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Abstract—Indoor mobile robots are widely used in industrial 
environments such as large logistic warehouses. They are often  
in charge of collecting or sorting products. For such robots, 
computation-intensive operations account for a significant per- 
centage of the total energy consumption and consequently affect 
battery life. Besides, in order to keep both the power con- 
sumption and hardware complexity low, simple micro-controllers 
or single-board computers are used as onboard local control 
units. This limits the computational capabilities of robots and 
consequently their performance. Offloading heavy computation 
to Cloud servers has been a widely used approach to solve this 
problem for cases where large amounts of sensor data such as 
real-time video feeds need to be analyzed. More recently, Fog 
and Edge computing are being leveraged for offloading tasks 
such as image processing and complex navigation algorithms 
involving non-linear mathematical operations. In this paper, we 
present a system architecture for offloading computationally 
expensive localization and mapping tasks to smart Edge gateways 
which use Fog services. We show how Edge computing brings 
computational capabilities of the Cloud to the robot environment 
without compromising operational reliability due to connection 
issues. Furthermore, we analyze the power consumption of a 
prototype robot vehicle in different modes and show how battery 
life can be significantly improved by moving the processing of 
data to the Edge layer. 

Index Terms—Edge, Fog, Cloud, SLAM, Efficiency, Computa- 
tion, Offloading, Energy, Performance, Mobile, Robots 

 
I. INTRODUCTION 

Small indoor robots which work alongside humans have 
become ubiquitous in different fields such as home-care, 
restaurant business and manufacturing plants. For instance, 
lightweight robots are used in exhibitions for guiding visitors 
to a desired stall, and are the operational backbone in logistic 
warehouses of the world’s top e-commerce companies. In 
smart homes, small robots can be used as a pet which can 
communicate, watch over or play with children and elderly 
people and can notify or trigger alarm when abnormal situation 
occurs [1]. Companion robots can remind elderly people to 
take medicine on time. However, small robots have limited 
resources such as low battery capacity and light processing 
capability. In most cases, these robots cannot operate for a long 
period of time or cannot make useful decisions in complex 
situations due to these limitations. 

Internet of Things (IoT) can be defined as a virtual platform 
which allows both physical and virtual objects to be inter- 
connected and communicate with each other. It consists of 

advanced technologies such as sensor fusion, wireless sensor 
networks and Cloud computing to help improve the quality of 
services [2]–[6]. Besides, global storage allows users to access 
data anywhere at any time [7]. Proper utilization of IoT can 
help overcome some of the drawbacks of small robots. Partic- 
ularly, real-time position of a small robot can be tracked and a 
system administrator can send control commands in cases of 
complex situations [8]. However, IoT-assisted small robots still 
have some disadvantages. For example, traditional gateways in 
IoT platform are mainly responsible for collecting data from 
robots and forwarding the data to Cloud servers. When the data 
volume is tremendous e.g., due to a large number of multi- 
sensor equipped robots operating simultaneously, the network 
bandwidth may be not adequate or the communication latency 
become too high [9]. Hence, an appropriate architecture is 
required which can overcome these limitations. 

Edge and Fog computing can be described as extra layers 
between sensor devices, gateways and Cloud servers for en- 
hancing the quality of services. These bring Cloud computing 
paradigms to the Edge of the network and help reduce the bur- 
den of Cloud providing faster services unsupported by Cloud 
computing. Edge and Fog computing help to reduce energy 
consumption of sensor nodes and diminish overall latency 
[10], [11]. The combination of Edge and Fog computing with 
IoT can provide a suitable approach for enhancing overall 
performance. 

In this paper, we exploit the concept of  IoT  and  Fog  
along with Edge gateways to enhance energy efficiency and 
operational performance of small indoor robots. We  present    
a proof of concept for a hybrid Edge-Fog-Cloud architecture 
which facilitates use of Fog/Edge and Cloud computing for 
offloading computationally expensive tasks from robots with 
limited processing power. We discuss related works on how 
intensive tasks can be offloaded to Edge, Fog or Cloud 
services in Section II. Section III presents the proposed system 
architecture applying Edge and Fog computing. Section IV 
illustrates the results of different tests and discusses the advan- 
tages in terms of power saving and performance boost. Section 
V concludes the work and depicts on future improvements. 

