

Securing Web Applications from malware attacks using

hybrid feature extraction
Subramaniyaswamy V.*, Gopireddy Venkata Kalyani, Naladala Likhitha

School of computing, SASTRA Deemed to be University, Thanjavur, Tamil Nadu

*Corresponding Author

Abstract:
In this technological era, many of the applications are taking the utilization of services of internet in order

to cater to the needs of its users. With the rise in number of internet users, there's a substantial inflation

within the internet attacks. Because of this hike, Web Services give rise to new security threats. One

among the major concerns is the susceptibility of the internet services for cross site scripting (XSS). More

than three fourths of the malicious attacks are contributed by XSS. This article primarily focuses on

detection and exploiting XSS vulnerabilities. Generally, improper sanitization of input results in these

type of susceptibilities. This article primarily focuses on fuzzing, and brute forcing parameters for XSS

vulnerability. In addition, we've mentioned the planned framework for contradicting XSS vulnerability.

Keywords: Cross Site Scripting attacks, WAF detection, web application security, fuzz testing.

1. Introduction:

Cross Site Scripting (XSS) is a completely, a generally exploited vulnerability which could be

very extensively unfold and easily detectable. These days it is one of the unusual software stage

attacks that hackers use to sneak into web packages. This results in compromise of privateness of

clients of a selected net site that can totally breach the safety where customer details are stolen or

manipulated. These days, net applications have come to be an essential part of our existence and

culture. Almost half of all websites have high protection vulnerabilities. Cross site scripting is

one such predominant attack [11-20]. It is a manner of injecting malicious JavaScript code to the

trusted and legitimate websites at client side. This snippet of malicious JavaScript is then

achieved by way of the sufferer who is journeying the goal site and consequently the net

application is attacked even without the knowledge of users [21-26]. While a user go to the

infected or a mainly-crafted hyperlink, it will execute the malicious JavaScript. An XSS

vulnerability will allow attackers to do phishing assaults, session information hijacking, theft of

cookies, and web application will function abnormally [27-32]. The web browser takes the facts

which are not trustworthy without any proper validation and sanitization [4] and thus the XSS

attacks arises. So in XSS assaults three events are worried- the attacker, the consumer and the

website. After this assault arises, the web server can no longer guarantees that produced pages

are well encoded to prevent the unintentional execution of scripts.

International Journal of Pure and Applied Mathematics
Volume 119 No. 12 2018, 13367-13385
ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
Special Issue ijpam.eu

13367

 Figure 1. Possibility of a website having a vulnerability by class

Figure 1 explains the percentage of possibility of type of attacks. The statistics show that almost 65% of

total attacks are contributed by XSS where as 47% percentage is contributed by Information leakage and

30% by content spoofing. Authorization, SQL injection, Resource Location combined together

contributes to only 50 %

 1.1Steps in Exploiting the Vulnerability:
 A payload is built suitably by fuzzing a parameter.

 The parameters are brute forced with the payloads.

 The commands of a WAF/Filter are reverse engineered.

 The framework detects the presence of WAF depending on the error code.

 Using filter Checker, Reflected XSS vulnerability can be determined.

 Using the payloads crafted, Blind XSS vulnerability can be determined.

 Opens the Proof of Concept (POC) in a browser window.

1.2 Various kinds of XSS vulnerabilities
XSS vulnerability is classified as:

International Journal of Pure and Applied Mathematics Special Issue

13368

 Attacker

Website

Website visitor

Attacker finds a website with

vulnerability to inject script

Attacker

injects script

to steal

cookies

User‟s cookie is

sent to attacker

Malicious script is activated,

each time the website is

visited

 Stored XSS

 Reflected XSS

 DOM-Based XSS

 Stored XSS Attacks:

 Figure 2. Stored XSS attacks

 Figure 2 illustrates the Stored XSS attacks. If the targeted servers permanently stored the injected scripts in

the form of database or message forum, visitor log, comment field, it is classified as Stored XSS attacks.

As shown in Figure 2, the stored information is requested and then the malicious script is retrieved by the

victim. This kind of attack is often classified as Persistent attack and also known as Type-I XSS.

