarizes the outcomes of all the six departments. 

In Table 57, the higher the score, the better the approach replicates the original panel member 

assignment to research groups. With the exception of Biomedical Sciences, the barycenter 

method (at both levels of aggregation) scores the same as or higher than the other two methods.  

This is also reflected in the total score. Contrary to what one might expect, the SAPV method 

scores higher at the level of WoS SCs than at the level of journals. For the WCS method, the 

level of aggregation does not make a difference. It is evident that the barycenter method 

performs better than the other two in terms of finding the main assessor for each research group.  

Table 57:  The distribution of total scores for six approaches according to procedure A 

  Journal level of aggregation WoS SCs level of aggregation 

Department No. of 

groups 
SAPV WCS Barycenter SAPV WCS Barycenter 

Biology 9  6  5  6  5  5  6  

Biomedical Sciences 15  9  8  7  9  8  7  

Chemistry 12  5  5  8  7  3  8  

Physics 9  4  6  8  6  7  7  

Veterinary Sciences  3  2  2  2  3  3  3  

Total: 48  26  26  31  30  26  31  
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Table 58:  The distribution of total scores for six approaches according to procedure B 

  Journal level of aggregation WoS SCs level of aggregation 

Department No. of 

groups 
SAPV WCS Barycenter SAPV WCS Barycenter 

Biology 9  4.08  4.50  4.08  4.33  4.33  3.83  

Biomedical Sciences 15  3.84  3.93  2.11  2.97  3.04  1.70  

Chemistry 12  2.99  2.49  2.52  3.41  1.75  2.52  

Physics 9  3.50  4.83  4.95  3.41  4.40  3.33  

Veterinary Sciences  3  2.00  1.33  0.66  2.00  1.88  0.83  

Total: 48  16.41  17.08  14.32  16.12  15.40  12.21  

 

We also calculated the total score according to procedure B. Table 99 and Table 100 (see 

appendix E) show the calculations of the Biology department panel ranked positions and 

highlighted the panel members whose confidence intervals overlap with shortest distance panel 

members in all the six approaches. Similar tables for other departments are shown in the 

appendix E. Table 58 summarizes the outcomes of all the six departments. In Table 58, the 

higher the score, the better the approach replicates the original panel member assignment to 

research groups. Table 58 shows that the journal level analysis scores higher than the WoS SCs 

level. Moreover, the N-dimensional approaches score higher than 2-dimension approaches at 

both levels of analysis. However, at both levels, the barycenter method always scores lower than 

the other methods. This result is what one expects theoretically: using journals is a more refined 

method than using WoS SCs, and performing calculations in N dimensions yields a more precise 

outcome than performing calculations in two dimensions. 

From the two procedures, we can conclude that in our case studies, the barycenter methods are, 

generally speaking, better able to find the main assessor. However, the methods based on 

barycenters are also less discriminatory, in that they tend to have more overlapping CIs. 

Simultaneously, all the methods score higher at the journal level than at the WoS SC level in 

uniquely identifying the main assessor. In addition, the SAPV and WCS methods score higher 

than the barycenter methods at both levels of aggregation.  
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8.5 Discussion 

Our proposed approaches quantify the shortest cognitive distance between a research group and 

PMs. Simultaneously, they can be used to rank the PMs based on cognitive distances. If the CIs 

of some PMs overlap, the differences between them are relatively small and work as an indicator 

to assign the next potential PM to evaluate a research group. The methods can be used ex ante to 

inform the process during which potential PMs are identified and invited, as well as while the 

review process takes place (in view of division of labor within a panel) or ex post (to assess the 

appropriateness of a panel). The quantitative methods can support and inform experts during 

panel composition, similar to how scientometric indicators can support and inform peer review-

based evaluations themselves. 

If any of the proposed approaches totally agrees with the previous assignment of a main assessor, 

we may state that the panel chair or the research affairs department has rightly identified the 

expertise match between a panel member and research group. However, that is not the case in 

any of the six approaches. The major reason is that the panel assignment was based on a 

qualitative judgement, whereas our methods use a quantitative approach based on the publication 

portfolio of panel and research groups. Panel members and panel chairs are chosen following the 

suggestions of research groups and the research affairs department. Panel chairs have the list of 

panel members and their curricula vitae, and the research activity profile of the research groups 

as a means to come to a decision. The chair needs to reach a decision to assign a panel member 

to one or two research groups based on the match of the expertise with the research group. As 

there is no formal method to match expertise, the panel chairs distributed the workload based on 

their own tacit knowledge. In all the cases except for Veterinary Sciences, there are more 

research groups than panel members. Hence, one panel member can be close to multiple research 

groups, but due to practical considerations of workload distribution, the panel chair may not 

assign the panel member to more than two research groups. Therefore, another panel member 

who is intellectually further from a particular research group may be assigned to that research 

group for purely practical reasons. 
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We observed that some panel members are never the closest to any research group. This is for 

example the case for PM1 in the Chemistry panel and PM4 in the Veterinary Sciences panel. 

This raises the question why these members were included in a panel. We have observed that 

generally panel members are not assigned to more than two research groups, with two 

exceptions: PM8 of the Biomedical Sciences panel was assigned to three research groups and 

PM3 of the veterinary panel was not assigned to any research group. Our approaches can help to 

inform the assignment of panel members by quantifying the cognitive distance between 

individual panel members and research groups. The proposed approaches rank the panel 

members based on cognitive distances and indicate the panel members who are at a comparable 

distance from the research group through the overlap of CIs. The overlap of CIs of the shortest 

cognitive distance panel members with other potential panel members helps to assign next 

potential panel members to a research group. Even if a research group has no publications in the 

WoS SCs or journals where the panel has publications, the panel might be able to evaluate the 

research group (discussed in chapter V and VI).   

Asking research group members and/or panel members for their personal opinions might be an 

alternative method to determine panel members that are cognitively closest to a given research 

group. As the research evaluations mentioned in this article were done three to eight to years ago, 

this was not practically possible for our case studies.   

Knowing cognitive distances between entities is an important aspect in panel composition, but in 

itself it is not sufficient. For instance, our approaches do not consider the aspect of cohesion 

(Casey-Campbell & Martens, 2009). Cohesion is the common bond that drives colleagues to 

remain together and to cooperate (Salas, Grossman, Hughes, & Coultas, 2015). In some cases, a 

panel member could be included in a panel for other reasons than their specific research 

expertise in relation to the research groups. For example, there might be a selection of a panel 

chair based on his/her expertise in the discipline in general (e.g. PM1 in the Chemistry panel). 

S/he may not be the closest panel member based on publication profiles to any of the research 

groups that will be evaluated. A reason could be that the panel member plays an important role 

for the cohesion of the panel. Hence, cohesion may be an indicator in expert panel composition, 

to be applied in a step-wise manner, once the chair has been selected.   
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We note that the 2-dimensional base maps at the level of WoS SCs as well as journals are 

publicly available. In addition, a similarity matrix of WoS SCs is also readily available. A 

journal similarity matrix, on the other hand, is not available openly. The Journal Citation Reports 

of 2014 contain 11,149 journals in the SCIE and SSCI (Leydesdorff, Bornmann, & Zhou, 2016). 

This constitutes an increase by 474 journals compared to the journal similarity matrix we used in 

this article. Since evaluations are retrospective, it is not necessary to always have the most recent 

journal similarity matrix. Moreover, journals are not static entities and may undergo name 

changes over time, split in different new journals, or two or more journals can be merged 

together (see Rahman et al., 2016 for details). However, any changes to the journal similarity 

matrix will have – at least in theory - a direct impact on the cognitive distances obtained. It is a 

topic for further investigation to find out to what extent the cognitive distances differ and the CIs 

overlap if a different base map or similarity matrix (based on different years) are used for the 

same panel and research groups. 

We have used similarity matrices and base maps derived from them based on data available 

during the construction of the matrices. If the similarity matrix changed over the years, and we 

keep the same panel and research groups publication data, this might result in different cognitive 

distances. Moreover, if we use a different similarity matrix (for example, based on Scopus data) 

and retrieve the same panel and research groups’ data, we can expect different results as well, 

because the similarity matrix and the data will not be the same. An interesting follow-up 

investigation could therefore be based on Scopus data  (e.g., Leydesdorff, de Moya‐Anegón, & 

Guerrero‐Bote, 2010; Leydesdorff, Moya‐Anegón, & Guerrero‐Bote, 2015). Hence, although 

there is a practical stability problem, the methods we introduced have general applicability.  

8.6 Conclusion 

The SAPV and WCS methods use the N-dimensional similarity matrix of journals or WoS SCs 

while the barycenter method uses a 2-dimensional base map derived from the respective 

similarity matrices. The approaches proposed in this chapter allow the concerned authority to 

assess how well the expertise of panel members corresponds with the research interests of the 

groups to be evaluated (Rahman et al., 2015, 2016; Rousseau et al., 2017). In this chapter, we 



166 

 

focused on the question which of the approaches best reflect cognitive distance, how much 

influence the level of aggregation (journals and WoS SCs) plays, and how much the 

dimensionality matters. The results show that the level of aggregation (journals and WoS SCs) 

has only minor influence for determining cognitive distances in all the proposed six approaches, 

whereas the influence of the number of dimensions is substantial. The results also show that the 

number of dimensions plays a role in the case of identifying shortest cognitive distance. While 

the SAPV and WCS methods agree at both levels of aggregation, the barycenter method yields 

different results to identify the panel members at the shortest cognitive distance.  

We find that the barycenter method scores highest at both levels of aggregation to identify the 

previously assigned main assessor. This finding is aligned with our earlier finding that the 

barycenter method has less discriminatory power than the other methods at WoS SCs level of 

aggregation (discussed in chapter VII). When it comes to uniquely identifying the main assessor, 

all methods score better at the journal level than at the WoS SC level.  

The proposed approaches can be tested in any future scenario where X panel members need to be 

chosen out of N candidates. Panel composition based on different approaches can then be 

matched with the opinion of the panel chair. Concrete differences can then be discussed, leading 

to a better panel composition. In addition, the opinion of the respective panel members can be 

taken into account beforehand, so that the main assessor is indeed the most qualified person for 

the job.   
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Chapter IX: Conclusion 

In this conclusion, we first give a summary of the findings. Subsequently, we will discuss the 

salient features of the proposed methods and their possible implications for practice. We 

conclude with an overview of the limitations of the research and suggestions for further study. 

9.1 Summary of the main findings 

We formulated two main research questions (with sub-questions) in the first chapter of this 

thesis. Chapter I, section 1.2.2 provides an overview of the questions as well as the relevant 

chapters where each (sub-)question is answered in full detail. Here, we summarize the main 

findings and answers to the research questions.   

The thesis focuses on the problem of composing an expert panel in such a way that the panel 

members’ expertise is congruent with the research groups’ expertise. More specifically, our work 

has focused on the important problem of finding appropriate informetric methods to gauge the 

cognitive distance between panels and research groups. We recall that at the start of our research 

project no such methods were available. 

Our first main research question was, how can we measure cognitive distance between two 

entities using publication data, especially between an expert panel and the research groups 

under evaluation? 

As a preliminary exploration, in Chapter IV we focused on correlation coefficients and cosine 

similarity to measure the strength and direction (positive/negative) of the association between the 

publication profiles of research groups and panels. We determined the correlation between the 

publication outputs of two entities using Pearson’s correlation coefficient, Spearman’s rank 

correlation coefficient and top-down correlation, and use cosine similarity to determine the 

similarity.  
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The correlation coefficients and cosine similarity are strong to moderate at the level of WoS SCs, 

yet low to negative at the level of journals. This difference can be explained, at least partially, by 

the higher number of journals compared to WoS SCs: other things being equal, the probability 

that two publications belong to the same set (SC or journal) is much higher for SCs than it is for 

journals. We argue that such correlations and similarity measures are insufficient, as they do not 

take into account the relatedness of WoS SCs or journals. 

If a panel member has many publications in WoS SCs or journals that are closely related to those 

a research group has published in, his/her expertise may still be relevant to evaluating the group, 

even if s/he has no publications in exactly the same SCs or journals. Consequently, a comparison 

of publication profiles that does not take WoS SC similarity or journal similarity into account 

might yield distorted results. Therefore, a method that does take similarity into account is 

necessary to identify the match between the panel and research groups. In the following text, we 

summarized the main finding of the (sub-) questions: 

The first sub-question was: 

i) How can we visualize the expertise of two entities (e.g., a research group and a 

panel) using publication data? 

To answer this sub-question, we explore the usefulness of overlay mapping to gauge cognitive 

distance between the expertise of two entities. We use a base map of science based on WoS SCs 

and created overlays that visually represent the publication profiles of panels and research 

groups. Based on the overlay maps, one can visually compare and estimate the cognitive distance 

between the research groups and panel (discussed in chapter V). We also use a base map of 

science at the aggregation level of journals to visualize the expertise of entities. The 

corresponding maps are shown in the technical reports that are available online (see section 3.2.8 

of chapter III). These overlay mapping techniques provide an answer to the first sub-question. 

Based on the overlay maps, we can visually compare individual research groups, and entire 

department publication profiles with the respective panel profiles. While this comparison 

provides worthwhile information to get an overall view, it is less suitable for, e.g., comparing 

which of the potential panel members would be the best fit to evaluate the research group. 
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The second sub-question was: 

ii) How can one quantify the cognitive distances (overlap of expertise) between two 

entities (e.g., a research group and a panel) using the WoS SCs to which their 

publications belong?  

 

To answer the second sub-question, we develop methods to gauge cognitive distance or 

proximity between two entities. First, we calculate the Euclidean distance between L1-

normalized arrays (publication vectors) of each panel member and each research group. In this 

way, a perfect match between the entities would mean a distance of zero. We refer to this method 

as a benchmark in N dimensions. At the initial stage, we found that correlation and cosine 

similarity are insufficient since they do not consider the relatedness of WoS SCs or journals 

(discussed in chapter IV). Similarly, the benchmark method does not consider the similarity or 

relatedness of WoS SCs or journals. Comparing the benchmark results with those of our 

proposed SAPV and WCS methods (which do consider the similarity of, in this case, WoS SCs), 

we find that the correlations between the benchmark results with other methods are at best 

moderate. As was logically expected, we observed that the methods that consider the relatedness 

perform better than the benchmark (see details in chapter VII).  

 

Second, we apply the barycenter method. We use a two-dimensional global map of science based 

on WoS SCs. This map is the same base map that we used to create the overlay maps to answer 

the first sub-question. In our case, the barycenter method calculates the center of weight of the 

SCs in which the research groups and/or the panel members have publications. Here, a SC’s 

weight is the research groups and/or the panel members’ number of publications. We calculate 

the barycenter for each individual panel member and research group, for the expert panel as a 

whole and for the combined research groups of a discipline. Subsequently, we calculate the 

Euclidean distances between the barycenters. These distances can be compared in terms of 

percentage or fraction. We use Euclidean distances between barycenters as an indicator of 

cognitive distance between two entities. The shorter the cognitive distance between the entities 

the better the match.  
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In addition, we projected the barycenters on the global map of science to visualize the cognitive 

distances between the entities. The two-dimensional barycenter method is well compatible with 

the overlay mapping techniques (discussed in chapter V).  

 

The barycenter method can be applied in any strictly positive number of dimensions smaller than 

or equal to N. The two-dimensional barycenter method has the advantage that it can be 

straightforwardly visualized, but there is no inherent reason to prefer two dimensions over any 

other number ≤ 𝑁. More generally, one may ask what the influence of the number of dimensions 

on the results of the barycenter method is. We explored this factor by calculating three-

dimensional barycenters (and corresponding distances) and comparing the results with those of 

two-dimensional barycenters. We found that there is a strong correlation between the two and 

three-dimensional barycenter method and both methods yield very similar results. For this 

reason, we considered only the two-dimensional barycenter method in subsequent chapters. 