II. RELATED WORK 

Several works focus on increasing the performance of dif- 
ferent algorithms which cannot be fully exploited in resource- 



constrained devices. Dey et al. analyzed the advantages of 
leveraging Fog and Edge computing to offload computationally 
heavy tasks within SLAM algorithms for mobile robots [12]. 
They provided extensive simulations for different Robot-Edge- 
Fog-Cloud computational tasks distribution schemes. The au- 
thors concluded that Edge and Fog computing can bring signif- 
icant enhancement to computationally intensive tasks such as 
localization and positioning tasks. Edge and Fog computing 
are shown to provide the same computational performance 
than Cloud offloading, with the benefit of reduced bandwidth 
and thus faster response time. However, the authors did not 
perform real-life tests where the communication layer can play 
an important role and become a bottleneck due to the high data 
rates between mobile robots and gateways. 

Offloading Simultaneous Localization and Mapping 
(SLAM) tasks to Edge and Fog layers has only been 
considered recently while Cloud-based SLAM has been 
studied for the last decade. Benavidez et al. deployed an 
instance of the Robot Operating System in the Cloud to 
increase the computational capabilities of  constraint  robots 
for Visual SLAM (VSLAM) [13]. They pointed how this  
helps to overcome traditional bottlenecks in robots with 
limited computational resources with VSLAM performing 
feature identification  and  matching  which  usually  need 
large databases. They demonstrated how parallel computing 
can be exploited with a multi-node Cloud deployment to 
facilitate multi-robot SLAM  and  with  limited  impact  on  
the on-board computers that control the robots. A similar, 
more comprehensive work was carried out by Riazuelo et al. 
who presented C2TAM, a Cloud framework for cooperative 
tracking and mapping [14]. The authors used the unlimited 
computational resources available in the Cloud to enable the 
implementation of algorithms which fail to run on single  
board computers or even more powerful CPUs when the 
number of agents increases. 

Similarly, Turnbull et al. utilized Cloud servers to enable ad- 
vanced neural command for formation control in large groups 
of robots [15]. However, the network connection between 
robots and Cloud servers is unreliable and cannot be guaran- 
teed. Therefore, a trade-off exists between the robustness of the 
solution in terms of available computational resources, opera- 
tional reliability and performance. This is further explored by 
Salmeron-Garcia et al. in their work on Cloud offloading of a 
vision-based navigation system [16]. The authors stress in their 
paper that processing time can be matched to communication 
period with parallel computation in the Cloud and inferred    
of a bottleneck due to communication bandwidth and latency. 
They concluded that Cloud is necessary if the system needs   
to be easily scalable or precise operation is required. This 
occurs where the localization or navigation requirements are 
such that high quality images need to be processed. Extensive 
works exist in this direction by other authors in the field 
[17] [18], taking the trade-offs into account both in terms of 
communication and computational performance. 

Kumar et al. gathered computational offloading techniques 
and algorithms into a survey where they accentuate how 

shifting of intensive applications will be essential in the future 
for battery powered devices [19] and explored the energy- 
saving potential of offloading computation to the Cloud. 

Extensive work has been carried out on leveraging Cloud 
computing for offloading heavy computational tasks. However, 
most of this work have been focused on leveraging virtually 
unlimited computational resources of the Cloud. Fewer re- 
search have targeted the Edge and Fog computing paradigms 
as a solution to the high latency and unreliability of Cloud 
services. Keeping these in mind, we focus in both energy 
efficiency and performance improvement by placing the most 
expensive computational tasks in Edge and Fog layers leaving 
the Cloud only for monitoring and management and thus not 
entirely relying on network link to the Cloud services for 
normal operation. 