Reflected XSS Attacks:

International Journal of Pure and Applied Mathematics Special Issue

13369

 Figure 3. Reflected XSS

 Figure 3 describes Reflected XSS attacks. If the script that is injected is reflected off the web server, for

example in an error message, search result, or any other response which includes some or all of the input

sent to the server as part of the request, it is classified as Reflected XSS. Figure 3 depicts these type of

attacks, where attacks are delivered to victims via another form, likely in an e-mail message, or on some

other web site. When a user is tricked into clicking on a malicious link, submitting a specially crafted

form, or even just browsing to a malicious site, the injected code travels to the vulnerable web site, which

reflects the attack back to the user‟s browser. The browser then executes the code assuming that it

originated from a "trusted" server. This is often classified as Non-Persistent and is also known Type-II

XSS.

DOM Based XSS:

DOM Based XSS attack involves no HTTP request. Modifying the Document Object Model of the target

site in the user side code in the victim‟s browser results in injection of script and is the malicious code is

then executed.

2. Related Work
Shashank Gupta [1] outlined a structure for DOM based XSS vulnerability in mobile injection points of a

vulnerable web applications conveyed in the cloud environment. Bisht [7] exhibited a novel and exact

International Journal of Pure and Applied Mathematics Special Issue

13370

guard against XSS assaults. As an independent component or with generally utilizes plans like filtering,

their approach can give a powerful resistance against XSS assaults. Abdalla Wasef Marashdih [5]

concentrated on the methodologies used to wipe out XSS vulnerability from the source program. There

are two methods that leads to the disposal phase of XSS on web applications based on Java. Along these

lines, it closed saying that more examination is required in the field of weakness points from the source

program of the applications. Since PHP is the most broadly utilized web innovation, the scientists needed

to focus on including an elimination phase of cross site scripting in web applications that are built using

PHP. Malviya [9] proposed an examination to solidify the comprehension of XSS, their cause and

appearance, sorts of risks and alleviation endeavours of XSS. Bates [6] proposed an enhanced outline for

a client side XSS filter. This configuration accomplishes elite and high loyalty by mediating on the

interface between the program's HTML parser and JavaScript engine. This execution is implemented as

default in Google Chrome. Mishra [3] has discovered that security in web applications is frequently

broken from users‟ information. The sort of assaults that web application is vulnerable incorporates SQL

Injection, Cross Site Scripting (XSS) and Denial-of-Service (DoS). With a specific end goal to keep these

attacks, both ASP.NET and PHP advancements have rich capacities and libraries that are equipped for

sifting users inputs against different parameters. Shar, L.K. [8] proposed properties that are related to

hybrid and dynamic code examination, which describe input validation and cleansing code patterns for

anticipating SQL infusion and XSS vulnerabilities. Martin Johns [4] depicted XSSDS a server-side Cross-

website Scripting identification system, which utilizes two novel recognition approaches that depend on

bland perceptions of XSS assaults and web applications. A prototypical usage showed that this current

approach's abilities to dependably distinguish XSS attacks while keeping up a mediocre false positive

rate. Gupta M.K [2] proposed an order of software security approaches used to create secure

programming in different period of software development life cycle and furthermore compressed different

static examination approaches that identify vulnerabilities in coding due of SDLC.

2.1 Challenges faced in web services:
The definition for Security is the system‟s quality which guarantees the absence of manipulation or

unauthorized access .The protection threats turn up because of exploitation of vulnerabilities, throughout s

development of the system. There are many reasons for such vulnerabilities, in which one can allude to

the complexness of systems. The key challenges are [1]:
 Highly in secured Input validation mechanisms are employed in the web applications.

 The web applications belonged to HTML5 are lacked in XSS defensive frameworks

 Absence of context-sensitive cleaning within the existing XSS sanitization-based outputs

 High rate of false positives are encountered.

2.2 Working of XSS attack:

There is no limit for XSS attacks. In XSS attack, malicious script will be sent to a user by an assaulter.

The browser of end user is unaware that the script is not a trusted one and hopes that the script is from the

International Journal of Pure and Applied Mathematics Special Issue

13371

source which is a trusted one. Then, it will execute the script which is harmful. When the malicious script

is executed by the browser, the attacker can access cookies, session tokens, the victim will be redirected

to some other web pages which will be controlled by the attacker or other delicate information that is held

by the browser. The content of the HTML page can even be rewritten by these scripts. Cross-Site

Scripting (XSS) attacks arise when:

 Data is intruded into an online application from the sources which are not safe.