 

Furthermore, we introduced the SAPV method. We used a matrix of similarity values between 

the WoS SCs. While a regular publication vector contains publication counts per SCs, in an 

SAPV these counts are adapted to account for the similarity between the SCs. An SAPV is the 

result of the multiplication of the similarity matrix with the publication vector of the research 

groups or panel members. The Euclidean distance between SAPVs is again an indicator of 

cognitive distance between two entities (discussed in chapter VII).  

 

Moreover, we proposed the use of the WCS method. Like the SAPV method, its input consists of 

publication vectors of the entities and a similarity matrix. A similarity-weighted generalization of 

regular cosine similarity, this method yields a similarity value between publication vectors. We 

calculated this value for each combination of panel member and research group. We consider the 

similarity as the opposite of distance. The higher the similarity, the better the match – the closer 

the cognitive distance (discussed in chapter VII). 

 

In summary, in this thesis five methods are developed: the benchmark, two methods using 

barycenters (in two and three dimensions), a fourth method based on SAPVs and a fifth one 

using WCS. The benchmark and the last two methods are applied in N dimensions, where N 
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denotes the total number of SCs. As an answer to the second sub-research question, we consider 

the benchmark method insufficient since it does not consider similarity between SCs. We also 

exclude the 3-dimensional barycenter method for two reasons. First, the 2- dimensional and 3-

dimensional barycenter yield almost the same result. Therefore, it makes sense to just look at the 

simpler of the two, the 2-dimensional barycenter. Second, the two-dimensional barycenter 

method is well compatible with visualizing the barycenter’s location (discussed in chapter VII). 

We conclude that the 2-dimensional barycenter method applied to WoS SC base map, and the 

SAPV and the WCS methods applied to the similarity matrix of WoS SCs provide an answer to 

the second sub-question (discussed in chapter V and VII).   

 

The third sub-question was: 

iii) How can one quantify the cognitive distances between two entities using the 

journals in which they have published?  

 

It is open for discussion to what extent publishing in the same WoS SC can be regarded as a sign 

of cognitive proximity, as one SC may comprise a wide array of different subfields and topics. 

At this point, we propose a journal level of aggregation, as most journals tend to cover more 

closely related subfields and topics.  

 

To answer the third sub-question, we reapply the barycenter, SAPV, and WCS methods. This 

time instead of assigning publications to WoS SCs, publications were assigned to the journal in 

which they were published. Instead of a WoS SC map a journal map is used to calculate 

barycenters. Likewise, instead of a WoS SC similarity matrix, a journal similarity matrix is used. 

The Euclidean distances between barycenters or SAPVs are again treated as indicators of 

cognitive distance (discussed in chapter VI). The results of the WCS method at the journal level 

are discussed in the technical reports (see section 3.2.8 of chapter III). Thus, the application of 

the barycenter, SAPV, and WCS methods at the journal level answer the third sub-question.  

It is mentionable that the journals are dynamic entities in respect of title changes, shortened or 

extended, merging two or more journals together, or one split a journal into two or more 

journals. Moreover, a journal can be excluded from or added to the WoS or may be discontinued 
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(see section 6.3.1 of chapter VI). On the other hand, WoS SCs are mostly static entities and are 

more stable than journals.  

The fourth sub-question was: 

iv) How can one estimate the uncertainty inherent to these cognitive distances?  

If the differences in distance or similarity between a research group and two or more panel 

members are small, it bears little meaning to claim that one panel member is a better choice than 

another. Moreover, the distance or similarity between the panel member and research groups is 

determined based on the journals and WoS SCs in which the research groups and panel members 

have published. However, there are certain factors like publication processing time, number of 

volumes of journal, required time for indexing, that may influence the results. Therefore, small 

differences in distances or similarity are likely unstable – e.g., a similar exercise carried out 

using another database or other publication years might reverse the ranking – and do not reflect 

any real difference between the units involved. To identify meaningful differences in the distance 

or similarity we used a bootstrapping method, leading to 95% confidence intervals (CIs) for 

distances (benchmark, barycenter two-dimensional and three-dimensional, and SAPV method) 

and similarities (WCS). With bootstrapping, we use our sample data to generate multiple random 

samples, based on which we estimate the CIs of the distances. If two CIs do not overlap, the 

difference between the distances is statistically significant at the 0.05 level. If the CIs of two or 

more panel members overlap, we treat the panel members as interchangeable. The confidence 

intervals are thus an operationalization of the inherent uncertainty related to our distances, and 

provide an answer to the fourth sub-question (discussed in chapter VI and VII).  
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Our second main research question was, how do the proposed approaches relate?  

 

The first sub-question was: 

i) What are the correlations between the different approaches? Which aspect 

(method vs level of aggregation) has the largest influence on the correlation?  

Over the course of this PhD project, we have proposed the barycenter, SAPV and WCS methods. 

The barycenter method is two-dimensional (based on maps of science), whereas the SAPV and 

WCS methods are N-dimensional (based on a full similarity matrix). We used these three 

methods at two levels of aggregation – WoS SCs and journals. This leads to six different 

approaches, all of which are based on the publication profile of research groups and panel. We 

systematically compare how these six approaches relate. 

In order to answer the first sub-question, we compared the six approaches to identify the relative 

influence of the level of aggregation and the number of dimensions. The number of dimensions 

refers to the 2-dimensional barycenter method and the N-dimensional SAPV and WCS methods. 

We calculated Spearman’s rank-order correlation between the results of each pair of approaches, 

using the distances/similarity values between the individual panel members and individual 

research groups. The results showed that the same methods at different levels of aggregation 

(journals and WoS SCs) are highly correlated in most of the cases. Moreover, the level of 

aggregation has minor influence on determining cognitive distances, but dimensionality (2 

dimensions versus N dimensions) has a greater influence. 

The second sub-question was: 

ii) To what extent do the approaches agree in matching the panel member at the 

closest cognitive distance from a research group? 

In order to answer the second sub-question, we explored whether or not all the methods indicate 

the same panel member as the one at the shortest cognitive distance from a research group. We 

ranked the panel members according to the closest cognitive distance to each group and compare 

only the first ranked panel member in each approach. In this case we did not consider CIs. The 

results showed that the SAPV and WCS methods agree in most cases at both levels of 
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aggregation on which panel member has the closest cognitive distance to the group to be 

evaluated, whereas the barycenter approaches often differ. 

The third sub-question was: 

iii) How accurate are the approaches in matching the main assessor for each 

research group? How accurate are they to uniquely match the main assessor? 

In order to answer the third sub-question, we consider the panel chair of each panel has assigned 

the closest panel member to each research group during the research evaluation exercises at the 

University of Antwerp. This panel member is referred to as the research group’s main assessor..  

Here, we compared the closest panel member in our approaches with the main assessor. We use 

two procedures to compare the actual main assessor, assigned by the panel chair, to the panel 

member(s) recommended by our approaches. The first procedure identifies how accurate the 

approaches are to identify the main assessor for each research group while the second procedure 

identifies how accurate the approaches are to uniquely identify the main assessor. In both the 

procedures, we consider the CIs overlap with the main assessor’s. We find that the barycenter 

method performs better than the two other methods in terms of finding the main assessor for each 

research group and suggests more potential evaluators, whereas SAPV and WCS are more 

precise. At the same time, to uniquely identifying the main assessor all the methods perform 

better at the journal level of aggregation than the WoS SCs level of aggregation. In addition, the 

SAPV and WCS methods perform better than the barycenter method at both levels of 

aggregation to uniquely identifying the main assessor. 

The above findings of the sub-questions provide an answer to the second research question 

(discussed in chapter VIII).   
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9.2 Policy recommendations  

This thesis and the literature review indicate that in research evaluation it is of paramount 

importance that the panel members are considered trustworthy experts who are able to provide 

valuable, relevant recommendations and suggestions that can lead to improved research quality. 

Therefore, it is vital to assign the most appropriate expert to the relevant research group in a 

discipline specific research evaluation. The common process of assignment of panel members to 

research groups without any systematic method can lead to evaluations where the matching of 

expertise between the evaluators and the units under assessment is sub-optimal. The policy 

makers or the concerned authority involved in panel member assignment to research groups can 

consider cognitive distance between the research groups and panel members based on their 

publication profile to solve the panel member assignment problem. As our proposed approaches 

quantify the degree to which the expertise of the panel members matches with the expertise of 

the research groups these approaches can help to improve the practice of expert panel 

composition, i.e. ex-ante, in preparation of a research evaluation. The approaches can also help 

to assign the appropriate panel member to a research group, i.e. once a panel has been composed.  

For example, in a given situation X panel members need to be chosen out of N candidate panel 

members to evaluate Y research groups. The proposed approaches allow to calculate the match 

between a research group and a potential panel member in terms of cognitive distance (i.e. the 

shorter the distance or the higher the similarity the better the match). The approaches rank the 

panel members based on cognitive distances and indicate the panel members who are at a 

comparable distance from the research group through the overlap of CIs. The overlap of CIs of 

the shortest cognitive distance panel members with other potential panel members solves the 

problem of assigning next potential panel members to a research group. A research group can be 

far away from the panel as a whole. However, one or more individual panel members may have 

sufficient expertise to evaluate a research group as indicated by publications in closely related 

WoS SCs or similar journals (discussed in Chapter V and VI). The approaches allow the 

concerned authority to assess and improve the composition of the panel in terms of cognitive 

distance, e.g. by virtually replacing one or more potential panel members and comparing the 

relative contribution of each potential panel member to the panel fit as a whole, by observing the 
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changes to the distance between the panel’s and the groups’ (discussed in chapter V – VII). In 

addition, the proposed approaches can also identify the cognitive distance and similarity between 

the combined groups and the panel. 

Which approach should be used? The findings showed that all the proposed methods can be used 

to quantify the cognitive distances and CIs can be calculated. However, the level of aggregation 

and method should be the choice of the concerned authority based on their respective policy. The 

classification in WoS SCs has received criticism for grouping a wide array of different subfields 

and topics while journals usually cover more closely related subfields and topics (discussed in 

chapter V and VI). We note that the 2-dimensional base maps at the level of WoS SCs as well as 

journals are publicly available. In addition, a similarity matrix of WoS SCs is also readily 

available. A journal similarity matrix, on the other hand, is not publicly available. In addition, the 

journals are not static entities and change over time. Therefore, manual work to track these 

changes may be needed (discussed in chapter VI). Hence, the WoS SC level of aggregation can 

be seen as a convenience approach but the journal level approach is more refined.  

The SAPV and WCS methods are more precise as both used the similarity matrix while the 

barycenter method used the 2-dimensional map derived from the similarity matrix. In deriving a 

2-dimensional map from an N-dimensional similarity matrix, some loss of information is 

inevitable. Hence, the cognitive distances obtained with the barycenter method are distorted to 

the number of dimensions while distances stemming from the SAPV and WCS methods are more 

meaningful based on mathematical logic (discussed in chapter VII). However, the barycenter 

method has advantages as it can be visualized. In the practice of research evaluation, projecting 

the location of panel members and research group on a map and at the same time looking at the 

corresponding distances can help the people responsible for the evaluation to have an immediate 

impression and grasp of the situation.  

Our proposed approaches are not dependent on any specific map or matrices. The methods can 

be applied to any local map (or subject or topic specific map) or similarity matrix for their own 

purposes. We are aware that the proposed methods are best suited to evaluations that cover a 

longer period with a larger set of publications and may not be suitable for assessing individuals, 
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grants, individual research projects, or the process of selecting potential reviewers for submitted 

manuscripts.  

9.3 Limitations of this study 

A first limitation is that we use the data, similarity matrix, and base map derived from the WoS 

only. WoS is interdisciplinary and covers all scientific areas, but it only covers what it considers 

to be "best" journals and concentrates on English language ones. We have used the similarity 

matrix and base map based on a certain year of data (JCR 2011) that was available at the start of 

our study. If we used a different similarity matrix (for example, based on Scopus data) and 

retrieved the same panel and research groups’ data, we can expect the results to be different as 

the similarity matrix and the data will not be the same. However, the methods will remain the 

same in any situation.   

A second limitation we want to mention is that our proposed methods start from journal article 

profiles of panel members and research groups, assuming that these publication profiles 

adequately represent their expertise or research interest. Therefore, our proposed approaches 

might be less acceptable in some fields, such as engineering or computer sciences, where core 

conferences are important publication outlets for original research (Rahm, 2008), or the social 

sciences and humanities where a large part of the total output occurs as book publications 

(Engels, Ossenblok, & Spruyt, 2012). In addition, patents, designs, software, databases and other 

types of non-journal research outputs are all important markers of expertise that are thus far not 

considered in the proposed approaches. 

A third limitation is that there is no a priori answer to the question “what distance between panel 

and research groups is acceptable for evaluation purposes”. This is because the context, 

objectives and practical setting of an expert panel evaluation may all play a role. Hence, this 

cannot be decided on beforehand. However, ‘the shorter the distances the better the fit of the 

expert panel’ can be suggested as a rule of thumb. At this point, we cannot make any claim 

regarding acceptable or preferable distances, and hence certainly not about the link between 

distances and the ‘quality’ of evaluations.  
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A fourth limitation is that our study includes only six departments (six evaluation exercises) from 

one university. Moreover, all departments are in exact and biomedical fields. It is as of yet an 

open question to what extent similar results would be obtained in other organizational contexts 

and in other disciplines. 

9.4 Suggestions for further study 

In this thesis, the departments are in exact and biomedical fields. A subsequent analysis can be 

done with the departments that belong to social science and humanities faculties. One should be 

aware that both Scopus and WoS focus mostly on journal contributions rather than monographs, 

edited volumes or reports that are considered as important channels of communication (Lancho-

Barrantes, Guerrero-Bote, & Moya-Anegón, 2010b). In addition, the publication patterns (Engels 

et al., 2012; Hicks, 2004; Sivertsen, 2016) and their coverage in Scopus and WoS (Rahman et al., 

2017) of the social science and humanities should be taken into account.  

Since the similarity matrix changes each year, results obtained using maps or matrices based on 

data from other years will lead to different results. The JCR of 2014 contain 11,149 journals in 

the SCIE and SSCI (Leydesdorff, Bornmann, et al., 2016). This constitutes an increase by 474 

journals compared to the 2011 journal similarity matrix we used in this thesis. Since evaluations 

are retrospective, it is not necessary to always have the most recent journal similarity matrix. 

Moreover, journals are not static entities and may undergo name changes over time, split in 

different new journals, or two or more journals can be merged together (see Chapter VI for 

details). However, any changes to the journal similarity matrix will have – at least in theory - a 

direct impact on the cognitive distances obtained. At this moment, we do not know how much 

such year-to-year changes and differences in projection methods affect the results of our 

methods.  

A subsequent analysis can be done with the similarity matrix based on a different year. It is a 

topic for further investigation to find out to what extent the cognitive distances differ and the CIs 

overlap if a different base map or similarity matrix (based on different years) are used for the 

same panel and research groups. The changes in similarity matrix may be occurring due to two 

reasons: first, the changes in similarity values between entities (e.g. WoS SCs or journals), and, 



179 

 

second, due to changes of entities in the matrix. The first one may take place due to citation 

traffic change while both the first and the latter may be caused by events such as the 

reorganization of WoS SCs or adding or deleting journals. How much does a different similarity 

matrix/map affect the results? One possible approach would be to run simulation experiment in 

which a large number of fictitious publication profiles for research groups and panel members is 

created and cognitive distances, using different similarity matrices, are calculated and 

systematically compared. 

Moreover, the use of different mapping techniques to derive 2-dimensional base maps gives 

different results (discussed in chapter VII). An analysis can be done based on 2-dimensional base 

map derived by different techniques. We observed that the cognitive distances obtained in a 

Kamada-Kawai map differ from the distances derived by VOS map techniques. There are other 

algorithms or layout techniques available. We can apply the proposed approaches for a panel and 

research groups on the base maps obtained from different algorithms or layout techniques. Here 

too a simulation based approach might be beneficial. These further studies (different similarity 

matrix and different mapping techniques) will lead to new insights into how much differences in 

the similarity matrix and mapping techniques affect the observed cognitive distances.  