III. SYSTEM ARCHITECTURE 

The proposed system architecture consists of 4 layers: Robot 
Layer, Edge Layer for data processing and analysis, Fog layer 
for distributed storage and Cloud Layer for monitoring and 
general mission control. As shown in Fig. 1, we have com- 
bined the Edge and Fog layer because the Fog layer consists 
of the smart Edge Gateways and they use the same physical 
resources. The architecture we present is easily scalable, 
modular and distributed by definition. This section thoroughly 
describes the role of each layer and the distribution of the 
computational load through the network. Energy consumption, 
latency and computational power at different layers are the key 
factors taken into account when deciding the role of a layer. 

In general, data is acquired by robots where minimal anal- 
ysis is performed. Real-time decisions are taken at the Edge 
gateways to minimize the latency and share the computational 
load of different connected robots. The Fog layer provides 
additional services such as distributed storage and processing 
to enable an efficient handover mechanism with minimal data 
loss when a robot switches from  one  gateway  to  another. 
The handover includes sharing previous map data acquired by 
the robot switching gateways so that the result of the SLAM 
algorithm remains constant through the connection change. 

Edge gateways also play an important role in reducing the 
energy consumption at the end nodes or robots by running    
the most computational expensive operations. Both Fog and 
Edge computing are essential in safety critical situations where 
they provide a more robust situational awareness and overall 
system control, and robot state knowledge. Finally, the Cloud 
layer enables end-users or administrators to control the system 
by giving general instructions and monitor the performance at 
different layers. 

A. Robot Layer 
In the robot layer, sensor data is gathered and streamed      

in real time to the smart Edge gateways. The control of the 
robot is run online and movement instructions are given in 
real-time. In the proposed system, the robot can be either 
aware or unaware of its current state depending on how 
extensively information is analyzed on-board and whether an 
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Fig. 1.   Proposed System Architecture 

 
Edge gateway provides enhanced state information to the robot 
or only movement instructions. 

The robot relies on low power wireless communication tech- 
nologies such as Bluetooth or nRF if the bandwidth require- 
ments are met, or Wi-Fi for more bandwidth-intensive appli- 
cations such as high-quality video transmission. By streaming 
sensor data directly to the gateway without being processed by 
the MCU, the robot gains in energy efficiency. Furthermore, 
low-power techniques can be applied to the MCU in order to 
further reduce the overall power requirements. 

Compared to a traditional approach where sensing, obsta- 
cle detection, path planning and localization are made on- 
board the robot, we can significantly reduce the computing 
requirements of the robot’s control system and downgrade 
them from processor-based to MCU-based. Only the most 
basic information is analyzed at the robot itself. This includes, 
for instance, wheel odometry or inertial data so that the robot is 
aware of its current acceleration, velocity and orientation. This 
can be combined with state estimation performed online at the 
Edge, Fog or Cloud layers to allow more accurate movement 
and simplify the instructions given to the robot. 

B. Smart Edge Gateway Layer 
Edge gateways receive sensor data from one or multiple 

robots in real-time. This includes, for example, images from 
on-board cameras or data from range sensors such as Lidars 
and radars, which is analyzed at the gateways to perform 
obstacle detection and avoidance, path planning, localization 
or mapping. Odometry data (e.g. wheel odometry, visual 
odometry) and inertial data (e.g. magnetometer, accelerometer 
and gyroscope data) is also transmitted from and processed at 
the gateway. 

Acting as a central element, Edge gateways ensure a low- 
latency and robust solution and provide fast decision making 
while relocating computationally expensive tasks from the 
robots. Moreover, if multiple robots are connected to a single 
gateway, data from different sensors and sources is aggre- 
gated and analyzed in order to obtain a more comprehensive 

understanding of the environment. For instance, two robots  
operating in the same environment and connected to the same 
gateway are able to obtain information of larger areas through 
sensors of other robots and see through other agents if these 
are nearby and blocking their field of view. 

The  role  of  the  Edge  layer  is  of  superior  importance  
in safety-critical situations and scenarios such as industrial 
environments where human share operational space with au- 
tonomous or semi-autonomous robots. Compared to the more 
traditional practice of moving complex tasks to the Cloud,   
the Edge layer reduces the latency to the point where safe 
operation is achievable even in the case of network connectiv- 
ity failure. From an operational point of view, smart Edge 
gateways receive information from sensors aboard multiple 
robots and are in charge of decision-making in  terms  of  
robot movement and task allocation. These instructions are 
transmitted continuously and wirelessly to the robots. 