 The data is fringed into the dynamic content and is sent to the web user even before it is

checked for the presence of any content which is malignant.

List of escape codes [1]

Display Hexadecimal code Numerical code

 „„ " "

 # # #

 & & &

 „ ' '

 (((

)))

 / / /

 ; ; ;

 < < <

 > > >

2.3 Determining if the web application is vulnerable:
To dispose the XSS blemishes can be troublesome. The most ideal approach to discover blemishes is to

play out a security survey of the code and look for all spots where contribution from a HTTP ask for

could advance into the HTML yield. Note that a wide range of HTML labels can be utilized to transmit a

noxious JavaScript. Nessus, Nikto, and some other accessible apparatuses can help examine a site for

these imperfections, yet can just begin to expose what's underneath. In the event that one a player in a site

is helpless, there is a high probability that there are different issues too.

It's pivotal that you kill HTTP TRACE bolster on all web servers. An aggressor can take treat information

through JavaScript notwithstanding when document. Cookie is handicapped or not upheld on the

customer. This assault is mounted when a client presents a noxious content on a gathering so when

another client taps the connection, a non-concurrent HTTP Trace call is activated which gathers the

client's treat data from the server, and after that sends it over to another malevolent server that gathers the

treat data so the assailant can mount a session seize assault. This is effortlessly alleviated by evacuating

support for HTTP TRACE on all web servers.

International Journal of Pure and Applied Mathematics Special Issue

13372

4. Proposed Work

 Figure 4. Flowchart

Figure 4 depicts the overall flowchart of the proposed work as per algorithm 4.1.The framework

starts with detection of presence of web Application Firewall as depicted in algorithm4. 2. To check

for reflected XSS, filter checker is proposed as shown in algorithm 4.4. In order to check Blind XSS,

payload generation is used as depicted in algorithm 4.7 .After suitable payloads are injected as in

algorithm 4.5, Browser with the attacked site is displayed.

International Journal of Pure and Applied Mathematics Special Issue

13373

 4.1 Algorithm: Detection and Exploitation

Input: URL

Output: Browser displaying the site with the given URL with a particular vulnerability exploited

1.Start

2. Initialize an array with a list of sanitized XSS attack payloads.

3.Target<--URL

4. param_parser(Target, parameter_data, GET, POST)

5.if “=” in target,

 1.GET<--True, Post<--False

 2.parameter_data<-NULL;

 3.parameter_parser(target,parameter,GET,POST)

 4.Initiator(target,GET,POST)

6.Else

 1.GET<--False, POST<--True

 2.parameter_data<--post data

 3.parameter_parser(target,parameter,GET,POST)

 4.Initiator(target,GET,POST)

 End if

7.Check for the status of web Application Firewall

8.Check for Reflected XSS

9.Detection of Blind XSS

10.Insert payloads and crafts the URL

11.Display the vulnerable site with the particular vulnerability exploited

12.End

International Journal of Pure and Applied Mathematics Special Issue

13374

 4.2 Algorithm: Web Application Firewall Detector

Start
Initialize fuzz with XSS checker with noise containing alert message

noise <-- quote_plus(“<script>alert()</script>

If GET in the URL ∈ web application

 response <--br.open(url+fuzz)

Else

 response<--br.open(url+fuzz)

Print „web application‟ firewall is offline

End if

For each http response code in error

 If “406” or “501” in error msg,

 WAFName <-- “Mod-Security”

 else if “999” in error msg,

 WAFName <-- “WebKnight”

 else if “419” in error msg,

 WAFName <-- “F5 BIG IP”

 else if “403” in error msg,

 WAFName <-- “UnKnown”

 else

 print “web application firewall is offline

 End if

End for each

Web application firewall detector: As depicted in algorithm 4.2, the web servers are verified for the

presence of firewall for its security. Here, the fuzz is initialized with an alert message which is enclosed in

a script tag and sent as an input parameter. The URL of the given web application is then checked for any

presence of GET method. If it is present, the browser will simply display the given alert message as a

response. If there is no such GET method, the status of the firewall will be „offline‟. Later, the errors

which will be displayed as http response is examined. If the error message is as follows, the

corresponding firewall names are given:

 Error message WAFName

 1. “406” or “501” Mod-Security

 2. “ 999” WebKnight

 3. “419” F5 BIG IP

 4. “403” Unknown

If there are no any such http error responses, the firewall will be considered as „offline‟ and that particular

application is more susceptible to XSS attacks.