We have used similarity matrices and base maps derived from them based on data available 

during the construction of the matrices. If the similarity matrix changed over the years, and we 

keep the same panel and research groups publication data, this might result in different cognitive 

distances. Moreover, if we use a different similarity matrix (for example, based on Scopus data) 

and retrieve the same panel and research groups’ data, we can expect different results as well, 

because the similarity matrix and the data will not be the same. An interesting follow-up 

investigation could therefore be based on Scopus data  (e.g., Leydesdorff, de Moya‐Anegón, & 

Guerrero‐Bote, 2010; Leydesdorff, Moya‐Anegón, & Guerrero‐Bote, 2015). Hence, although 

there is a practical stability problem, the methods we introduced have general applicability.  

In our case, for the barycenter method using the global map of sciences of WoS SCs, if a 

publication appears in a journal belonging to two SCs, it has been counted twice. A subsequent 

analysis using fractional counting in WoS SCs (Bornmann, 2014) can be done.  



180 

 

The scope of journals can vary significantly; some journals focus on rather specific topics, 

whereas others, such as PLoS ONE, are multidisciplinary in nature. One might therefore question 

whether journals are the adequate level of analysis. We suggest two possible routes for future 

research in this regard. First, it would be interesting if a comparison could be made between an 

analysis that considers all journals and one that leaves out multidisciplinary or otherwise broadly 

scoped journals. Second, one could replace journals with clusters of cognitively related articles. 

For instance, one could use the CWTS (Centre for Science and Technology Studies) article-level 

classification (Waltman & van Eck, 2012), which groups related articles together on the basis of 

direct citations regardless of the journal in which they were published. While we consider this an 

interesting idea, we also point out that it harbors its own set of theoretical and practical problems. 

This article-level classification includes publications from the period 2001-2010. Hence, 

publications before and after that period cannot be taken into account. In addition, it seems 

harder to interpret the results of a publication-level analysis, e.g. clusters in this map are not 

really labeled but only characterized by frequently occurring terms. 

Our proposed approaches have not yet been tested against a ‘real’ gold standard due to absence 

of it (discussed in chapter VII and VIII). The proposed approaches can be tested in any future 

case scenario where a panel needs to be chosen. For example, in a situation where X panel 

members need to be chosen out of N candidate panel members to evaluate Y research groups. 

The panel composition based on the approaches can then be matched with the opinion of the 

panel chair and see how they differ in practice and why. In addition, the opinion of the respective 

panel members can be taken into account on beforehand, whether they consider themselves as 

the right person to evaluate the assigned research groups or not.  

An integrated method for composing an expert panel is yet to be established. Our proposed 

approaches can become part of such a method. The proposed approaches help the concerned 

authority to assign panel members to research groups taking into account the cognitive distance 

and confidence intervals. When an expert panel needs to be composed with K panel members 

from a set of N potential panel members, a subset can be chosen from a number of subsets 

(Aggarwal, Imai, Katoh, & Suri, 1991). For example, there are three subsets: subset A (PM1, 

PM2, PM3, PM5 and PM7), subset B (PM1, PM2, PM4, PM5, and PM6), and subset C (PM2, 

PM5, PM6, PM7, PM8). These subsets are chosen based on either standalone or a combination 
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of one or more parameters: overlap of confidence intervals, two or more panel members having 

similar expertise, the panel chair must be there, the cognitive distances between the panel 

members and the research groups should not be too close or too far, the distances between the 

panel members should not be too small or spread over so that they can understand each other, 

etc. From these subsets, one can choose the best subset depend on the goals and needs of the 

evaluation at hand. Developing and testing such a software-facilitated approach would be a 

major achievement. 
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Appendix 

Appendix A: Confidence interval plot of barycenter distances 

The highlighted part indicates the confidence interval of the shortest distance to the research group. 

 

 

 Figure 38: Confidence interval plot of barycenter distances of BIOM-A research group 
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Figure 39: Confidence interval plot of barycenter distances of BIOM-B research group 

 

 

Figure 40: Confidence interval plot of barycenter distances of BIOM-C research group 



185 

 

 

Figure 41: Confidence interval plot of barycenter distances of BIOM-D research group 

 

 

Figure 42: Confidence interval plot of barycenter distances of BIOM-E research group 
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Figure 43: Confidence interval plot of barycenter distances of BIOM-F research group 

 

 

Figure 44: Confidence interval plot of barycenter distances of BIOM-G research group 
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Figure 45: Confidence interval plot of barycenter distances of BIOM-H research group 

 

 

Figure 46: Confidence interval plot of barycenter distances of BIOM-I research group 
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Figure 47: Confidence interval plot of barycenter distances of BIOM-J research group 

 

 

Figure 48: Confidence interval plot of barycenter distances of BIOM-K research group 
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Figure 49: Confidence interval plot of barycenter distances of BIOM-L research group 

 

 

Figure 50: Confidence interval plot of barycenter distances of BIOM-M research group 
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Figure 51: Confidence interval plot of barycenter distances of BIOM-N research group 

 

 

Figure 52: Confidence interval plot of barycenter distances of BIOM-O research group 
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Figure 53: Confidence interval plot of barycenter distances of VETE-A research group 

 

 

Figure 54: Confidence interval plot of barycenter distances of VETE-B research group 
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Figure 55: Confidence interval plot of barycenter distances of VETE-C research group 

 

 

Figure 56: Confidence interval plot of barycenter distances of PHAR-A research group 
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Figure 57: Confidence interval plot of barycenter distances of PHAR-B research group 

 

 

Figure 58: Confidence interval plot of barycenter distances of PHAR-C research group 
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Figure 59: Confidence interval plot of barycenter distances of PHAR-D research group 

 

 

Figure 60: Confidence interval plot of barycenter distances of PHAR-E research group 
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Figure 61: Confidence interval plot of barycenter distances of PHAR-F research group 

 

 

Figure 62: Confidence interval plot of barycenter distances of PHAR-G research group 
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Figure 63: Confidence interval plot of barycenter distances of PHAR-H research group 

 

 

Figure 64: Confidence interval plot of barycenter distances of PHAR-I research group 



197 

 

 

Figure 65: Confidence interval plot of barycenter distances of PHAR-J research group 

 

 

Figure 66: Confidence interval plot of barycenter distances of BIOL-A research group 
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Figure 67: Confidence interval plot of barycenter distances of BIOL-B research group 

 

 

Figure 68: Confidence interval plot of barycenter distances of BIOL-C research group 
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Figure 69: Confidence interval plot of barycenter distances of BIOL-D research group 

 

 

Figure 70: Confidence interval plot of barycenter distances of BIOL-E research group 
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Figure 71: Confidence interval plot of barycenter distances of BIOL-F research group 

 

 

Figure 72: Confidence interval plot of barycenter distances of BIOL-G research group 
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Figure 73: Confidence interval plot of barycenter distances of BIOL-H research group 

 

 

Figure 74: Confidence interval plot of barycenter distances of BIOL-I research group 
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Appendix B: Confidence interval plot of SAPV distances 

The highlighted part indicates the confidence interval of the shortest distance to the research group. 

 

Figure 75: Confidence interval plot of SAPV distances of BIOM-A research group 

 

Figure 76: Confidence interval plot of SAPV distances of BIOM-B research group 
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Figure 77: Confidence interval plot of SAPV distances of BIOM-C research group 

 

 

Figure 78: Confidence interval plot of SAPV distances of BIOM-D research group 
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Figure 79: Confidence interval plot of SAPV distances of BIOM-E research group 

 

 

Figure 80: Confidence interval plot of SAPV distances of BIOM-F research group 
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Figure 81: Confidence interval plot of SAPV distances of BIOM-G research group 

 

 

Figure 82: Confidence interval plot of SAPV distances of BIOM-H research group 
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Figure 83: Confidence interval plot of SAPV distances of BIOM-I research group 

 

 

Figure 84: Confidence interval plot of SAPV distances of BIOM-J research group 
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Figure 85: Confidence interval plot of SAPV distances of BIOM-K research group 

 

 

Figure 86: Confidence interval plot of SAPV distances of BIOM-L research group 
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Figure 87: Confidence interval plot of SAPV distances of BIOM-M research group 

 

 

Figure 88: Confidence interval plot of SAPV distances of BIOM-N research group 
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Figure 89: Confidence interval plot of SAPV distances of BIOM-O research group 

 

 

Figure 90: Confidence interval plot of SAPV distances of VETE-A research group 



210 

 

 

Figure 91: Confidence interval plot of SAPV distances of VETE-B research group 

 

 

Figure 92: Confidence interval plot of SAPV distances of VETE-C research group 
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Figure 93: Confidence interval plot of SAPV distances of PHAR-A research group 

 

 

Figure 94: Confidence interval plot of SAPV distances of PHAR-B research group 
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Figure 95: Confidence interval plot of SAPV distances of PHAR-C research group 

 

 

Figure 96: Confidence interval plot of SAPV distances of PHAR-D research group 
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Figure 97: Confidence interval plot of SAPV distances of PHAR-E research group 

 

 

Figure 98: Confidence interval plot of SAPV distances of PHAR-F research group 
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Figure 99: Confidence interval plot of SAPV distances of PHAR-G research group 

 

 

Figure 100: Confidence interval plot of SAPV distances of PHAR-H research group 
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Figure 101: Confidence interval plot of SAPV distances of PHAR-I research group 

 

 

Figure 102: Confidence interval plot of SAPV distances of PHAR-J research group 
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Figure 103: Confidence interval plot of SAPV distances of BIOL-A research group 

 

 

Figure 104: Confidence interval plot of SAPV distances of BIOL-B research group 
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Figure 105: Confidence interval plot of SAPV distances of BIOL-C research group 

 

 

Figure 106: Confidence interval plot of SAPV distances of BIOL-D research group 



218 

 

 

Figure 107: Confidence interval plot of SAPV distances of BIOL-E research group 

 

 

Figure 108: Confidence interval plot of SAPV distances of BIOL-F research group 
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Figure 109: Confidence interval plot of SAPV distances of BIOL-G research group 

 

 

Figure 110: Confidence interval plot of SAPV distances of BIOL-H research group 
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Figure 111: Confidence interval plot of SAPV distances of BIOL-I research group 
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Appendix C: Result of six approaches  

Biomedical Sciences department 

The main assessor is bold and underlined in our methods. Distances/similarities whose CIs 

overlap with that of the shortest distance/ highest similarities are in bold (same column). This is 

applicable for Table 59 to Table 89.  

Table 59:  Euclidean distances between barycenters of Biomedical Sciences panel members and 

individual research groups using the 2-dimensional base map of WoS SCs 

 

BIOM-

A 

BIOM-

B 

BIOM-

C 

BIOM-

D 

BIOM-

E 

BIOM-

F 

BIOM-

G 

BIOM-

H 

BIOM-

I 

BIOM-

J 

BIOM-

K 

BIOM-

L 

BIOM-

M 

BIOM-

N 

BIOM-

O 

PM1 0.251 0.120 0.121 0.075 0.098 0.125 0.513 0.208 0.119 0.309 0.255 0.400 0.446 0.463 0.376 

PM2 0.078 0.164 0.149 0.198 0.172 0.147 0.245 0.120 0.345 0.227 0.046 0.133 0.177 0.196 0.108 

PM3 0.182 0.086 0.141 0.096 0.133 0.113 0.472 0.240 0.125 0.185 0.202 0.365 0.404 0.426 0.340 

PM4 0.383 0.269 0.306 0.247 0.286 0.291 0.672 0.405 0.091 0.355 0.402 0.563 0.604 0.625 0.539 

PM5 0.193 0.063 0.069 0.017 0.047 0.067 0.457 0.166 0.148 0.261 0.197 0.344 0.389 0.408 0.320 

PM6 0.111 0.153 0.122 0.178 0.146 0.131 0.272 0.073 0.332 0.260 0.081 0.159 0.206 0.222 0.136 

PM7 0.210 0.132 0.075 0.111 0.074 0.108 0.414 0.086 0.249 0.327 0.197 0.303 0.350 0.364 0.281 

PM8 0.142 0.272 0.273 0.314 0.296 0.263 0.161 0.248 0.445 0.228 0.133 0.093 0.102 0.127 0.085 

 

Table 60: Euclidean distances between SAPVs of Biomedical Sciences panel members and 

individual research groups using the similarity matrix of WoS SCs 

 

BIOM-

A 

BIOM-

B 

BIOM-

C 

BIOM-

D 

BIOM-

E 

BIOM-

F 

BIOM-

G 

BIOM-

H 

BIOM-

I 

BIOM-

J 

BIOM-

K 

BIOM-

L 

BIOM-

M 

BIOM-

N 

BIOM-

O 

PM1 0.055 0.027 0.024 0.040 0.021 0.023 0.078 0.049 0.016 0.068 0.038 0.067 0.068 0.085 0.066 

PM2 0.028 0.042 0.043 0.060 0.042 0.026 0.039 0.054 0.048 0.039 0.030 0.028 0.028 0.044 0.027 

PM3 0.061 0.027 0.034 0.059 0.043 0.044 0.077 0.069 0.041 0.067 0.037 0.068 0.066 0.082 0.065 

PM4 0.058 0.036 0.037 0.041 0.036 0.034 0.083 0.06 0.013 0.062 0.042 0.073 0.074 0.090 0.072 

PM5 0.056 0.011 0.012 0.047 0.022 0.028 0.077 0.057 0.023 0.068 0.032 0.065 0.065 0.082 0.062 

PM6 0.042 0.046 0.04 0.050 0.026 0.033 0.057 0.033 0.047 0.063 0.040 0.052 0.052 0.066 0.051 

PM7 0.073 0.064 0.057 0.033 0.052 0.061 0.090 0.057 0.059 0.092 0.065 0.086 0.086 0.100 0.085 

PM8 0.046 0.092 0.092 0.101 0.092 0.079 0.040 0.087 0.097 0.057 0.075 0.047 0.047 0.030 0.047 
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Table 61:  Euclidean distances between barycenters of Biomedical Sciences panel members and 

individual research groups using 2-dimensional base map of journals 

 

BIOM-

A 

BIOM-

B 

BIOM-

C 

BIOM-

D 

BIOM-

E 

BIOM-

F 

BIOM-

G 

BIOM-

H 

BIOM-

I 

BIOM-

J 

BIOM-

K 

BIOM-

L 

BIOM-

M 

BIOM-

N 

BIOM-

O 

PM1 0.350 0.180 0.224 0.110 0.242 0.081 0.473 0.319 0.159 0.445 0.387 0.471 0.397 0.436 0.344 

PM2 0.176 0.038 0.046 0.201 0.177 0.119 0.302 0.267 0.234 0.297 0.208 0.294 0.221 0.272 0.181 

PM3 0.390 0.397 0.397 0.241 0.530 0.303 0.611 0.621 0.194 0.356 0.438 0.586 0.527 0.599 0.522 

PM4 0.391 0.355 0.365 0.168 0.479 0.243 0.600 0.568 0.119 0.390 0.440 0.580 0.515 0.582 0.498 

PM5 0.250 0.058 0.107 0.183 0.144 0.095 0.348 0.233 0.227 0.371 0.280 0.348 0.274 0.311 0.220 

PM6 0.295 0.177 0.184 0.383 0.072 0.295 0.236 0.086 0.426 0.442 0.291 0.258 0.207 0.187 0.135 

PM7 0.367 0.173 0.217 0.282 0.103 0.209 0.395 0.148 0.331 0.500 0.385 0.407 0.342 0.348 0.271 

PM8 0.171 0.363 0.314 0.497 0.445 0.445 0.238 0.502 0.504 0.154 0.140 0.199 0.213 0.271 0.281 

 

Table 62: Euclidean distances between SAPVs of Biomedical Sciences panel members and 

individual research groups using the similarity matrix of journals 

 