 
C. Fog Layer 

The Fog layer includes the smart Edge gateways as part of it. 
Nonetheless, it is defined as a separate layer because its role in 
the proposed system architecture differs from the data analysis 
and instantaneous control role of the Edge layer. The Fog layer 

represents the interconnection of different Edge gateways, 
together with other services such as distributed databases or 

location services. In particular, the Fog layer takes care of the 
handover mechanisms when the robots disconnect from one 

gateway and connect to another one together with the 
procurement of additional services including distributed 

storage, external tracking and monitoring or location services. 
Detailed research has been performed to minimize latency and 

data-loss during the handover [20] [21]. An alternative for 
managing the handover is to deploy Edge gateways just behind 

conventional gateways such as Wi-Fi routers so that the gate- 
ways can directly store the received information in distributed 
storage. Thus, the handover problem would be reduced to the 

distribution of the computational load of individual robots into 



the set of Edge nodes, since all nodes are able to access robot 
data in real-time from the shared storage. 

Localization algorithms are mostly run in the Edge layer    
in which real-time sensor data is matched with an area of       
an existing map. This is crucial in situations where the robot 
operates in a partially or totally unknown environment and 
simultaneous localization and mapping algorithms are run in 
the smart Edge gateways. In these cases, it is required that the 
local map stored in one gateway is shared to other gateways 
before or during the handover. Accordingly, our proposed 
system architecture includes a distributed storage deployment 
in the Fog layer. This can be implemented, for instance, in the 
form of a decentralized database where the maps and other 
essential robot data are stored and available to all nodes in the 
Edge/Fog layers at any time. 

Other services included in the Fog layer are external sensor 
management, collaborative processing and monitoring. For 
example, while Edge gateways process the on-board sensor 
information from the robots, external monitoring  cameras  
and other sensors can be used to increase the accuracy of 
localization algorithms or assure collision avoidance in cases 
of sensor failure or other local problems that might appear     
in the robot and go undetected by the Edge gateway. This 
results in an enhanced situational awareness [22] where both 
externally and internally collected information about a robot is 
available in the Fog layer. By introducing additional services 
in the Fog layer, we can enhance overall system robustness  
and its fault tolerance. For instance, if a gateway abruptly 
disconnects or any kind of failure occurs, all the information 
that it was handling will be available to other gateways due to 
the shared storage resources. This allows the robot to reconnect 
to the next available gateway and continue its operation with 
minimal data loss, operational interruption and latency. 

 
D. Cloud Services 

Time-series data of the robot state, including basic infor- 
mation such as position, velocity, acceleration, steering drift 
factor, drive torque variation, instantaneous current consump- 
tion and battery level is uploaded to the Cloud for monitoring, 
control and visualization by users or administrators [23]. 
Instead of uploading raw sensor  data,  it  is  pre-processed 
and compressed in the Edge/Fog layers and only sporadic 
local map updates or critical information is sent. This can be 
implemented in a dynamic way in which, for instance, the map 
around a robot or of a given area in the operation environment 
is updated and uploaded to the Cloud at different frequencies 
depending on whether an end-user is actively monitoring the 
operation or not. 

The use of Cloud services facilitates generic control in- 
structions to the robot and stable operation [24]. For example, 
factory managers can easily have an overview of the posi-  
tion of different robots around the factory floor, or override 
autonomous roaming to involve  more robots assigned within  
a certain group or to prioritize specific tasks. Besides, the 
Cloud allows global access for the administrators and mission 

 

 
 

Fig. 2. Prototype car with Lidar running on top, used for the experiment 
 
 

planners to have a collaborative overview in a cost-effective 
way. 