International Journal of Pure and Applied Mathematics Special Issue

13375

4.3 Algorithm: Fuzz Testing

Initialize the fuzzer array with fuzz vectors for each type

Fuzzer <-- fuzz vectors

For each vector in the fuzzer array

 Quote each vector in the fuzzer vector

 Data_to_be_ injected <-- parameter. Replace(XSS Checker, fuzz)

 For each vector in the fuzzer array,

 append the vector with the URL

 End For each

End For each

Fuzz Testing: Algorithm 4.3 explains the payloads in the form of „fuzz vectors‟ are initialized to a

„fuzzer array‟. quote_plus () quotes the values, which means spaces are quoted as a '+' character and '/'

characters are encoded as %2F, which follows the standard for GET requests. Data to be injected is the

XSS Checker being replaced with fuzz already crafted from the array. This parameter value is appended

with the URL and fuzz testing is performed.

 4.4 Algorithm: Filter Checker

Start

1.strength <-- NULL

2. lstring <-- parameter. Replace(XSS Checker, quote_plus(„<svg/onload=(confirm()>‟))

 If „<svg/onload=(confirm())>‟ in lstring

 filter_strength <-- low

 End if

3. mstring <-- parameter. Replace(XSS Checker, quote_plus(„<zz//on xx=yy>‟))

 If „<zz on xx=yy>‟ in mstring,

 filter_strength <-- medium

 Else

 filter_strength <-- high

 End if

Return filter_strength

End

International Journal of Pure and Applied Mathematics Special Issue

13376

Filter Checker: This is implemented as described in algorithm 4.4 in order to check if any filter

is present .Initially, strength is initialized to NULL. Replace XSSChecker with

„<svg/onload=(confirm()>‟ using quote_plus and initialized to lstring and if it is present in lstring, the

filter_strength is „low‟. Also replace XSS Checker with „<zz//on xx=yy>‟‟ using quote_plus and

initialized to mstring .If if it is present in mstring, the filter_strength is „medium‟ else it is „high‟.

Algorithm 4.5 describes the Injection for Reflected XSS. Occurrence number is no. of times, a

particular payload is occurred

If payload_to_check and payload_to_compare matches with (“ “ “)

 Then double quotes (“) are allowed else not allowed.

 If payload_to_check and payload_to_compare matches with (“ „ “)

 Then single quotes („) are allowed else not allowed.

 If payload_to_check and payload_to_compare matches with (“ <> “)

 Then angular brackets (<>) are allowed else not allowed.

4.5 Algorithm: Injection for Reflected XSS

Start

For each occurrence in izip(occurrence number,occurence location)

 if(payload_to_check and payload_to_compare matches with (“ “ “)

 Print “Double quotes (“) are allowed”

 Else

 Print “Double quotes (“) are not allowed”

 End if

 if(payload_to_check and payload_to_compare matches with(“ „ “)

 Print “single quotes („) are allowed”

 Else

 Print “single quotes („) are not allowed”

 End if

 if(payload_to_check and payload_to_compare matches with(“ <> “)

 Print “angular brackets (<>) are allowed”

 Else

 Print “angular brackets (<>) are not allowed”

 End if

End For each

End

International Journal of Pure and Applied Mathematics Special Issue

13377

4.6 Algorithm: DOM Tree Generation

Input: set of HTTP response

Output: Generated DOM tree of each requested web page

Start

Stack <-- -1

Node <-- Null

Tag <-- Null

For each http response R

 W <-- webpage

 T <-- extract_tag(W)

 Stack.push(T)

 Node.add_node(T,NULL)

 H <-- T ∪ Tag

 while(Stack!= “ “)

 loc <-- extract_tag(W)

 If(opening_tag(loc))then

 A <-- stack.size()

 B <-- DFS(Node,A)

 Node.add_node(loc,B)

 Stack.push(loc)

 T <-- loc ∪ T

 Else If(closing_tag(loc)) then

 Stack.pop()

 End If

 End While

End For each

Return node

End

DOM Tree Generation: Each removed module of the web application is sent to this part. It is in charge

of the development of DOM tree for the got module by actualizing the calculation.