BIOM

-A 

BIOM

-B 

BIOM

-C 

BIOM

-D 

BIOM

-E 

BIOM

-F 

BIOM

-G 

BIOM

-H 

BIOM

-I 

BIOM

-J 

BIOM

-K 

BIOM

-L 

BIOM

-M 

BIOM

-N 

BIOM

-O 

PM1 0.007 0.006 0.006 0.007 0.007 0.003 0.011 0.009 0.002 0.009 0.007 0.011 0.008 0.012 0.009 

PM2 0.004 0.006 0.007 0.008 0.007 0.003 0.008 0.010 0.005 0.005 0.006 0.009 0.006 0.010 0.007 

PM3 0.007 0.006 0.007 0.008 0.008 0.006 0.011 0.011 0.006 0.008 0.006 0.011 0.008 0.011 0.009 

PM4 0.007 0.007 0.007 0.007 0.008 0.004 0.011 0.010 0.002 0.009 0.007 0.011 0.009 0.012 0.009 

PM5 0.005 0.002 0.003 0.007 0.006 0.005 0.009 0.009 0.005 0.008 0.004 0.009 0.006 0.009 0.006 

PM6 0.008 0.008 0.007 0.008 0.003 0.009 0.009 0.006 0.009 0.012 0.008 0.011 0.009 0.011 0.009 

PM7 0.008 0.008 0.007 0.005 0.007 0.009 0.010 0.007 0.008 0.012 0.008 0.011 0.009 0.011 0.009 

PM8 0.009 0.012 0.013 0.014 0.013 0.013 0.009 0.014 0.014 0.011 0.011 0.010 0.010 0.010 0.010 

 

Table 63: WCS values of the Biomedical Sciences panel members and individual research groups 

using the similarity matrix of WoS SCs 

 

BIOM

-A 

BIOM

-B 

BIOM

-C 

BIOM

-D 

BIOM

-E 

BIOM

-F 

BIOM

-G 

BIOM

-H 

BIOM

-I 

BIOM

-J 

BIOM

-K 

BIOM

-L 

BIOM

-M 

BIOM

-N 

BIOM

-O 

PM1 0.692 0.887 0.887 0.765 0.909 0.942 0.572 0.705 0.976 0.628 0.838 0.644 0.642 0.512 0.643 

PM2 0.869 0.82 0.787 0.614 0.792 0.934 0.881 0.629 0.809 0.909 0.897 0.897 0.914 0.832 0.899 

PM3 0.626 0.923 0.883 0.613 0.822 0.805 0.565 0.533 0.845 0.591 0.85 0.616 0.656 0.535 0.650 

PM4 0.650 0.841 0.831 0.772 0.850 0.890 0.513 0.619 0.984 0.637 0.805 0.596 0.582 0.456 0.583 

PM5 0.677 0.987 0.973 0.691 0.914 0.874 0.609 0.592 0.935 0.634 0.909 0.691 0.714 0.596 0.724 

PM6 0.686 0.689 0.703 0.602 0.915 0.770 0.629 0.735 0.718 0.573 0.712 0.618 0.635 0.550 0.623 

PM7 0.484 0.575 0.631 0.880 0.664 0.582 0.370 0.577 0.655 0.326 0.575 0.372 0.385 0.289 0.385 

PM8 0.907 0.418 0.397 0.292 0.410 0.546 0.793 0.374 0.374 0.745 0.579 0.747 0.761 0.775 0.753 
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Table 64: WCS values of the Biomedical Sciences panel members and individual research groups 

using the similarity matrix of journals 

 

BIOM

-A 

BIOM

-B 

BIOM

-C 

BIOM

-D 

BIOM

-E 

BIOM

-F 

BIOM

-G 

BIOM

-H 

BIOM

-I 

BIOM

-J 

BIOM

-K 

BIOM

-L 

BIOM

-M 

BIOM

-N 

BIOM

-O 

PM1 0.649 0.569 0.601 0.653 0.671 0.901 0.501 0.541 0.955 0.510 0.637 0.437 0.587 0.414 0.557 

PM2 0.791 0.567 0.541 0.544 0.585 0.893 0.670 0.477 0.801 0.828 0.646 0.561 0.712 0.521 0.647 

PM3 0.609 0.589 0.583 0.556 0.546 0.694 0.466 0.391 0.736 0.564 0.636 0.470 0.574 0.411 0.539 

PM4 0.576 0.520 0.540 0.636 0.565 0.846 0.438 0.436 0.926 0.488 0.602 0.390 0.53 0.369 0.497 

PM5 0.599 0.926 0.910 0.508 0.693 0.669 0.596 0.426 0.705 0.508 0.861 0.633 0.773 0.643 0.781 

PM6 0.445 0.407 0.474 0.415 0.906 0.462 0.382 0.570 0.501 0.259 0.423 0.301 0.386 0.307 0.376 

PM7 0.451 0.376 0.436 0.779 0.468 0.484 0.381 0.452 0.568 0.292 0.433 0.313 0.397 0.306 0.382 

PM8 0.732 0.190 0.160 0.156 0.158 0.244 0.387 0.130 0.205 0.365 0.281 0.337 0.353 0.307 0.314 

 

Chemistry department 

Table 65: Euclidean distances between barycenters of Chemistry panel members and individual 

research groups using the 2-dimensional base map of WoS SCs 

 
CHEM-A CHEM- B CHEM-C CHEM- D CHEM-E CHEM- F CHEM- G CHEM- H CHEM-I CHEM-J CHEM-K CHEM-L 

PM 1 0.167 0.129 0.217 0.165 0.329 0.337 0.179 0.165 0.111 0.394 0.454 0.127 

PM 2 0.350 0.342 0.362 0.129 0.079 0.090 0.145 0.215 0.199 0.259 0.228 0.342 

PM 3 0.171 0.161 0.192 0.129 0.252 0.263 0.053 0.061 0.020 0.269 0.330 0.161 

PM 4 0.269 0.262 0.280 0.108 0.158 0.170 0.063 0.134 0.121 0.232 0.250 0.263 

PM 5 0.056 0.055 0.091 0.232 0.367 0.378 0.154 0.093 0.099 0.315 0.411 0.057 

PM 6 0.302 0.276 0.335 0.027 0.175 0.181 0.161 0.210 0.156 0.366 0.370 0.275 

PM 7 0.116 0.072 0.172 0.235 0.395 0.404 0.216 0.178 0.144 0.410 0.491 0.070 

 

Table 66: Euclidean distances between SAPVs of Chemistry panel members and individual 

research groups using the similarity matrix of WoS SCs 

 
CHEM-A CHEM-B CHEM-C CHEM-D CHEM-E CHEM-F CHEM-G CHEM-H CHEM-I CHEM-J CHEM-K CHEM-L 

PM1 0.081 0.079 0.108 0.061 0.124 0.119 0.116 0.104 0.093 0.129 0.141 0.085 

PM2 0.082 0.074 0.079 0.054 0.036 0.032 0.055 0.046 0.036 0.075 0.071 0.070 

PM3 0.082 0.074 0.08 0.066 0.057 0.058 0.040 0.040 0.042 0.075 0.086 0.073 

PM4 0.106 0.099 0.104 0.085 0.064 0.070 0.027 0.063 0.071 0.085 0.094 0.091 

PM5 0.015 0.013 0.034 0.074 0.100 0.102 0.077 0.053 0.050 0.082 0.096 0.024 

PM6 0.093 0.087 0.111 0.025 0.085 0.080 0.096 0.090 0.080 0.113 0.116 0.088 

PM7 0.068 0.068 0.097 0.072 0.128 0.125 0.113 0.099 0.089 0.125 0.140 0.075 
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Table 67: Euclidean distances between barycenters of Chemistry panel members and individual 

research groups using the 2-dimensional base map of journals 

 
CHEM-A CHEM-B CHEM-C CHEM-D CHEM-E CHEM-F CHEM-G CHEM-H CHEM-I CHEM-J CHEM-K CHEM-L 

PM1 0.115 0.103 0.276 0.149 0.422 0.312 0.281 0.272 0.187 0.291 0.483 0.122 

PM2 0.414 0.404 0.452 0.266 0.090 0.091 0.217 0.274 0.226 0.216 0.282 0.332 

PM3 0.211 0.202 0.276 0.138 0.261 0.153 0.111 0.141 0.027 0.120 0.305 0.131 

PM4 0.286 0.277 0.332 0.178 0.196 0.100 0.115 0.167 0.098 0.120 0.270 0.204 

PM5 0.109 0.110 0.124 0.241 0.412 0.307 0.149 0.109 0.128 0.156 0.327 0.067 

PM6 0.173 0.159 0.316 0.071 0.349 0.242 0.256 0.263 0.152 0.266 0.457 0.139 

PM7 0.096 0.083 0.255 0.157 0.423 0.312 0.267 0.255 0.176 0.277 0.468 0.104 

 

Table 68: Euclidean distances between SAPVs of Chemistry panel members and individual 

research groups using the similarity matrix of journals 

 
CHEM-A CHEM-B CHEM-C CHEM-D CHEM-E CHEM-F CHEM-G CHEM-H CHEM-I CHEM-J CHEM-K CHEM-L 

PM1 0.015 0.015 0.029 0.011 0.027 0.025 0.027 0.028 0.025 0.028 0.030 0.018 

PM2 0.017 0.017 0.017 0.022 0.005 0.008 0.011 0.010 0.010 0.012 0.010 0.012 

PM3 0.019 0.018 0.017 0.024 0.009 0.011 0.009 0.008 0.010 0.012 0.012 0.014 

PM4 0.019 0.019 0.019 0.023 0.011 0.006 0.005 0.010 0.008 0.009 0.016 0.015 

PM5 0.006 0.006 0.013 0.019 0.016 0.017 0.017 0.013 0.014 0.017 0.015 0.008 

PM6 0.017 0.017 0.030 0.005 0.025 0.024 0.026 0.027 0.025 0.027 0.029 0.019 

PM7 0.012 0.011 0.026 0.012 0.024 0.022 0.024 0.024 0.021 0.024 0.026 0.015 

 

Table 69: WCS values of the Chemistry panel members and individual research groups using the 

similarity matrix of WoS SCs 

 
CHEM-A CHEM-B CHEM-C CHEM-D CHEM-E CHEM-F CHEM-G CHEM-H CHEM-I CHEM-J CHEM-K CHEM-L 

PM1 0.709 0.667 0.445 0.922 0.469 0.449 0.395 0.440 0.507 0.323 0.273 0.661 

PM2 0.670 0.713 0.726 0.675 0.914 0.945 0.837 0.847 0.947 0.703 0.527 0.713 

PM3 0.594 0.655 0.673 0.569 0.839 0.831 0.866 0.880 0.894 0.711 0.403 0.604 

PM4 0.459 0.517 0.504 0.484 0.781 0.777 0.951 0.758 0.769 0.626 0.315 0.549 

PM5 0.983 0.990 0.842 0.669 0.581 0.475 0.614 0.747 0.758 0.573 0.512 0.933 

PM6 0.613 0.600 0.377 0.973 0.545 0.519 0.391 0.410 0.484 0.294 0.280 0.603 

PM7 0.758 0.713 0.503 0.850 0.460 0.439 0.440 0.494 0.550 0.373 0.290 0.700 
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Table 70: WCS values of the Chemistry panel members and individual research groups using the 

similarity matrix of journals 

 
CHEM-A CHEM-B CHEM-C CHEM-D CHEM-E CHEM-F CHEM-G CHEM-H CHEM-I CHEM-J CHEM-K CHEM-L 

PM1 0.670 0.633 0.144 0.730 0.336 0.244 0.179 0.127 0.220 0.099 0.091 0.580 

PM2 0.373 0.397 0.432 0.315 0.830 0.805 0.649 0.546 0.795 0.513 0.308 0.470 

PM3 0.235 0.247 0.549 0.176 0.558 0.585 0.726 0.774 0.793 0.481 0.243 0.284 

PM4 0.249 0.281 0.370 0.231 0.724 0.877 0.850 0.613 0.805 0.594 0.184 0.319 

PM5 0.941 0.944 0.452 0.393 0.371 0.229 0.231 0.285 0.313 0.166 0.295 0.702 

PM6 0.534 0.538 0.110 0.957 0.358 0.257 0.165 0.111 0.198 0.099 0.076 0.495 

PM7 0.727 0.689 0.186 0.599 0.345 0.261 0.212 0.162 0.253 0.12 0.117 0.614 

 

Pharmaceuticals Sciences department 

Table 71: Euclidean distances between barycenters of Pharmaceutical Sciences panel members and 

individual research groups using the 2-dimensional base map of WoS SCs 

 
PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

PM1 0.007 0.266 0.670 0.318 0.538 0.189 0.144 0.353 0.757 0.624 

PM2 0.451 0.194 0.232 0.130 0.095 0.283 0.358 0.141 0.322 0.188 

PM3 0.162 0.118 0.513 0.159 0.379 0.082 0.107 0.207 0.602 0.467 

PM4 0.197 0.076 0.476 0.127 0.344 0.057 0.148 0.165 0.564 0.430 

PM5 0.017 0.274 0.678 0.328 0.547 0.194 0.156 0.359 0.765 0.632 

Table 72: Euclidean distances between SAPVs of Pharmaceutical Sciences panel members and 

individual research groups using the similarity matrix of WoS SCs 

 
PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

PM1 0.033 0.055 0.097 0.046 0.072 0.046 0.091 0.07 0.157 0.094 

PM2 0.062 0.031 0.045 0.023 0.020 0.041 0.094 0.034 0.124 0.049 

PM3 0.037 0.036 0.069 0.023 0.044 0.036 0.086 0.048 0.138 0.067 

PM4 0.036 0.035 0.072 0.023 0.046 0.031 0.087 0.047 0.138 0.070 

PM5 0.018 0.048 0.091 0.047 0.065 0.047 0.084 0.061 0.156 0.085 

Table 73: Euclidean distances between barycenters of Pharmaceutical Sciences panel members and 

individual research groups using the 2-dimensional base map of journals 

 
PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

PM1 0.101 0.267 1.017 0.413 0.807 0.271 0.262 0.471 1.251 0.972 

PM2 0.750 0.581 0.205 0.428 0.021 0.579 0.689 0.398 0.429 0.162 

PM3 0.339 0.163 0.610 0.043 0.402 0.162 0.332 0.110 0.844 0.573 

PM4 0.332 0.161 0.616 0.052 0.408 0.160 0.322 0.120 0.850 0.577 

PM5 0.186 0.057 0.773 0.170 0.566 0.062 0.242 0.233 1.008 0.735 
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Table 74: Euclidean distances between SAPVs of Pharmaceutical Sciences panel members and 

individual research groups using the similarity matrix of journals 

 
PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

PM1 0.011 0.011 0.017 0.015 0.015 0.008 0.020 0.012 0.021 0.020 

PM2 0.012 0.010 0.005 0.011 0.004 0.011 0.018 0.008 0.011 0.008 

PM3 0.010 0.009 0.009 0.007 0.007 0.008 0.018 0.007 0.015 0.013 

PM4 0.010 0.008 0.009 0.011 0.007 0.006 0.018 0.007 0.014 0.012 

PM5 0.007 0.008 0.010 0.012 0.008 0.007 0.017 0.007 0.017 0.014 

 

Table 75: WCS values of the Pharmaceuticals panel members and individual research groups using 

the similarity matrix of WoS SCs 

 
PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

PM1 0.823 0.819 0.426 0.881 0.694 0.909 0.387 0.740 0.092 0.375 

PM2 0.702 0.902 0.747 0.956 0.914 0.840 0.391 0.897 0.274 0.623 

PM3 0.820 0.884 0.632 0.941 0.856 0.886 0.407 0.850 0.203 0.558 

PM4 0.812 0.877 0.570 0.929 0.836 0.923 0.404 0.835 0.192 0.488 

PM5 0.962 0.742 0.440 0.685 0.679 0.719 0.531 0.675 0.095 0.488 

 