However, due to comparatively higher end-to-end latency 
between the robot layer and the Cloud,  it  should  not  be  
used for primary control purpose as it can be subject to 
variation in network performance. The Cloud provides access 
to pertinently processed data from the robot layer which is 
periodically backed up at a reasonable interval. This yields a 
conclusive operation and data history which can be analyzed 
using high performance computing in the Cloud for machine 
learning, better prediction and big data analytics. 

 
IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

In order to test the feasibility and validate the proposed 
architecture, we have constructed a car controlled via Blue- 
tooth communication to produce a map of the perimeter it is 
bounded by. The car shown in Figure 2 incorporates a 360o 
Lidar on top of the chassis, two independent motors- one for 
steering control and another for driving forward or backward 
with appropriate motor control circuitry. The car is connected 
to a gateway through a Bluetooth Classic module. An AVR 8-
bit MCU is used to control acquisition of raw data from    the 
Lidar and send to gateway via the serial port profile of    the 
Bluetooth standard. A prototype is built using the chassis from 
an Reely 1:10 Elektro-Monstertruck NEW1 RC car and 
replacing the control circuit and motors with lower power 
variants with an RPLIDAR A1 M8 on the top, a low cost  
360o 2D LASER scanner from Slamtec [25]. 

We have run experimental tests with a minimal setup where 
only Lidar is used for both localization and mapping purposes. 
Adding inertial sensors would provide more accurate position- 
ing and control over the vehicle; however, that is not the main 
objective of this work and we focus on the implementation of 
the hybrid Edge-Fog-Cloud architecture and its benefits. 

The MCU controlling the movement of the car does not 
save or analyze the data from the Lidar sensor in any form 
and is forwarded directly to the gateway as serial stream over 
Bluetooth. The gateway then runs an adapted version of the 
BreezySLAM algorithm by S. D. Levy [26]. The algorithm has 
been modified to take into account the intermittent nature of 



TABLE I 
POWER CONSUMPTION OF THE PROTOTYPE VEHICLE AT 5V SUPPLY 

 
Operation Average Current Average Power 
/ Approach (mA) (mW) 

MCU Idle 4 19 
MCU + Lidar 339 1695 
MCU + Lidar + Streaming 378 1890 

R.Pi Idle 301 1503 
R.Pi + Lidar 622 3108 
R.Pi + Lidar + Edge Processing 829 4152 

Car (Drive / Steer) 122 607 
Car (Drive + Steer) 184 918 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Mapping and Localization at the Edge. (The position of the car is 
marked with a blue pointer) 

 
 

the connection between the robot and the gateway, and execute 
accordingly when processing successive batches of data. 

Figure 3 shows the result of applying the mapping and 
localization algorithm in the Edge gateway. As we are using  
an inexpensive Lidar and the SLAM algorithms run without 
any inertial measurement unit such as accelerometer and mag- 
netometer, accurate positioning is hard to achieve in complex 
environments. However, with more input data from multiple 
sensors would suffice for enabling operation in non-trivial 
local environments. 

The first map in Figure 3 shows the map obtained after    
the first few Lidar frames have been analyzed. The RPLIDAR 
A1 M8 used in the tests is a low-cost Lidar and therefore 
several scans are processed before obtaining a good quality 
map. The granularity in the first map is derived from the 
relatively low scan speed of the device compared to more 
advanced sensors. Also, while the position within the map is 
accurate and consistent through the test, noise appears near the 
distant walls from the Lidar due to the low accuracy. However, 

the walls and corners in the local area around the robot are 
with little to no noise. 

In terms of performance, the recorded path elapsed a total  
of 44.3 seconds in which 314 Lidar frames were processed. 
This translates into 7 frames/s, which matches with the Lidar 
specification for a maximum speed scan of 10 Hz with an 
average car speed of 0.3 m/s. This frame rate can be compared 
to 1 frame/s processed on a Raspberry Pi 3 Model B running 
Ubuntu Mate Desktop with the graphical map display in real- 
time. While this can be optimized running a more trimmed, 
customized version of Linux on the Raspberry Pi, its compu- 
tational capability limits the processing to about 5 frames/s. 
Since a MCU is able to handle the vehicle control and 
transmission of Lidar data, not only it significantly increases 
the system performance by offloading the SLAM tasks to the 
Edge gateway, but a considerable amount of energy is saved  
by replacing a power-hungry single-board computer such as 
the Raspberry Pi with a low-power MCU. 