The working procedure of the calculation is depicted as takes after:

At first, it separates HTTP reaction website page as W. Right off the bat, it finds first HTML tag and

stores it in T and furthermore pushes it into the stack. At that point, T is added to the unfilled DOM tree

as its root hub. All the distinguished labels are put away into the archive tag and in addition stretched out

to the Stack.

International Journal of Pure and Applied Mathematics Special Issue

13378

4.7 Payloads generated for comparison:

Payloads generated for Blind XSS:

1.<img/src=l onerror=(prompt)() x>

2.<!--

3.<details open ontoggle=confi\u0072m()>

4.<A/id=x 4.href=javascript:(prompt)(1) id=x>Click

5.

6.

7.<script x>confirm``</script x>

8.<svg/onload=(confirm)()>

9.<script src=//14.rs>

10.

11.svg onload=confirm(1)>

12.<script x>prompt()</script x>

13.\'"><y onmousedown=((alert))()>ClickHere!

14.<a/href=javascript:co\u006efir\u006d("1")>clickme

15.

16.<svg/onload=co\u006efir\u006d`1`>

4.8 Event Handlers and their corresponding tags used:

Event Handlers

1.'onerror': ['object', 'img', 'video']

2.'onload': ['svg', 'body']

3.'onstart': ['marquee']

4.onmouseover': ['d3v', a,'iframe', 'body']

5.'onfocus': ['d3v', 'body']

6.'onclick': ['d3v', 'body']

7.'oNToggLe': ['deTails']

JavaScript functions used for popup

confirm()

prompt()

find(confirm)

5. Usage statistics for Web Application:
A web application utilizes program and web advances to execute assignments through a system with the

assistance of a web program [5]. Dissimilar to work area programming that is started by a working

framework, sites ought to be opened through a web program. A web program utilizes the web server to

interface with the instruments associated with the system. The fundamental program of the web is put

International Journal of Pure and Applied Mathematics Special Issue

13379

away on a web server, where all their code and data are put away. In this manner, end clients don't require

investing extra energy in introducing programming on their hard drives. A portion of the outstanding

advancements that encourage programming engineers to make progressively created site pages are

ASP.NET,PHP,JavaserverPages(JSP),PERLandPython[3].

 Figure 5. Usage statistics

6. Experimental Results:

Web Applications:

1.dramaonline.pk/search.php?q=ok

2.www.occidentalleather.com/search.php?Q=d3v$E=1&X=0

3.http://www.cagi.ch/en/search.php?q=d3v

4.http://testasp.vulnweb.com/Search.asp?tfsearch=a

5.http://directory.ucla.edu/search.php

6.alphaonenow.org/info.php?id=131

7.http://www.sastra.edu/index.php/search.html?searchword=sas

tra&searchphrase=all

8.www.f10products.co.za/index.php?id=5

9.htttp://webcenters.netscape.compuserve.com/weather/find.jsp

10.http://store.samsung.com/uk/camera/smart-n2x”>

Vulnerability:

No of reflections found:8

WAF Detected: Mod_Security

No of reflections found:2

Filter Strength: Low

Has post data

No of reflections:4

No of reflections:0

100% efficient payload is found

f=”><script>alert(1)</script>

<script>alert(document.cookie)</script>

</nx1010-smart-camera/p/ED-LF52PL

International Journal of Pure and Applied Mathematics Special Issue

13380

11. http://www.titivillus.it/periodico.php?id=15

12. http://www.elle.fr/action/login?ReturnUrl=http://www.elle.f

r/recherche/recherche-globale/(searchText)/”/>

13. http://www.dysontt.com/main.php?id=9

14. http://www.universal-alliance.de/index.php

15. http://vuln.xssed.net/2012/02/28/www.torrents.net/

16. http://www.coqnu.com/search/?q=”

17.http://grug-accutane.com/search.php?search_text=/”

18.http://drug-doxycucline.com/search.php?search_text=/”

<script>alert(document.cookie)</script>

<script>alert(“XSS By M4ke”)</script>

<script>alert(document.cookie)</script>

Site=message&msg=<script>alert(1)</s

cript>

<script>alert(“XSS by

Atm0n3r”)</script>

<script>alert(“XSS By

Atm0n3r”)<script>&submit=Rechercher

<script>alert(1)</script>&I1.x=12&I1.y

=14

<script>alert(1)</script>&I1.x=3&I1.y=

11

 The above results show that web applications having reflected XSS has been found using filter checker

are found and number of reflections are also shown. First any web application checks for Application

firewall. All the above results has their application firewall offline except for the 2nd example. Once

reflected XSS is found to be not present, the framework checks for Blind XSS using payload generation.