Table 76: WCS values of the Pharmaceuticals Sciences panel members and individual research 

groups using the similarity matrix of journals 

 
PHAR-A PHAR-B PHAR-C PHAR-D PHAR-E PHAR-F PHAR-G PHAR-H PHAR-I PHAR-J 

PM1 0.391 0.502 0.206 0.298 0.445 0.850 0.103 0.521 0.075 0.125 

PM2 0.286 0.408 0.645 0.469 0.717 0.456 0.161 0.518 0.299 0.478 

PM3 0.266 0.365 0.421 0.871 0.527 0.442 0.121 0.462 0.160 0.263 

PM4 0.374 0.520 0.458 0.354 0.711 0.847 0.128 0.621 0.207 0.300 

PM5 0.812 0.469 0.444 0.241 0.578 0.527 0.271 0.471 0.153 0.325 

Physics department 

Table 77: Euclidean distances between barycenters of Physics panel members and individual 

research groups using the 2-dimensional base map of WoS SCs 

 
PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

PM 1 1.173 0.123 0.215 0.017 0.145 0.208 0.495 0.120 0.664 

PM 2 1.195 0.067 0.109 0.158 0.118 0.316 0.443 0.056 0.688 

PM 3 1.041 0.146 0.194 0.116 0.113 0.104 0.387 0.157 0.532 

PM 4 1.020 0.168 0.085 0.263 0.132 0.295 0.249 0.179 0.522 

PM 5 1.136 0.046 0.055 0.159 0.069 0.281 0.385 0.050 0.629 

PM 6 1.157 0.031 0.084 0.138 0.078 0.280 0.412 0.026 0.649 
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Table 78: Euclidean distances between SAPVs of Physics panel members and individual research 

groups using the similarity matrix of WoS SCs 

 
PHYS-A PHYS- B PHYS-C PHYS- D PHYS-E PHYS- F PHYS- G PHYS- H PHYS-I 

PM 1 0.376 0.358 0.373 0.098 0.328 0.301 0.371 0.358 0.367 

PM 2 0.172 0.019 0.038 0.272 0.054 0.127 0.115 0.019 0.133 

PM 3 0.156 0.065 0.080 0.256 0.069 0.100 0.116 0.063 0.111 

PM 4 0.144 0.060 0.039 0.271 0.051 0.129 0.066 0.063 0.103 

PM 5 0.157 0.023 0.016 0.271 0.044 0.125 0.095 0.027 0.115 

PM 6 0.165 0.012 0.035 0.258 0.037 0.111 0.106 0.015 0.125 

 

Table 79: Euclidean distances between barycenters of Physics panel members and individual 

research groups using the 2-dimensional base map of journals 

 
PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 1.134 0.154 0.310 0.030 0.204 0.087 0.813 0.146 0.707 

PM2 1.045 0.025 0.159 0.127 0.063 0.185 0.668 0.015 0.600 

PM3 0.960 0.086 0.185 0.151 0.090 0.155 0.647 0.098 0.527 

PM4 0.857 0.301 0.146 0.427 0.252 0.461 0.369 0.309 0.404 

PM5 0.970 0.085 0.074 0.211 0.036 0.251 0.577 0.094 0.519 

PM6 1.029 0.023 0.142 0.142 0.045 0.195 0.650 0.023 0.582 

 

Table 80: Euclidean distances between SAPVs of Physics panel members and individual research 

groups using the similarity matrix of journals 

 
PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.061 0.052 0.057 0.018 0.048 0.048 0.060 0.052 0.058 

PM2 0.030 0.004 0.016 0.035 0.013 0.017 0.028 0.004 0.024 

PM3 0.027 0.019 0.020 0.041 0.019 0.022 0.027 0.020 0.022 

PM4 0.021 0.020 0.011 0.042 0.015 0.020 0.012 0.021 0.015 

PM5 0.022 0.009 0.005 0.038 0.008 0.015 0.018 0.010 0.014 

PM6 0.026 0.002 0.011 0.034 0.008 0.012 0.022 0.003 0.019 
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Table 81: WCS values of the Physics panel members and individual research groups using the 

similarity matrix of WoS SCs 

 
PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.030 0.155 0.043 0.996 0.561 0.508 0.028 0.154 0.052 

PM2 0.151 0.982 0.920 0.127 0.806 0.513 0.543 0.977 0.497 

PM3 0.220 0.714 0.625 0.211 0.668 0.526 0.440 0.762 0.544 

PM4 0.182 0.729 0.829 0.129 0.757 0.436 0.895 0.741 0.479 

PM5 0.182 0.965 0.986 0.158 0.852 0.475 0.656 0.957 0.567 

PM6 0.164 0.989 0.930 0.272 0.903 0.643 0.631 0.985 0.516 

 

Table 82: WCS values of the Physics panel members and individual research groups using the 

similarity matrix of journals 

 
PHYS-A PHYS-B PHYS-C PHYS-D PHYS-E PHYS-F PHYS-G PHYS-H PHYS-I 

PM1 0.019 0.186 0.095 0.990 0.688 0.372 0.035 0.191 0.063 

PM2 0.086 0.982 0.745 0.244 0.708 0.542 0.234 0.975 0.368 

PM3 0.252 0.306 0.320 0.102 0.301 0.246 0.131 0.310 0.323 

PM4 0.083 0.397 0.582 0.102 0.482 0.310 0.822 0.377 0.298 

PM5 0.152 0.880 0.927 0.247 0.764 0.517 0.389 0.865 0.531 

PM6 0.106 0.983 0.779 0.329 0.795 0.665 0.337 0.980 0.420 

 

Veterinary Sciences department 

Table 83: Euclidean distances between barycenters of Veterinary Sciences panel members and 

individual research groups using the 2-dimensional base map of WoS SCs 

 
VETE-A VETE-B VETE-C 

PM1 0.138 0.111 0.059 

PM2 0.092 0.068 0.103 

PM3 0.131 0.104 0.052 

PM4 0.114 0.140 0.272 

Table 84: Euclidean distances between SAPVs of Veterinary Sciences panel members and 

individual research groups using the similarity matrix of WoS SCs 

 

VETE-A VETE-B VETE-C 

PM1 0.083 0.066 0.028 

PM2 0.048 0.041 0.072 

PM3 0.106 0.085 0.062 

PM4 0.053 0.058 0.106 
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Table 85: Euclidean distances between barycenters of Veterinary Sciences panel members and 

individual research groups using the 2-dimensional base map of journals 

 

VETE-A VETE-B VETE-C 

PM1 0.260 0.160 0.124 

PM2 0.141 0.108 0.227 

PM3 0.273 0.182 0.145 

PM4 0.272 0.310 0.469 

 

Table 86: Euclidean distances between SAPVs of Veterinary Sciences panel members and 

individual research groups using the similarity matrix of journals 

 
VETE-A VETE-B VETE-C 

PM1 0.013 0.010 0.005 

PM2 0.005 0.005 0.011 

PM3 0.016 0.013 0.013 

PM4 0.010 0.010 0.015 

 

Table 87: WCS values of the Veterinary Sciences panel members and individual research groups 

using the similarity matrix of WoS SCs 

 
VETE-A VETE-B VETE-C 

PM1 0.460 0.783 0.982 

PM2 0.722 0.818 0.602 

PM3 0.321 0.732 0.815 

PM4 0.674 0.616 0.263 

 

Table 88: WCS values of the Veterinary Sciences panel members and individual research groups 

using the similarity matrix of journals 

 
VETE-A VETE-B VETE-C 

PM1 0.268 0.534 0.941 

PM2 0.690 0.729 0.286 

PM3 0.232 0.496 0.399 

PM4 0.410 0.414 0.115 
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Appendix D: Heat map with hierarchical clustering 

 

 

Figure 112: Heat map with hierarchical clustering based on correlation coefficient between six 

approaches in the Biomedical sciences department 

 

 



231 

 

 

 

Figure 113: Heat map with hierarchical clustering based on correlation coefficient between six 

approaches in the Chemistry department 
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Figure 114: Heat map with hierarchical clustering based on correlation coefficient between six 

approaches in the Pharmaceuticals sciences department 
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Figure 115: Heat map with hierarchical clustering based on correlation coefficient between six 

approaches in the Physics department 
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Figure 116: Heat map with hierarchical clustering based on correlation coefficient between six 

approaches in the Veterinary sciences department 
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Appendix E: Ranking of panel members according to six approaches 

Procedure A 

For each research group, we determine the rank of panel member according to their shortest 

distance (barycenter and SAPV method) or highest similarity (for WCS method). The main 

assessor is bold and underlined in our methods. Distances/similarities whose confidence intervals 

overlap with that of the shortest distance/ highest similarities are in bold. This is applicable for 

Table 89 to Table 108. 
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Table 89: Biology department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence intervals) 

at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

BIOL-A PM2 PM2 PM4 PM1 PM5 PM3 PM2 PM4 PM5 PM1 PM3 PM2 PM1 PM5 PM4 PM3 

  1     1     1     

BIOL-B PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM3 PM5 

  0     0     0     

BIOL-C PM3 PM5 PM1 PM3 PM2 PM4 PM5 PM1 PM3 PM2 PM4 PM2 PM1 PM4 PM5 PM3 

  1     0     0     

BIOL-D PM1 PM1 PM2 PM4 PM3 PM5 PM1 PM3 PM4 PM2 PM5 PM1 PM4 PM2 PM3 PM5 

  1     1     1     

BIOL-E PM2 PM2 PM4 PM1 PM5 PM3 PM2 PM4 PM1 PM5 PM3 PM2 PM1 PM4 PM5 PM3 

  1     1     1     

BIOL-F PM3 PM3 PM1 PM5 PM2 PM4 PM3 PM1 PM5 PM2 PM4 PM3 PM5 PM4 PM1 PM2 

  1     1     1     

BIOL-G PM4 PM4 PM2 PM1 PM5 PM3 PM2 PM4 PM1 PM5 PM3 PM1 PM2 PM4 PM3 PM5 

  1     1     1     

BIOL-H PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM3 PM5 

  0     0     0     

BIOL-I PM1 PM3 PM1 PM5 PM2 PM4 PM3 PM1 PM5 PM2 PM4 PM3 PM4 PM5 PM1 PM2 

 
 0     0     1     

 Score 6     5     6     

 

 

 



237 

 

Table 90: Biology department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence intervals) 

at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

BIOL-A PM2 PM2 PM5 PM4 PM1 PM3 PM2 PM4 PM5 PM1 PM3 PM2 PM5 PM4 PM3 PM1 

  1     1     1     

BIOL-B PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM3 PM5 PM2 

  0     0     0     

BIOL-C PM3 PM1 PM5 PM2 PM4 PM3 PM5 PM1 PM4 PM2 PM3 PM1 PM4 PM3 PM5 PM2 

  0     0     0     

BIOL-D PM1 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM3 PM5 PM1 PM4 PM3 PM5 PM2 

  1     1     1     

BIOL-E PM2 PM2 PM4 PM1 PM5 PM3 PM2 PM4 PM1 PM5 PM3 PM2 PM5 PM4 PM3 PM1 

  1     1     1     

BIOL-F PM3 PM3 PM5 PM2 PM1 PM4 PM3 PM5 PM1 PM4 PM2 PM3 PM4 PM5 PM1 PM2 

  1     1     1     

BIOL-G PM4 PM4 PM1 PM2 PM5 PM3 PM4 PM2 PM1 PM5 PM3 PM4 PM5 PM2 PM3 PM1 

  1     1     1     

BIOL-H PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM3 PM5 PM2 

  0     0     0     

BIOL-I PM1 PM3 PM5 PM1 PM2 PM4 PM3 PM1 PM5 PM4 PM2 PM3 PM1 PM4 PM5 PM2 

  0     0     1     

 Score 5     5     6     
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Table 91: Biomedical Sciences department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

BIOM-A PM8 PM2 PM5 PM1 PM3 PM4 PM6 PM7 PM8 PM2 PM8 PM1 PM3 PM5 PM4 PM7 PM6 PM8 PM2 PM5 PM6 PM1 PM7 PM3 PM4 

  0        1        1        

BIOM-B PM8 PM5 PM1 PM2 PM3 PM4 PM6 PM7 PM8 PM5 PM3 PM1 PM2 PM4 PM6 PM7 PM8 PM2 PM5 PM7 PM6 PM1 PM4 PM8 PM3 

  0        0        0        

BIOM-C PM7 PM5 PM1 PM2 PM3 PM4 PM6 PM7 PM8 PM5 PM1 PM3 PM2 PM4 PM6 PM7 PM8 PM2 PM5 PM6 PM7 PM1 PM8 PM4 PM3 

  0        0        0        

BIOM-D PM7 PM7 PM1 PM4 PM5 PM2 PM3 PM6 PM8 PM7 PM1 PM4 PM3 PM2 PM5 PM6 PM8 PM1 PM4 PM5 PM2 PM3 PM7 PM6 PM8 

  1        1        0        

BIOM-E PM6 PM6 PM5 PM1 PM2 PM7 PM3 PM4 PM8 PM6 PM5 PM1 PM2 PM4 PM3 PM7 PM8 PM6 PM7 PM5 PM2 PM1 PM8 PM4 PM3 

  1        1        1        

BIOM-F PM2 PM1 PM2 PM4 PM5 PM3 PM6 PM7 PM8 PM1 PM2 PM4 PM3 PM5 PM7 PM6 PM8 PM1 PM5 PM2 PM7 PM4 PM6 PM3 PM8 

  1        1        1        

BIOM-G PM3 PM2 PM5 PM6 PM8 PM7 PM1 PM3 PM4 PM2 PM5 PM1 PM3 PM4 PM8 PM6 PM7 PM6 PM8 PM2 PM5 PM7 PM1 PM4 PM3 

  0        0        0        

BIOM-H PM6 PM6 PM7 PM1 PM5 PM2 PM4 PM3 PM8 PM6 PM1 PM2 PM7 PM4 PM5 PM3 PM8 PM6 PM7 PM5 PM2 PM1 PM8 PM4 PM3 

  1        1        1        

BIOM-I PM1 PM4 PM1 PM2 PM5 PM3 PM7 PM6 PM8 PM1 PM4 PM2 PM3 PM5 PM7 PM6 PM8 PM4 PM1 PM3 PM5 PM2 PM7 PM6 PM8 

  1        1        1        

BIOM-J PM8 PM2 PM3 PM5 PM1 PM4 PM8 PM6 PM7 PM2 PM3 PM1 PM5 PM4 PM8 PM7 PM6 PM8 PM2 PM3 PM5 PM4 PM6 PM1 PM7 

  0        0        1        

BIOM-K PM2 PM5 PM2 PM3 PM1 PM4 PM6 PM7 PM8 PM5 PM2 PM1 PM3 PM4 PM7 PM6 PM8 PM8 PM2 PM5 PM6 PM7 PM1 PM3 PM4 

  1        0        1        

BIOM-L PM4 PM5 PM2 PM8 PM3 PM6 PM7 PM1 PM4 PM5 PM2 PM3 PM1 PM4 PM8 PM7 PM6 PM8 PM6 PM2 PM5 PM7 PM1 PM4 PM3 

  1        1        0        

BIOM-M PM3 PM5 PM2 PM3 PM1 PM6 PM4 PM7 PM8 PM5 PM2 PM1 PM3 PM4 PM7 PM6 PM8 PM6 PM8 PM2 PM5 PM7 PM1 PM4 PM3 

  0        0        0        

BIOM-N PM5 PM5 PM2 PM8 PM6 PM7 PM3 PM1 PM4 PM5 PM2 PM1 PM3 PM4 PM6 PM8 PM7 PM6 PM8 PM2 PM5 PM7 PM1 PM4 PM3 

  1        1        0        

BIOM-O PM4 PM5 PM2 PM3 PM1 PM6 PM4 PM7 PM8 PM5 PM2 PM1 PM3 PM4 PM7 PM6 PM8 PM6 PM2 PM5 PM7 PM8 PM1 PM4 PM3 

  1        0        0        
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Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

 Total Score 9        8        7        

Table 92: Biomedical Sciences department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