In particular, the specific power consumption and average 
current drawn by the prototype in different states are docu-  
mented in Table I. In idle state, the Lidar consumes 300 to 350 
mA, representing over 90% of the total power consumption. 
This can be replaced with low-power cameras or more en- 
ergy efficient sensors for a particular SLAM implementation. 
However, when the prototype is  moving,  the  Lidar’s  share 
of the power consumption goes down to around 60%. When 
choosing the Lidar, general purpose motors  have been used  
to show that even with out-of-the-shelf devices, the overall 
energy efficiency can be improved by around 40% when a 
single-board computer such as a Raspberry Pi in this test is 
replaced with a MCU. This yields a significantly longer battery 
life and an increase in operational performance due to larger 
ratio of active-time with respect to idle or charging time. 

 
V. DISCUSSION 

Although Edge computing can bring advantages such as 
reduction in latency, bandwidth conservation, improvement in 
application robustness and security [11], [27], [28], there are 
inherent challenges. As the processing of the data stays near 
the Edge, specific data-oriented applications which require 
comparatively higher user interaction will have insignificant 



performance gain. In the worst case scenario, performance can 
deteriorate due to the long path data has to travel. 

As multiple robots can connect to the same smart gate- 
way,  communication latency and inter-unit interference can  
be an issue. Depending on the application, an appropriate 
communication medium must be chosen to ensure that specific 
parameters such as bandwidth, channel spacing, protocol, 
sampling frequency and data rate are properly considered for 
an interruption-free data  transfer.  Also,  for  wireless  units,  
it is useful to examine the wake-up and sleep time  of the 
radio communication module so that transmitter and receiver 
circuitry is not toggled unnecessarily and sleep modes  are 
used appropriately. This yields better energy efficiency and 
communication at an optimal duty cycle. 

Keeping the Edge gateways near the robot layer and a Fog 
layer provides distributed and scalable computing. However, 
as the number of robots and frequency of data transmission per 
node significantly increases, the gateways may not handle all 
requests within the highest permitted latency. In such a case, 
having more powerful and redundant gateways along with 
advanced load-sharing algorithm in the Fog and distributed  
data storage can effectively improve performance. 

 
VI. CONCLUSION AND FUTURE WORK 

In this paper, the comparative advantage of using Edge 
computing for robots and nodes are discussed keeping the 
focus on energy efficiency and operational latency. Instead   
of directly transferring a large amount of data from robots     
to the Cloud, we proposed an Edge-Fog-Cloud based system 
for performance advantages. Run from the mains supply, the 
powerful Edge layer can pre-process and analyze data easily, 
implement advanced features and ensure data security by 
applying complex encryption algorithms. The Fog layer can 
intelligently manage the smart gateways of Edge layer. 

This approach effectively takes the heavy computational 
tasks near the Edge layer and thus reduces the required energy 
for operation of the node or robot itself. The shorter path of 
data for a complete cycle improves latency and frees up valu- 
able network bandwidth, especially when a lot of robots are 
connected to the same gateway. In addition, the reduced robot- 
to-Cloud transferable data eliminates potential bottleneck in 
the network and lowers the chance of system downtime due   
to a single point computing failure as in centralized computing 
architecture. We demonstrated an example of SLAM showing 
how a car in the robot layer can take advantage of the power  
of Edge computing for mapping a confined perimeter. 

In future, we plan to implement a comprehensive system  
consisting of several vehicles, multiple smart Edge computing 
gateways constituting a Fog layer and an application for the 
Cloud layer. In addition, we plan to develop an autonomous 
roaming algorithm for the robot car so as to perform the 
mapping operation in shortest possible time. Besides, some 
stress tests to estimate the performance of  smart  gateways 
will be evaluated to emulate the scenario when the number    
of connected cars is sufficiently high. 
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