Payloads that are possible injections are given in the table above.

7. Conclusion:
Since technology is increasing, there is an increase in need for securing web Applications. Due to the hike

in Internet Users the web services results in giving new challenges. One of major challenge is to secure

against malicious attacks. Among which XSS is the major contributions. So this framework focuses on

detecting XSS vulnerability of all flavors. First WAF status is detected based on the error code. Then

filter checker is applied to determine the presence of Reflected XSS vulnerability and Payloads are

generated to check for Blind XSS. The experimental results show that there lot of sites of vulnerable to

XSS and the type of vulnerability is also mentioned.

References:

[1]Shashank Gupta, B.B. Gupta *, Pooja Chaudhary, Hunting for DOM-Based XSS

vulnerabilities in mobile cloud-based online social network, Future Generation Computer Systems 79

(2018) 319–336.

International Journal of Pure and Applied Mathematics Special Issue

13381

 [2]Gupta, M.K., Govil, M.C. and Singh, G., Static Analysis Approaches to Detect SQL Injection and

Cross Site Scripting Vulnerabilities in Web Applications: A Survey, IEEE International Conference on

Recent Advances and Innovations in Engineering, pp. 1-5, 2014.
[3]Mishra, A., Critical Comparison Of PHP And ASP.NET For Web Development ‐ ASP.NET & PHP,

Proc. International Journal of Scientific & Technology Research, pp. 331-333, 2014.

[4] Martin Johns, Bjorne Englemann, Joachimm Posegga,”XSSDS: Server-side Detection of Cross-site

Scripting Attacks”, Annual Computer Security Applications Conference, IEEE, pp. 335-344, 2008

[5]Abdalla Wasef Marashdih and Zarul Fitri Zaaba,Cross Site Scripting: Removing Approaches in Web

Application,4th Information Systems International Conference 2017, ISICO 2017, 6-8 November 2017,

Bali, Indonesia

[6] D. Bates, A. Barth, C. Jackson, Regular expressions considered harmful in client side XSS filters, in:

Proceedings of the Conference on the World Wide Web, 2010, pp. 91–100.

[7] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD: precise dynamic prevention of cross-site scripting

attacks. In Detection of Intrusions and Malware, and Vulnerability Assessment, 2008.44

[8] Shar, L.K., Tan, H.B.K. and Briand, L.C., Mining SQL injection and cross site scripting

vulnerabilities using hybrid program analysis‟, 35th International Conference on Software Engineering

(ICSE '13), pp 642-651, 2013.

[9]Malviya, V.K., Saurav, S. and Gupta, A., On Security Issues in Web Applications through Cross Site

Scripting (XSS), 20th Asia Pacific Software Engineering Conference (APSEC), pp. 583-588, 2013

[10]OWASP, Top-10 threats for web application security, Available:

www.owasp.org/index.php/Top_10_2013-Top_10. [Accessed: May 2017].

[11] Subramaniyaswamy, V., & Logesh, R. (2017). Adaptive KNN based Recommender System through

Mining of User Preferences. Wireless Personal Communications, 97(2), 2229-2247.

[12] Logesh, R., & Subramaniyaswamy, V. (2017). A Reliable Point of Interest Recommendation based

on Trust Relevancy between Users. Wireless Personal Communications, 97(2), 2751-2780.

[13] Logesh, R., & Subramaniyaswamy, V. (2017). Learning Recency and Inferring Associations in

Location Based Social Network for Emotion Induced Point-of-Interest Recommendation. Journal of

Information Science & Engineering, 33(6), 1629–1647.

[14] Subramaniyaswamy, V., Logesh, R., Abejith, M., Umasankar, S., & Umamakeswari, A. (2017).

Sentiment Analysis of Tweets for Estimating Criticality and Security of Events. Journal of Organizational

and End User Computing (JOEUC), 29(4), 51-71.

[15] Indragandhi, V., Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Siarry, P., & Uden, L.

(2018). Multi-objective optimization and energy management in renewable based AC/DC microgrid.

Computers & Electrical Engineering.