BIOM-A PM8 PM2 PM6 PM8 PM1 PM5 PM4 PM3 PM7 PM8 PM2 PM1 PM6 PM5 PM4 PM3 PM7 PM2 PM6 PM8 PM3 PM5 PM7 PM1 PM4 

  1        1        1        

BIOM-B PM8 PM5 PM1 PM3 PM4 PM2 PM6 PM7 PM8 PM5 PM3 PM1 PM4 PM2 PM6 PM7 PM8 PM5 PM3 PM1 PM7 PM6 PM2 PM4 PM8 

  0        0        0        

BIOM-C PM7 PM5 PM1 PM3 PM4 PM6 PM2 PM7 PM8 PM5 PM1 PM3 PM4 PM2 PM6 PM7 PM8 PM5 PM7 PM1 PM6 PM3 PM2 PM8 PM4 

  0        0        1        

BIOM-D PM7 PM7 PM1 PM4 PM5 PM6 PM3 PM2 PM8 PM7 PM4 PM1 PM5 PM2 PM3 PM6 PM8 PM5 PM1 PM3 PM7 PM6 PM2 PM4 PM8 

  1        1        0        

BIOM-E PM6 PM1 PM5 PM6 PM4 PM2 PM3 PM7 PM8 PM6 PM5 PM1 PM4 PM3 PM2 PM7 PM8 PM5 PM7 PM1 PM3 PM6 PM2 PM4 PM8 

  1        1        0        

BIOM-F PM2 PM1 PM2 PM5 PM6 PM4 PM3 PM7 PM8 PM1 PM2 PM4 PM5 PM3 PM6 PM7 PM8 PM5 PM7 PM3 PM1 PM6 PM2 PM8 PM4 

  1        1        1        

BIOM-G PM3 PM2 PM8 PM6 PM3 PM5 PM1 PM4 PM7 PM2 PM8 PM6 PM5 PM1 PM3 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0        0        0        

BIOM-H PM6 PM6 PM1 PM2 PM5 PM7 PM4 PM3 PM8 PM6 PM1 PM2 PM4 PM5 PM7 PM3 PM8 PM6 PM7 PM2 PM5 PM1 PM3 PM8 PM4 

  1        1        1        

BIOM-I PM1 PM4 PM1 PM5 PM3 PM6 PM2 PM7 PM8 PM4 PM1 PM5 PM3 PM2 PM6 PM7 PM8 PM4 PM1 PM3 PM5 PM7 PM6 PM2 PM8 

  1        1        1        

BIOM-J PM8 PM2 PM8 PM4 PM6 PM3 PM1 PM5 PM7 PM2 PM8 PM4 PM5 PM1 PM3 PM6 PM7 PM3 PM2 PM8 PM6 PM5 PM1 PM7 PM4 

  1        0        1        

BIOM-K PM2 PM2 PM5 PM3 PM1 PM6 PM4 PM7 PM8 PM5 PM2 PM3 PM1 PM4 PM6 PM8 PM7 PM2 PM6 PM8 PM5 PM7 PM3 PM1 PM4 

  1        1        1        

BIOM-L PM4 PM2 PM8 PM6 PM5 PM1 PM3 PM4 PM7 PM2 PM8 PM5 PM1 PM6 PM3 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  1        1        0        

BIOM-M PM3 PM2 PM8 PM6 PM5 PM3 PM1 PM4 PM7 PM2 PM8 PM5 PM3 PM1 PM6 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 
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Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

  0        0        0        

BIOM-N PM5 PM8 PM2 PM6 PM3 PM5 PM1 PM4 PM7 PM2 PM8 PM5 PM6 PM3 PM1 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0        0        0        

BIOM-O PM4 PM2 PM8 PM6 PM5 PM3 PM1 PM4 PM7 PM2 PM8 PM5 PM3 PM1 PM6 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0        0        0        

 Total Score 9        8        7        

 

Table 93: Chemistry department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence 

Intervals) at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

CHEM-A PM6 PM 5 PM 7 PM 1 PM 2 PM 6 PM 3 PM 4 PM5 PM7 PM1 PM6 PM2 PM4 PM3 PM 7 PM 5 PM 1 PM 6 PM 3 PM 4 PM 2 

  0       0       0       

CHEM- B PM5 PM 5 PM 7 PM 1 PM 2 PM 6 PM 3 PM 4 PM5 PM7 PM1 PM6 PM2 PM4 PM3 PM 7 PM 1 PM 5 PM 6 PM 3 PM 4 PM 2 

  1       1       1       

CHEM-C PM7 PM 5 PM 2 PM 3 PM 4 PM 7 PM 1 PM 6 PM3 PM5 PM2 PM4 PM7 PM1 PM6 PM 5 PM 7 PM 1 PM 3 PM 6 PM 4 PM 2 

  0       0       0       

CHEM- D PM2 PM 6 PM 1 PM 7 PM 5 PM 2 PM 4 PM 3 PM6 PM1 PM7 PM5 PM2 PM4 PM3 PM 6 PM 3 PM 1 PM 7 PM 4 PM 5 PM 2 

  0       0       0       

CHEM-E PM2 PM 2 PM 3 PM 4 PM 5 PM 7 PM 6 PM 1 PM2 PM4 PM3 PM5 PM6 PM7 PM1 PM 2 PM 4 PM 3 PM 6 PM 5 PM 1 PM 7 

  1       1       1       

CHEM- F PM3 PM 4 PM 2 PM 3 PM 5 PM 7 PM 6 PM 1 PM4 PM2 PM3 PM7 PM6 PM1 PM5 PM 2 PM 4 PM 3 PM 6 PM 5 PM 1 PM 7 

  1       0       1       

CHEM- G PM3 PM 4 PM 3 PM 2 PM 5 PM 7 PM 6 PM 1 PM4 PM3 PM2 PM5 PM7 PM1 PM6 PM 3 PM 4 PM 5 PM 2 PM 6 PM 7 PM 1 

  0       0       1       

CHEM- H PM5 PM 3 PM 2 PM 4 PM 5 PM 7 PM 6 PM 1 PM3 PM4 PM2 PM5 PM7 PM1 PM6 PM 5 PM 3 PM 4 PM 7 PM 6 PM 1 PM 2 

  0       0       1       
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Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

CHEM-I PM4 PM 4 PM 2 PM 3 PM 5 PM 7 PM 1 PM 6 PM4 PM2 PM3 PM5 PM7 PM1 PM6 PM 3 PM 4 PM 5 PM 6 PM 7 PM 1 PM 2 

  1       1       1       

CHEM-J PM4 PM 4 PM 2 PM 3 PM 5 PM 7 PM 6 PM 1 PM4 PM2 PM3 PM5 PM7 PM1 PM6 PM 4 PM 3 PM 5 PM 2 PM 6 PM 7 PM 1 

  1       1       1       

CHEM-K PM6 PM 2 PM 3 PM 5 PM 4 PM 7 PM 6 PM 1 PM2 PM5 PM3 PM4 PM7 PM1 PM6 PM 4 PM 2 PM 3 PM 5 PM 6 PM 7 PM 1 

  0       0       0       

CHEM-L PM1 PM 5 PM 2 PM 3 PM 4 PM 7 PM 1 PM 6 PM5 PM7 PM1 PM6 PM2 PM4 PM3 PM 5 PM 7 PM 1 PM 3 PM 6 PM 4 PM 2 

  0       1       1       

 Score 5       5       8       

Table 94: Chemistry department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence 

Intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

CHEM-A PM6 PM 5 PM 7 PM 1 PM 2 PM 3 PM 6 PM 4 PM5 PM7 PM1 PM2 PM6 PM3 PM4 PM 5 PM 7 PM 1 PM 3 PM 4 PM 6 PM 2 

  0       0       0       

CHEM- B PM5 PM 5 PM 7 PM 2 PM 3 PM 1 PM 6 PM 4 PM5 PM2 PM7 PM1 PM3 PM6 PM4 PM 5 PM 7 PM 1 PM 3 PM 4 PM 6 PM 2 

  1       1       1       

CHEM-C PM7 PM 5 PM 2 PM 3 PM 7 PM 4 PM 1 PM 6 PM5 PM2 PM3 PM4 PM7 PM1 PM6 PM 5 PM 7 PM 3 PM 1 PM 4 PM 6 PM 2 

  0       0       0       

CHEM- D PM2 PM 6 PM 2 PM 1 PM 3 PM 7 PM 5 PM 4 PM6 PM1 PM7 PM2 PM5 PM3 PM4 PM 6 PM 4 PM 2 PM 3 PM 1 PM 5 PM 7 

  1       0       1       

CHEM-E PM2 PM 2 PM 3 PM 4 PM 6 PM 5 PM 1 PM 7 PM2 PM3 PM4 PM5 PM6 PM1 PM7 PM 2 PM 4 PM 6 PM 3 PM 1 PM 5 PM 7 

  1       1       1       

CHEM- F PM3 PM 2 PM 3 PM 4 PM 6 PM 5 PM 1 PM 7 PM2 PM3 PM4 PM6 PM5 PM1 PM7 PM 2 PM 4 PM 6 PM 3 PM 1 PM 5 PM 7 

  1       0       1       

CHEM- G PM3 PM 4 PM 3 PM 2 PM 5 PM 6 PM 7 PM 1 PM4 PM3 PM2 PM5 PM7 PM1 PM6 PM 3 PM 4 PM 2 PM 5 PM 6 PM 1 PM 7 

  1       0       1       

CHEM- H PM5 PM 3 PM 2 PM 5 PM 4 PM 6 PM 7 PM 1 PM3 PM2 PM4 PM5 PM7 PM1 PM6 PM 3 PM 5 PM 4 PM 1 PM 7 PM 6 PM 2 
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Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

  1       0       1       

CHEM-I PM4 PM 2 PM 3 PM 5 PM 4 PM 6 PM 7 PM 1 PM2 PM3 PM4 PM5 PM7 PM1 PM6 PM 3 PM 5 PM 1 PM 4 PM 7 PM 6 PM 2 

  0       0       0       

CHEM-J PM4 PM 3 PM 2 PM 5 PM 4 PM 6 PM 7 PM 1 PM3 PM2 PM4 PM5 PM7 PM1 PM6 PM 4 PM 2 PM 3 PM 5 PM 6 PM 1 PM 7 

  1       1       1       

CHEM-K PM6 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM 1 PM2 PM5 PM3 PM4 PM7 PM6 PM1 PM 2 PM 4 PM 3 PM 6 PM 5 PM 1 PM 7 

  0       0       0       

CHEM-L PM1 PM 5 PM 2 PM 3 PM 7 PM 1 PM 6 PM 4 PM5 PM2 PM7 PM1 PM3 PM6 PM4 PM 5 PM 7 PM 1 PM 3 PM 4 PM 6 PM 2 

  0       0       1       

 Score 7       3       8       

Table 95: Physics department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence Intervals) 

at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

PHYS-A PM3 PM4 PM5 PM6 PM3 PM2 PM1 PM3 PM5 PM6 PM2 PM4 PM1 PM4 PM3 PM5 PM6 PM2 PM1 

  0      1      1      

PHYS- B PM2 PM6 PM2 PM5 PM3 PM4 PM1 PM6 PM2 PM5 PM4 PM3 PM1 PM6 PM2 PM5 PM3 PM1 PM4 

  0      1      1      

PHYS-C PM5 PM5 PM4 PM6 PM2 PM3 PM1 PM5 PM6 PM2 PM4 PM3 PM1 PM5 PM6 PM4 PM2 PM3 PM1 

  1      1      1      

PHYS- D PM1 PM1 PM6 PM2 PM5 PM3 PM4 PM1 PM6 PM5 PM2 PM3 PM4 PM1 PM2 PM6 PM3 PM5 PM4 

  1      1      1      

PHYS-E PM4 PM6 PM5 PM2 PM4 PM3 PM1 PM6 PM5 PM2 PM1 PM4 PM3 PM5 PM6 PM2 PM3 PM1 PM4 

  0      0      0      

PHYS- F PM1 PM6 PM5 PM2 PM4 PM3 PM1 PM6 PM2 PM5 PM1 PM4 PM3 PM1 PM3 PM2 PM6 PM5 PM4 

  0      0      1      

PHYS- G PM4 PM4 PM5 PM6 PM3 PM2 PM1 PM4 PM5 PM6 PM2 PM3 PM1 PM4 PM5 PM3 PM6 PM2 PM1 

  1      1      1      
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PHYS- H PM6 PM6 PM2 PM5 PM3 PM4 PM1 PM6 PM2 PM5 PM4 PM3 PM1 PM2 PM6 PM5 PM3 PM1 PM4 

  1      1      1      

PHYS-I PM3 PM5 PM4 PM6 PM3 PM2 PM1 PM5 PM6 PM2 PM3 PM4 PM1 PM4 PM5 PM3 PM6 PM2 PM1 

  0      0      1      

 Total Score 4      6      8      

Table 96: Physics department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence Intervals) 

at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

PHYS-A PM3 PM 4 PM 3 PM 5 PM 6 PM 2 PM 1 PM3 PM5 PM4 PM6 PM2 PM1 PM 4 PM 3 PM 5 PM 6 PM 1 PM 2 

  1      1      1      

PHYS- B PM2 PM 6 PM 2 PM 5 PM 4 PM 3 PM 1 PM6 PM2 PM5 PM4 PM3 PM1 PM 6 PM 5 PM 2 PM 1 PM 3 PM 4 

  0      1      0      

PHYS-C PM5 PM 5 PM 6 PM 2 PM 4 PM 3 PM 1 PM5 PM6 PM2 PM4 PM3 PM1 PM 5 PM 6 PM 2 PM 4 PM 3 PM 1 

  1      1      1      

PHYS- D PM1 PM 1 PM 3 PM 6 PM 4 PM 5 PM 2 PM1 PM6 PM3 PM5 PM4 PM2 PM 1 PM 3 PM 6 PM 5 PM 2 PM 4 

  1      1      1      

PHYS-E PM4 PM 6 PM 5 PM 4 PM 2 PM 3 PM 1 PM6 PM5 PM2 PM4 PM3 PM1 PM 5 PM 6 PM 3 PM 2 PM 1 PM 4 

  0      0      0      

PHYS- F PM1 PM 3 PM 6 PM 5 PM 2 PM 4 PM 1 PM6 PM3 PM2 PM1 PM5 PM4 PM3 PM 1 PM 5 PM 6 PM 4 PM 2 

  0      0      1      

PHYS- G PM4 PM 4 PM 5 PM 6 PM 2 PM 3 PM 1 PM4 PM5 PM6 PM2 PM3 PM1 PM 4 PM 3 PM 5 PM 6 PM 2 PM 1 

  1      1      1      

PHYS- H PM6 PM 6 PM 2 PM 5 PM 3 PM 4 PM 1 PM6 PM2 PM5 PM3 PM4 PM1 PM 6 PM 5 PM 2 PM 1 PM 3 PM 4 

  1      1      1      

PHYS-I PM3 PM 4 PM 3 PM 5 PM 6 PM 2 PM 1 PM5 PM3 PM6 PM2 PM4 PM1 PM 4 PM 3 PM 5 PM 1 PM 6 PM 2 

  1      1      1      

 Total Score 6      7      7      
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Table 97: Veterinary Sciences department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

VETE-A PM4 PM2 PM1 PM4 PM3 PM2 PM4 PM1 PM3 PM2 PM1 PM4 PM3 

  0    0    0    

VETE-B PM2 PM2 PM1 PM4 PM3 PM2 PM1 PM3 PM4 PM2 PM1 PM3 PM4 

  1    1    1    

VETE-C PM1 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 

  1    1    1    

 Total Score 2    2    2    

 

Table 98: Veterinary Sciences department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

VETE-A PM4 PM2 PM4 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 PM3 PM1 

  1    1    1    

VETE-B PM2 PM2 PM4 PM1 PM3 PM2 PM1 PM3 PM4 PM2 PM3 PM1 PM4 

  1    1    1    

VETE-C PM1 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 PM3 PM1 PM2 PM4 

  1    1    1    

 Score 3    3    3    
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Procedure B 

