60 YEARS OF BUSINESS INTELLIGENCE: A BIBLIOMETRIC REVIEW FROM 1958 TO 2017

THE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS, AND TECHNIQUES

September 26-28, 2018 / Granada (Spain)
1. Introduction
2. Methodology
3. Dataset
4. Conceptual Analysis
5. Conclusions
TABLE OF CONTENTS

1. Introduction
2. Methodology
3. Dataset
4. Conceptual Analysis
5. Conclusions
1. INTRODUCTION

CONTEXT
Business Intelligence (BI) is being seen as a core activity in business, science, education or any field in which the use of intelligent software are vital to achieve their goals. The BI concept is also multidimensional, and it can be defined as a technology-driven process for analyzing data and presenting actionable information to support the organizational decisions. The professionals involved in this area of knowledge are seeking to uncover the conceptual structure of a research area of interest are worth and necessary.

OBJECTIVE
The main aim of this contribution is to develop a bibliometric analysis to evaluate the performance and conceptual evolution of the Business Intelligence from 1958 to 2017. The analysis is developed using SciMAT.
1. Introduction

2. Methodology

3. Dataset

4. Conceptual Analysis

5. Conclusions
SOFTWARE TOOL

SciMAT was employed to develop a longitudinal conceptual science mapping analysis based on co-words bibliographic networks.

METHODOLOGY STAGES

1. **Detection of the research themes.** Co-word analysis, followed by a clustering of keywords to topics/themes. The similarity between the keywords is assessed using the equivalence index.

2. **Visualizing research themes and thematic network.** Strategic diagram and thematic network (centrality and density). Research themes mapped in a two-dimensional strategic diagram and classified into four groups (Figure 1): i) motor, ii) basic/transversal, iii) highly developed-isolated, and iv) emerging/declining

3. **Performance analysis.** Relative contribution of the research themes to the whole research field: number of published documents, number of citations, and different types of bibliometric indices (h-index).
METHODOLOGY

Figure 1: The strategic diagram
TABLE OF CONTENTS

1. Introduction
2. Methodology
3. Dataset
4. Conceptual Analysis
5. Conclusions
DATASET

CORPUS AND DATABASE
Business Intelligence research documents published in the Web of Science Core Collection.

TIME PERIOD

CORPUS SIZE
- 3,351 documents (articles, proceedings and reviews published in English) and 27,779 keywords.
- Citations count up to 1st April 2018.
- 2008-2012: 1,090 documents and 8,787 keywords.

QUERY
$TS=(\text{"Business Intelligence" \ OR \ "Business-Intelligence"}) \ AND \ PY=1958-2017$
DATASET – DOCUMENTS BY YEAR AND PERIOD
DATASET – CITATIONS BY YEAR AND PERIOD
DATASET – BI H-INDEX PUBLICATIONS
Figure 4. Strategic diagram for the 1958-2007 period.
The first period has lower number of publications than the other periods, we could identify seven themes (Figure 4) related to the Business Intelligence research field. In this regard, we could highlight four key themes (motor theme and basic and transversal themes) of the knowledge field: BUSINESS-INTELLIGENCE, DECISION-MAKING, CUSTOMER-KNOWLEDGE and ON-LINE-ANALYTICAL-PROCESSING-(OLAP).
CONCEPTUAL ANALYSIS – PERIOD 2008-2012

Figure 5. Strategic diagram for the 2008-2012
During the second period we could identify ten themes related to the Business Intelligence research field (Figure 5). Consistent with the last period, six themes are considered keys in the knowledge field: BUSINESS-INTELLIGENCE, RISK-MANAGEMENT, QUERY, ENTERPRISE-RESOURCE-PLANNING-(ERP), CUSTOMER-KNOWLEDGE and BUSINESS-PROCESS-MANAGEMENT-(BPM).
CONCEPTUAL ANALYSIS – PERIOD 2013-2017

Figure 6. Strategic diagram for the 2013-2017
During the third period we could identify fifteen themes (Figure 6). In this regard, eight of the total themes are considered key: BUSINESS-INTELLIGENCE, INFORMATION-TECHNOLOGY-(IT), SOCIAL-NETWORK-ANALYSIS, INNOVATION, CLOUD-SERVICES, SCIENCE-AND-TECHNOLOGY, ENVIRONMENTAL-SCANNING-AND-SURVEILLANCE and ON-LINE-ANALYTICAL-PROCESSING-(OLAP).
CONCEPTUAL EVOLUTION MAP

Figure 7. Conceptual Evolution Map 1958-2017
In the Business Intelligence evolution map we can identify three kinds of topics: Business Intelligence concepts, Computer Science, and Innovation and Business Competitiveness. Accordingly, **BUSINESS-INTELLIGENCE** is the most representative research theme in the period evaluated followed by **INNOVATION** and **ON-LINE-ANALYTICAL-PROCESSING-(OLAP)**.
TABLE OF CONTENTS

1. Introduction
2. Methodology
3. Dataset
4. Conceptual Analysis
5. Conclusions
CONCLUSIONS

SUMMARY

An amount of 3,351 documents (articles, proceedings and reviews) were retrieved from the Web of Science Core Collection.

- 2008-2012: 1,090 documents and 8,787 keywords.

The impact achieved is summarized in the following indicators:

- Average citations per publication: 4.06
- Sum of Times Cited (without self-citations): 13,596 (11,032)
- Citing articles (without self-citations): 10,558 (9,577)

The H-Classics publications performance is summarized in the following indicators:

- h-index: 50 publications
- Average citations per publication: 106.32.
- Sum of Times Cited (without self-citations): 5,316 (5,286).
- Citing articles (without self-citations): 4,584 (4,569).
CONCLUSIONS

MAIN CONCLUSION
■ The size of literature related to Business Intelligence research field showed a noticeable increase in the past decade (2008-2017). Given the large volume of publications and citations received in this field, it is expected that the use of these will be seen as part of other knowledge fields.
■ The main themes used in the Business Intelligence literature are: Business-Intelligence, Information-Technology-(IT), Social-Network-Analysis, Innovation, Cloud-Services, Science-and-Technology, Environmental-Scanning-and-Surveillance and On-Line-Analytical-Processing-(OLAP).

FUTURE WORKS
■ The Business Intelligence could be complemented by other intelligence terms (i.e Competitive Intelligence, Market Intelligence, Technology Intelligence…).
■ Study the evolution of the research themes across the consecutive time periods.
Acknowledgments: The authors J. R. López-Robles, H. Gamboa-Rosales and N. K. Gamboa-Rosales acknowledge the support by the CONACYT-Consejo Nacional de Ciencia y Tecnología (Mexico) and DGRI-Dirección General de Relaciones Exteriores (México) to carry out this study. In addition, this work has been supported by the FEDER funds of the Spanish Department for Economy and Competitiveness project (TIN2016-75850-R).
REFERENCES

S. Erickson and H. Rothberg, Data, Information and Intelligence, Acad Conferences Ltd, Nr Reading, 2014.
J.E. Hirsch, An index to quantify an individual's scientific research output, Proceedings of the National Academy of Sciences of the United States of America 102 (2005), 16569.