[16] Subramaniyaswamy, V., Manogaran, G., Logesh, R., Vijayakumar, V., Chilamkurti, N., Malathi, D.,

& Senthilselvan, N. (2018). An ontology-driven personalized food recommendation in IoT-based

healthcare system. The Journal of Supercomputing, 1-33.

[17] Arunkumar, S., Subramaniyaswamy, V., & Logesh, R. (2018). Hybrid Transform based Adaptive

Steganography Scheme using Support Vector Machine for Cloud Storage. Cluster Computing.

International Journal of Pure and Applied Mathematics Special Issue

13382

[18] Indragandhi, V., Subramaniyaswamy, V., & Logesh, R. (2017). Resources, configurations, and soft

computing techniques for power management and control of PV/wind hybrid system. Renewable and

Sustainable Energy Reviews, 69, 129-143.

[19] Ravi, L., & Vairavasundaram, S. (2016). A collaborative location based travel recommendation

system through enhanced rating prediction for the group of users. Computational intelligence and

neuroscience, 2016, Article ID: 1291358.

[20] Logesh, R., Subramaniyaswamy, V., Malathi, D., Senthilselvan, N., Sasikumar, A., & Saravanan,

P. (2017). Dynamic particle swarm optimization for personalized recommender system based on

electroencephalography feedback. Biomedical Research, 28(13), 5646-5650.

[21] Arunkumar, S., Subramaniyaswamy, V., Karthikeyan, B., Saravanan, P., & Logesh, R. (2018). Meta-

data based secret image sharing application for different sized biomedical images. Biomedical

Research,29.

[22] Vairavasundaram, S., Varadharajan, V., Vairavasundaram, I., & Ravi, L. (2015). Data

mining‐based tag recommendation system: an overview. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 5(3), 87-112.

[23] Logesh, R., Subramaniyaswamy, V., & Vijayakumar, V. (2018). A personalised travel recommender

system utilising social network profile and accurate GPS data. Electronic Government, an International

Journal, 14(1), 90-113.

[24] Vijayakumar, V., Subramaniyaswamy, V., Logesh, R., & Sivapathi, A. (2018). Effective Knowledge

Based Recommeder System for Tailored Multiple Point of Interest Recommendation. International

Journal of Web Portals.

[25] Subramaniyaswamy, V., Logesh, R., & Indragandhi, V. (2018). Intelligent sports commentary

recommendation system for individual cricket players. International Journal of Advanced Intelligence

Paradigms, 10(1-2), 103-117.

[26] Indragandhi, V., Subramaniyaswamy, V., & Logesh, R. (2017). Topological review and analysis of

DC-DC boost converters. Journal of Engineering Science and Technology, 12 (6), 1541–1567.

[27] Saravanan, P., Arunkumar, S., Subramaniyaswamy, V., & Logesh, R. (2017). Enhanced web caching

using bloom filter for local area networks. International Journal of Mechanical Engineering and

Technology, 8(8), 211-217.

[28] Arunkumar, S., Subramaniyaswamy, V., Devika, R., & Logesh, R. (2017). Generating visually

meaningful encrypted image using image splitting technique. International Journal of Mechanical

Engineering and Technology, 8(8), 361–368.

[29] Subramaniyaswamy, V., Logesh, R., Chandrashekhar, M., Challa, A., & Vijayakumar, V. (2017). A

personalised movie recommendation system based on collaborative filtering. International Journal of

High Performance Computing and Networking, 10(1-2), 54-63.

[30] Senthilselvan, N., Udaya Sree, N., Medini, T., Subhakari Mounika, G., Subramaniyaswamy, V.,

Sivaramakrishnan, N., & Logesh, R. (2017). Keyword-aware recommender system based on user

demographic attributes. International Journal of Mechanical Engineering and Technology, 8(8), 1466-

1476.

International Journal of Pure and Applied Mathematics Special Issue

13383

[31] Subramaniyaswamy, V., Logesh, R., Vijayakumar, V., & Indragandhi, V. (2015). Automated

Message Filtering System in Online Social Network. Procedia Computer Science, 50, 466-475.

[32] Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Gao, X. Z., & Indragandhi, V. (2017). A

hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city.

Future Generation Computer Systems, 83, 653-673.

International Journal of Pure and Applied Mathematics Special Issue

13384

13385

13386