Table 99: Biology department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence intervals) 

at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

BIOL-A PM2 PM2 PM4 PM1 PM5 PM3 PM2 PM4 PM5 PM1 PM3 PM2 PM1 PM5 PM4 PM3 

  1     1     1     

BIOL-B PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM3 PM5 

  0     0     0     

BIOL-C PM3 PM5 PM1 PM3 PM2 PM4 PM5 PM1 PM3 PM2 PM4 PM2 PM1 PM4 PM5 PM3 

  0.25     0     0     

BIOL-D PM1 PM1 PM2 PM4 PM3 PM5 PM1 PM3 PM4 PM2 PM5 PM1 PM4 PM2 PM3 PM5 

  1     1     1     

BIOL-E PM2 PM2 PM4 PM1 PM5 PM3 PM2 PM4 PM1 PM5 PM3 PM2 PM1 PM4 PM5 PM3 

  0.50     1     1     

BIOL-F PM3 PM3 PM1 PM5 PM2 PM4 PM3 PM1 PM5 PM2 PM4 PM3 PM5 PM4 PM1 PM2 

  1     1     0.50     

BIOL-G PM4 PM4 PM2 PM1 PM5 PM3 PM2 PM4 PM1 PM5 PM3 PM1 PM2 PM4 PM3 PM5 

  0.33     0.50     0.33     

BIOL-H PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM3 PM5 

  0     0     0     

BIOL-I PM1 PM3 PM1 PM5 PM2 PM4 PM3 PM1 PM5 PM2 PM4 PM3 PM4 PM5 PM1 PM2 

  0     0     0.25     

 Score 4.08     4.50     4.08     
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Table 100: Biology department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence 

intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

BIOL-A PM2 PM2 PM5 PM4 PM1 PM3 PM2 PM4 PM5 PM1 PM3 PM2 PM5 PM4 PM3 PM1 

  1     1     0.50     

BIOL-B PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM3 PM5 PM2 

  0     0     0     

BIOL-C PM3 PM1 PM5 PM2 PM4 PM3 PM5 PM1 PM4 PM2 PM3 PM1 PM4 PM3 PM5 PM2 

  0     0     0     

BIOL-D PM1 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM3 PM5 PM1 PM4 PM3 PM5 PM2 

  1     1     1     

BIOL-E PM2 PM2 PM4 PM1 PM5 PM3 PM2 PM4 PM1 PM5 PM3 PM2 PM5 PM4 PM3 PM1 

  1     1     0.33     

BIOL-F PM3 PM3 PM5 PM2 PM1 PM4 PM3 PM5 PM1 PM4 PM2 PM3 PM4 PM5 PM1 PM2 

  1     1     1     

BIOL-G PM4 PM4 PM1 PM2 PM5 PM3 PM4 PM2 PM1 PM5 PM3 PM4 PM5 PM2 PM3 PM1 

  0.33     0.33     0.50     

BIOL-H PM5 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM2 PM5 PM3 PM1 PM4 PM3 PM5 PM2 

  0     0     0     

BIOL-I PM1 PM3 PM5 PM1 PM2 PM4 PM3 PM1 PM5 PM4 PM2 PM3 PM1 PM4 PM5 PM2 

  0     0     0.50     

 Score 4.33     4.33     3.83     
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Table 101: Biomedical Sciences department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

BIOM-A PM8 PM2 PM5 PM1 PM3 PM4 PM6 PM7 PM8 PM2 PM8 PM1 PM3 PM5 PM4 PM7 PM6 PM8 PM2 PM5 PM6 PM1 PM7 PM3 PM4 

  0        0.33        0.25        

BIOM-B PM8 PM5 PM1 PM2 PM3 PM4 PM6 PM7 PM8 PM5 PM3 PM1 PM2 PM4 PM6 PM7 PM8 PM2 PM5 PM7 PM6 PM1 PM4 PM8 PM3 

  0        0        0        

BIOM-C PM7 PM5 PM1 PM2 PM3 PM4 PM6 PM7 PM8 PM5 PM1 PM3 PM2 PM4 PM6 PM7 PM8 PM2 PM5 PM6 PM7 PM1 PM8 PM4 PM3 

  0        0        0        

BIOM-D PM7 PM7 PM1 PM4 PM5 PM2 PM3 PM6 PM8 PM7 PM1 PM4 PM3 PM2 PM5 PM6 PM8 PM1 PM4 PM5 PM2 PM3 PM7 PM6 PM8 

  1        1        0        

BIOM-E PM6 PM6 PM5 PM1 PM2 PM7 PM3 PM4 PM8 PM6 PM5 PM1 PM2 PM4 PM3 PM7 PM8 PM6 PM7 PM5 PM2 PM1 PM8 PM4 PM3 

  1        1        0.33        

BIOM-F PM2 PM1 PM2 PM4 PM5 PM3 PM6 PM7 PM8 PM1 PM2 PM4 PM3 PM5 PM7 PM6 PM8 PM1 PM5 PM2 PM7 PM4 PM6 PM3 PM8 

  0.33        0.33        0.25        

BIOM-G PM3 PM2 PM5 PM6 PM8 PM7 PM1 PM3 PM4 PM2 PM5 PM1 PM3 PM4 PM8 PM6 PM7 PM6 PM8 PM2 PM5 PM7 PM1 PM4 PM3 

  0        0        0        

BIOM-H PM6 PM6 PM7 PM1 PM5 PM2 PM4 PM3 PM8 PM6 PM1 PM2 PM7 PM4 PM5 PM3 PM8 PM6 PM7 PM5 PM2 PM1 PM8 PM4 PM3 

  0.33        0.14        0.33        

BIOM-I PM1 PM4 PM1 PM2 PM5 PM3 PM7 PM6 PM8 PM1 PM4 PM2 PM3 PM5 PM7 PM6 PM8 PM4 PM1 PM3 PM5 PM2 PM7 PM6 PM8 

  0.50        0.50        0.20        

BIOM-J PM8 PM2 PM3 PM5 PM1 PM4 PM8 PM6 PM7 PM2 PM3 PM1 PM5 PM4 PM8 PM7 PM6 PM8 PM2 PM3 PM5 PM4 PM6 PM1 PM7 

  0        0        0.50        

BIOM-K PM2 PM5 PM2 PM3 PM1 PM4 PM6 PM7 PM8 PM5 PM2 PM1 PM3 PM4 PM7 PM6 PM8 PM8 PM2 PM5 PM6 PM7 PM1 PM3 PM4 

  0.25        0        0.25        

BIOM-L PM4 PM5 PM2 PM8 PM3 PM6 PM7 PM1 PM4 PM5 PM2 PM3 PM1 PM4 PM8 PM7 PM6 PM8 PM6 PM2 PM5 PM7 PM1 PM4 PM3 

  0.13        0.13        0        

BIOM-M PM3 PM5 PM2 PM3 PM1 PM6 PM4 PM7 PM8 PM5 PM2 PM1 PM3 PM4 PM7 PM6 PM8 PM6 PM8 PM2 PM5 PM7 PM1 PM4 PM3 

  0        0        0        

BIOM-N PM5 PM5 PM2 PM8 PM6 PM7 PM3 PM1 PM4 PM5 PM2 PM1 PM3 PM4 PM6 PM8 PM7 PM6 PM8 PM2 PM5 PM7 PM1 PM4 PM3 

  0.13        0.50        0        

BIOM-O PM4 PM5 PM2 PM3 PM1 PM6 PM4 PM7 PM8 PM5 PM2 PM1 PM3 PM4 PM7 PM6 PM8 PM6 PM2 PM5 PM7 PM8 PM1 PM4 PM3 

  0.17        0        0        
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Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

 Score 3.84        3.93        2.11        
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Table 102: Biomedical Sciences department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

BIOM-A PM8 PM2 PM6 PM8 PM1 PM5 PM4 PM3 PM7 PM8 PM2 PM1 PM6 PM5 PM4 PM3 PM7 PM2 PM6 PM8 PM3 PM5 PM7 PM1 PM4 

  0.50        0.50        0.33        

BIOM-B PM8 PM5 PM1 PM3 PM4 PM2 PM6 PM7 PM8 PM5 PM3 PM1 PM4 PM2 PM6 PM7 PM8 PM5 PM3 PM1 PM7 PM6 PM2 PM4 PM8 

  0        0        0        

BIOM-C PM7 PM5 PM1 PM3 PM4 PM6 PM2 PM7 PM8 PM5 PM1 PM3 PM4 PM2 PM6 PM7 PM8 PM5 PM7 PM1 PM6 PM3 PM2 PM8 PM4 

  0        0        0.17        

BIOM-D PM7 PM7 PM1 PM4 PM5 PM6 PM3 PM2 PM8 PM7 PM4 PM1 PM5 PM2 PM3 PM6 PM8 PM5 PM1 PM3 PM7 PM6 PM2 PM4 PM8 

  0.33        1        0        

BIOM-E PM6 PM1 PM5 PM6 PM4 PM2 PM3 PM7 PM8 PM6 PM5 PM1 PM4 PM3 PM2 PM7 PM8 PM5 PM7 PM1 PM3 PM6 PM2 PM4 PM8 

  0.33        0.25        0        

BIOM-F PM2 PM1 PM2 PM5 PM6 PM4 PM3 PM7 PM8 PM1 PM2 PM4 PM5 PM3 PM6 PM7 PM8 PM5 PM7 PM3 PM1 PM6 PM2 PM8 PM4 

  0.17        0.25        0.17        

BIOM-G PM3 PM2 PM8 PM6 PM3 PM5 PM1 PM4 PM7 PM2 PM8 PM6 PM5 PM1 PM3 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0        0        0        

BIOM-H PM6 PM6 PM1 PM2 PM5 PM7 PM4 PM3 PM8 PM6 PM1 PM2 PM4 PM5 PM7 PM3 PM8 PM6 PM7 PM2 PM5 PM1 PM3 PM8 PM4 

  0.50        0.17        0.25        

BIOM-I PM1 PM4 PM1 PM5 PM3 PM6 PM2 PM7 PM8 PM4 PM1 PM5 PM3 PM2 PM6 PM7 PM8 PM4 PM1 PM3 PM5 PM7 PM6 PM2 PM8 

  0.50        0.50        0.25        

BIOM-J PM8 PM2 PM8 PM4 PM6 PM3 PM1 PM5 PM7 PM2 PM8 PM4 PM5 PM1 PM3 PM6 PM7 PM3 PM2 PM8 PM6 PM5 PM1 PM7 PM4 

  0.33        0        0.20        

BIOM-K PM2 PM2 PM5 PM3 PM1 PM6 PM4 PM7 PM8 PM5 PM2 PM3 PM1 PM4 PM6 PM8 PM7 PM2 PM6 PM8 PM5 PM7 PM3 PM1 PM4 

  0.17        0.20        0.33        

BIOM-L PM4 PM2 PM8 PM6 PM5 PM1 PM3 PM4 PM7 PM2 PM8 PM5 PM1 PM6 PM3 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0.14        0.17        0        

BIOM-M PM3 PM2 PM8 PM6 PM5 PM3 PM1 PM4 PM7 PM2 PM8 PM5 PM3 PM1 PM6 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0        0        0        

BIOM-N PM5 PM8 PM2 PM6 PM3 PM5 PM1 PM4 PM7 PM2 PM8 PM5 PM6 PM3 PM1 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0        0        0        

BIOM-O PM4 PM2 PM8 PM6 PM5 PM3 PM1 PM4 PM7 PM2 PM8 PM5 PM3 PM1 PM6 PM4 PM7 PM8 PM2 PM6 PM7 PM5 PM3 PM1 PM4 

  0        0        0        

 Score 2.97        3.04        1.70        
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Table 103: Chemistry department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence 

Intervals) at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

CHEM-A PM6 PM 5 PM 7 PM 1 PM 2 PM 6 PM 3 PM 4 PM5 PM7 PM1 PM6 PM2 PM4 PM3 PM 7 PM 5 PM 1 PM 6 PM 3 PM 4 PM 2 

  0       0       0       

CHEM- B PM5 PM 5 PM 7 PM 1 PM 2 PM 6 PM 3 PM 4 PM5 PM7 PM1 PM6 PM2 PM4 PM3 PM 7 PM 1 PM 5 PM 6 PM 3 PM 4 PM 2 

  1       1       0.33       

CHEM-C PM7 PM 5 PM 2 PM 3 PM 4 PM 7 PM 1 PM 6 PM3 PM5 PM2 PM4 PM7 PM1 PM6 PM 5 PM 7 PM 1 PM 3 PM 6 PM 4 PM 2 

  0       0       0       

CHEM- D PM2 PM 6 PM 1 PM 7 PM 5 PM 2 PM 4 PM 3 PM6 PM1 PM7 PM5 PM2 PM4 PM3 PM 6 PM 3 PM 1 PM 7 PM 4 PM 5 PM 2 

  0       0       0       

CHEM-E PM2 PM 2 PM 3 PM 4 PM 5 PM 7 PM 6 PM 1 PM2 PM4 PM3 PM5 PM6 PM7 PM1 PM 2 PM 4 PM 3 PM 6 PM 5 PM 1 PM 7 

  1       0.50       0.50       

CHEM- F PM3 PM 4 PM 2 PM 3 PM 5 PM 7 PM 6 PM 1 PM4 PM2 PM3 PM7 PM6 PM1 PM5 PM 2 PM 4 PM 3 PM 6 PM 5 PM 1 PM 7 

  0.33       0       0.25       

CHEM- G PM3 PM 4 PM 3 PM 2 PM 5 PM 7 PM 6 PM 1 PM4 PM3 PM2 PM5 PM7 PM1 PM6 PM 3 PM 4 PM 5 PM 2 PM 6 PM 7 PM 1 

  0       0       0.33       

CHEM- H PM5 PM 3 PM 2 PM 4 PM 5 PM 7 PM 6 PM 1 PM3 PM4 PM2 PM5 PM7 PM1 PM6 PM 5 PM 3 PM 4 PM 7 PM 6 PM 1 PM 2 

  0       0       0.33       

CHEM-I PM4 PM 4 PM 2 PM 3 PM 5 PM 7 PM 1 PM 6 PM4 PM2 PM3 PM5 PM7 PM1 PM6 PM 3 PM 4 PM 5 PM 6 PM 7 PM 1 PM 2 

  0.33       0.33       0.33       

CHEM-J PM4 PM 4 PM 2 PM 3 PM 5 PM 7 PM 6 PM 1 PM4 PM2 PM3 PM5 PM7 PM1 PM6 PM 4 PM 3 PM 5 PM 2 PM 6 PM 7 PM 1 

  0.33       0.33       0.20       

CHEM-K PM6 PM 2 PM 3 PM 5 PM 4 PM 7 PM 6 PM 1 PM2 PM5 PM3 PM4 PM7 PM1 PM6 PM 4 PM 2 PM 3 PM 5 PM 6 PM 7 PM 1 

  0       0       0       

CHEM-L PM1 PM 5 PM 2 PM 3 PM 4 PM 7 PM 1 PM 6 PM5 PM7 PM1 PM6 PM2 PM4 PM3 PM 5 PM 7 PM 1 PM 3 PM 6 PM 4 PM 2 

  0       0.33       0.25       

 Score 2.99       2.49       2.52       
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Table 104: Chemistry department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence 

Intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

CHEM-A PM6 PM 5 PM 7 PM 1 PM 2 PM 3 PM 6 PM 4 PM5 PM7 PM1 PM2 PM6 PM3 PM4 PM 5 PM 7 PM 1 PM 3 PM 4 PM 6 PM 2 

  0       0       0       

CHEM- B PM5 PM 5 PM 7 PM 2 PM 3 PM 1 PM 6 PM 4 PM5 PM2 PM7 PM1 PM3 PM6 PM4 PM 5 PM 7 PM 1 PM 3 PM 4 PM 6 PM 2 

  1       1       0.33       

CHEM-C PM7 PM 5 PM 2 PM 3 PM 7 PM 4 PM 1 PM 6 PM5 PM2 PM3 PM4 PM7 PM1 PM6 PM 5 PM 7 PM 3 PM 1 PM 4 PM 6 PM 2 

  0       0       0       

CHEM- D PM2 PM 6 PM 2 PM 1 PM 3 PM 7 PM 5 PM 4 PM6 PM1 PM7 PM2 PM5 PM3 PM4 PM 6 PM 4 PM 2 PM 3 PM 1 PM 5 PM 7 

  0.33       0       0.20       

CHEM-E PM2 PM 2 PM 3 PM 4 PM 6 PM 5 PM 1 PM 7 PM2 PM3 PM4 PM5 PM6 PM1 PM7 PM 2 PM 4 PM 6 PM 3 PM 1 PM 5 PM 7 

  0.50       0.50       0.33       

CHEM- F PM3 PM 2 PM 3 PM 4 PM 6 PM 5 PM 1 PM 7 PM2 PM3 PM4 PM6 PM5 PM1 PM7 PM 2 PM 4 PM 6 PM 3 PM 1 PM 5 PM 7 

  0.50       0       0.25       

CHEM- G PM3 PM 4 PM 3 PM 2 PM 5 PM 6 PM 7 PM 1 PM4 PM3 PM2 PM5 PM7 PM1 PM6 PM 3 PM 4 PM 2 PM 5 PM 6 PM 1 PM 7 

  0.50       0       0.50       

CHEM- H PM5 PM 3 PM 2 PM 5 PM 4 PM 6 PM 7 PM 1 PM3 PM2 PM4 PM5 PM7 PM1 PM6 PM 3 PM 5 PM 4 PM 1 PM 7 PM 6 PM 2 

  0.33       0       0.33       

CHEM-I PM4 PM 2 PM 3 PM 5 PM 4 PM 6 PM 7 PM 1 PM2 PM3 PM4 PM5 PM7 PM1 PM6 PM 3 PM 5 PM 1 PM 4 PM 7 PM 6 PM 2 

  0       0       0       

CHEM-J PM4 PM 3 PM 2 PM 5 PM 4 PM 6 PM 7 PM 1 PM3 PM2 PM4 PM5 PM7 PM1 PM6 PM 4 PM 2 PM 3 PM 5 PM 6 PM 1 PM 7 

  0.25       0.25       0.25       

CHEM-K PM6 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM 1 PM2 PM5 PM3 PM4 PM7 PM6 PM1 PM 2 PM 4 PM 3 PM 6 PM 5 PM 1 PM 7 

  0       0       0       

CHEM-L PM1 PM 5 PM 2 PM 3 PM 7 PM 1 PM 6 PM 4 PM5 PM2 PM7 PM1 PM3 PM6 PM4 PM 5 PM 7 PM 1 PM 3 PM 4 PM 6 PM 2 

  0       0       0.33       

 Score 3.41       1.75       2.52       
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Table 105: Physics department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence 

Intervals) at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

PHYS-A PM3 PM4 PM5 PM6 PM3 PM2 PM1 PM3 PM5 PM6 PM2 PM4 PM1 PM4 PM3 PM5 PM6 PM2 PM1 

  0      0.33      0.25      

PHYS- B PM2 PM6 PM2 PM5 PM3 PM4 PM1 PM6 PM2 PM5 PM4 PM3 PM1 PM6 PM2 PM5 PM3 PM1 PM4 

  0      0.50      0.50      

PHYS-C PM5 PM5 PM4 PM6 PM2 PM3 PM1 PM5 PM6 PM2 PM4 PM3 PM1 PM5 PM6 PM4 PM2 PM3 PM1 

  1      1      1      

PHYS- D PM1 PM1 PM6 PM2 PM5 PM3 PM4 PM1 PM6 PM5 PM2 PM3 PM4 PM1 PM2 PM6 PM3 PM5 PM4 

  1      1      1      

PHYS-E PM4 PM6 PM5 PM2 PM4 PM3 PM1 PM6 PM5 PM2 PM1 PM4 PM3 PM5 PM6 PM2 PM3 PM1 PM4 

  0      0      0      

PHYS- F PM1 PM6 PM5 PM2 PM4 PM3 PM1 PM6 PM2 PM5 PM1 PM4 PM3 PM1 PM3 PM2 PM6 PM5 PM4 

  0      0      0.50      

PHYS- G PM4 PM4 PM5 PM6 PM3 PM2 PM1 PM4 PM5 PM6 PM2 PM3 PM1 PM4 PM5 PM3 PM6 PM2 PM1 

  1      1      1      

PHYS- H PM6 PM6 PM2 PM5 PM3 PM4 PM1 PM6 PM2 PM5 PM4 PM3 PM1 PM2 PM6 PM5 PM3 PM1 PM4 

  0.50      1      0.50      

PHYS-I PM3 PM5 PM4 PM6 PM3 PM2 PM1 PM5 PM6 PM2 PM3 PM4 PM1 PM4 PM5 PM3 PM6 PM2 PM1 

  0      0      0.20      

 Score 3.50      4.83      4.95      

  



253 

 

Table 106: Physics department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with confidence 

Intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

PHYS-A PM3 PM 4 PM 3 PM 5 PM 6 PM 2 PM 1 PM3 PM5 PM4 PM6 PM2 PM1 PM 4 PM 3 PM 5 PM 6 PM 1 PM 2 

  0.25      0.20      0.25      

PHYS- B PM2 PM 6 PM 2 PM 5 PM 4 PM 3 PM 1 PM6 PM2 PM5 PM4 PM3 PM1 PM 6 PM 5 PM 2 PM 1 PM 3 PM 4 

  0      0.50      0      

PHYS-C PM5 PM 5 PM 6 PM 2 PM 4 PM 3 PM 1 PM5 PM6 PM2 PM4 PM3 PM1 PM 5 PM 6 PM 2 PM 4 PM 3 PM 1 

  1      1      0.50      

PHYS- D PM1 PM 1 PM 3 PM 6 PM 4 PM 5 PM 2 PM1 PM6 PM3 PM5 PM4 PM2 PM 1 PM 3 PM 6 PM 5 PM 2 PM 4 

  1      1      1      

PHYS-E PM4 PM 6 PM 5 PM 4 PM 2 PM 3 PM 1 PM6 PM5 PM2 PM4 PM3 PM1 PM 5 PM 6 PM 3 PM 2 PM 1 PM 4 

  0      0      0      

PHYS- F PM1 PM 3 PM 6 PM 5 PM 2 PM 4 PM 1 PM6 PM3 PM2 PM1 PM5 PM4 PM3 PM 1 PM 5 PM 6 PM 4 PM 2 

  0      0      0.50      

PHYS- G PM4 PM 4 PM 5 PM 6 PM 2 PM 3 PM 1 PM4 PM5 PM6 PM2 PM3 PM1 PM 4 PM 3 PM 5 PM 6 PM 2 PM 1 

  0.33      1      0.25      

PHYS- H PM6 PM 6 PM 2 PM 5 PM 3 PM 4 PM 1 PM6 PM2 PM5 PM3 PM4 PM1 PM 6 PM 5 PM 2 PM 1 PM 3 PM 4 

  0.50      0.50      0.50      

PHYS-I PM3 PM 4 PM 3 PM 5 PM 6 PM 2 PM 1 PM5 PM3 PM6 PM2 PM4 PM1 PM 4 PM 3 PM 5 PM 1 PM 6 PM 2 

  0.33      0.20      0.33      

 Score 3.41      4.40      3.33      
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Table 107: Veterinary Science department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at journal level 

Research 

groups 

Main 

assessor 
SAPV method in Journals WCS method in Journals Barycenter method in Journals 

VETE-A PM4 PM2 PM1 PM4 PM3 PM2 PM4 PM1 PM3 PM2 PM1 PM4 PM3 

  0    0    0    

VETE-B PM2 PM2 PM1 PM4 PM3 PM2 PM1 PM3 PM4 PM2 PM1 PM3 PM4 

  1    0.33    0.33    

VETE-C PM1 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 

  1    1    0.33    

 Score 2    1.33    0.66    

 

Table 108: Veterinary Science department’s top ranked panel members according to Barycenter, SAPV and WCS methods (with 

confidence Intervals) at WoS SC level 

Research 

groups 

Main 

assessor 
SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

VETE-A PM4 PM2 PM4 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 PM3 PM1 

  0.50    0.50    0.25    

VETE-B PM2 PM2 PM4 PM1 PM3 PM2 PM1 PM3 PM4 PM2 PM3 PM1 PM4 

  0.50    0.33    0.25    

VETE-C PM1 PM1 PM3 PM2 PM4 PM1 PM3 PM2 PM4 PM3 PM1 PM2 PM4 

  1    1    0.33    

 Score 2    1.88    0.83    
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 Pharmaceutical Sciences department 

Research 
groups 

Main 
assessor 

SAPV method in Journals WCS method in Journals Barycenter method in Journals 

PHAR-A 

Data is not 

available 

PM5 PM3 PM4 PM1 PM2 PM5 PM1 PM4 PM2 PM3 PM1 PM5 PM4 PM3 PM2 

PHAR-B PM4 PM5 PM3 PM2 PM1 PM4 PM1 PM5 PM2 PM3 PM5 PM4 PM3 PM1 PM2 

PHAR-C PM2 PM3 PM4 PM5 PM1 PM2 PM4 PM5 PM3 PM1 PM2 PM3 PM4 PM5 PM1 

PHAR-D PM3 PM2 PM4 PM5 PM1 PM3 PM2 PM4 PM1 PM5 PM3 PM4 PM5 PM1 PM2 

PHAR-E PM2 PM4 PM3 PM5 PM1 PM2 PM4 PM5 PM3 PM1 PM2 PM3 PM4 PM5 PM1 

PHAR-F PM4 PM5 PM1 PM3 PM2 PM1 PM4 PM5 PM2 PM3 PM5 PM4 PM3 PM1 PM2 

PHAR-G PM5 PM2 PM3 PM4 PM1 PM5 PM2 PM4 PM3 PM1 PM5 PM1 PM4 PM3 PM2 

PHAR-H PM4 PM5 PM3 PM2 PM1 PM4 PM1 PM2 PM5 PM3 PM3 PM4 PM5 PM2 PM1 

PHAR-I PM2 PM4 PM3 PM5 PM1 PM2 PM4 PM3 PM5 PM1 PM2 PM3 PM4 PM5 PM1 

PHAR-J PM2 PM4 PM3 PM5 PM1 PM2 PM5 PM4 PM3 PM1 PM2 PM3 PM4 PM5 PM1 

Research 
groups 

Main 
assessor 

SAPV method in WoS SCs WCS method in WoS SCs Barycenter method in WoS SCs 

PHAR-A 

Data is not 

available 

PM5 

 

PM1 PM4 PM3 PM2 PM5 PM1 PM3 PM4 PM2 PM1 PM5 PM3 PM4 PM2 

PHAR-B PM2 PM4 PM3 PM5 PM1 PM2 PM3 PM4 PM1 PM5 PM4 PM3 PM2 PM1 PM5 

PHAR-C PM2 PM3 PM4 PM5 PM1 PM2 PM3 PM4 PM5 PM1 PM2 PM4 PM3 PM1 PM5 

PHAR-D PM2 PM3 PM4 PM1 PM5 PM2 PM3 PM4 PM1 PM5 PM4 PM2 PM3 PM1 PM5 

PHAR-E PM2 PM3 PM4 PM5 PM1 PM2 PM3 PM4 PM1 PM5 PM2 PM4 PM3 PM1 PM5 

PHAR-F PM4 PM3 PM2 PM1 PM5 PM5 PM2 PM3 PM1 PM4 PM4 PM3 PM1 PM5 PM2 

PHAR-G PM5 PM3 PM4 PM1 PM2 PM5 PM3 PM4 PM2 PM1 PM3 PM1 PM4 PM5 PM2 

PHAR-H PM2 PM4 PM3 PM5 PM1 PM2 PM3 PM4 PM1 PM5 PM2 PM4 PM3 PM1 PM5 

PHAR-I PM2 PM3 PM4 PM5 PM1 PM2 PM3 PM4 PM5 PM1 PM2 PM4 PM3 PM1 PM5 

PHAR-J PM2 PM3 PM4 PM5 PM1 PM2 PM3 PM4 PM5 PM1 PM2 PM4 PM3 PM1 PM5 



256 

 

Appendix F: List of scientific communications 

List of original articles 

Rahman, A. I. M. J., Guns, R., Rousseau, R., & Engels, T. C. E. (2017). Cognitive distances 

between evaluators and evaluees in research evaluation: a comparison between six 

informetric approaches. Frontiers in Research Metrics & Analytics, 2:6. doi: 

10.3389/frma.2017.00006  

Rousseau, R., Guns, R., Rahman, A. I. M. J., & Engels, T. C. E. (2017). Measuring cognitive 

distance between publication portfolios. Journal of Informetrics, 11(2), 583-594  

Rahman, A. I. M. J., Guns, R., Leydesdorff, L., & Engels, T. C. E. (2016). Measuring the match 

between evaluators and evaluees: cognitive distances between panel members and 

research groups at the journal level. Scientometrics, 109(3), 1639–1663.  

Rahman, A. I. M. J., Guns, R., Rousseau, R., & Engels, T. C. E. (2015). Is the expertise of 

evaluation panels congruent with the research interests of the research groups: a 

quantitative approach based on barycenters. Journal of Informetrics, 9(4), 704–721.  

Corrigendum 

Rahman, A. I. M. J., Guns, R., Rousseau, R., & Engels, T. C. E. (2016). Corrigendum to “Is the 

expertise of evaluation panels congruent with the research interests of the research 

groups: a quantitative approach based on barycenters” (Journal of Informetrics (2015) 

9(4) (704–721). Journal of Informetrics, 10(4), 1052-1054. 

List of proceeding articles 

Rahman, A.I.M.J., Guns, R., Rousseau, R., & Engels, T. C. E. (2015). Expertise overlap between 

an expert panel and research groups in global journal maps. In Albert Ali Salah, Yaşar 

Tonta, Alkım Almıla Akdağ Salah, Cassidy Sugimoto, & Umut Al (Eds.), Proceedings of 

ISSI 2015 Istanbul: 15th International conference on scientometrics and informetrics, 29 

June - 4 July 2015 (pp. 1035 – 1041). Istanbul: Boğaziçi University, Turkey. 
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Rahman, A.I.M.J., Guns, R., Rousseau, R., & Engels, T. C. E. (2014). Assessment of expertise 

overlap between an expert panel and research groups. In Ed Noyons (Ed.), Context 

Counts: Pathways to Master Big and Little Data. Proceedings of the Science and 

Technology Indicators Conference 2014 Leiden (pp. 295–301). Leiden: Leiden 

University. 

List of presentations  

 “Cognitive distance between expert panels and units of assessment”. A. I. M. Jakaria Rahman 

(presenter), Raf Guns, Ronald Rousseau, Loet Leydesdorff, Tim C. E. Engels - 20th 

Nordic Workshop on Bibliometrics and Research Policy -  Oslo (Norway) - 1-2 October 

2015.  

“Expertise overlap between an expert panel and research groups in global journal maps”. A. I. 

M. Jakaria Rahman (presenter), Raf Guns, Ronald Rousseau, Tim C. E. Engels – ISSI 

conference 2015 – Istanbul (Turkey) -  29 June to 4 July 2015.  

 “Assessment of expertise overlap between an expert panel and research groups”. A. I. M. 

Jakaria Rahman (presenter), Raf Guns, Ronald Rousseau, Tim C. E. Engels - Science 

and technology indicators conference 2014 – Leiden (The Netherlands) – 3 to 5 

September 2014.  

List of technical reports 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: A case study of Biology 

department (Technical report) (p. x, 77). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431560151162165141 
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Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: A case study of Biomedical 

Sciences department (Technical report) (p. xii, 93). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431570151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: A case study of Chemistry 

department (Technical report) (p. x, 87). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431580151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: A case study of 

Pharmaceutical Sciences department (Technical report) (p. x, 79). Antwerp: University 

of Antwerp. http://hdl.handle.net/10067/1431590151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: A case study of Physics 

department (Technical report) (p. xii, 80). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431600151162165141 

Rahman, A. I. M. J., & Guns, R. (2017). Determining cognitive distance between publication 

portfolios of evaluators and evaluees in research evaluation: A case study of Veterinary 

Sciences department (Technical report) (p. x, 68). Antwerp: University of Antwerp. 

http://hdl.handle.net/10067/1431610151162165141 
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Overview of authors of the included articles  
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Centre for Research & Developing Monitoring (ECOOM), Faculty of Social Sciences 

University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium 
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