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Abstract—A body sensor network that consists of wearable 
and/or implantable biosensors has been an important front-end 
for collecting personal health records. It is expected that the full 
integration of outside-hospital personal health information and 
hospital electronic health records will further promote 
preventative health services as well as global health. However, the 
integration and sharing of health information is bound to bring 
with it security and privacy issues. With extensive development of 
healthcare applications, security and privacy issues are becoming 
increasingly important. This paper addresses the potential 
security risks of healthcare data in Internet based applications, 
and proposes a method of signal scrambling as an add-on security 
mechanism in the application layer for a variety of healthcare 
information, where a piece of tiny data is used to scramble 
healthcare records. The former is kept locally whereas the latter, 
along with security protection, is sent for cloud storage. The tiny 
data can be derived from a random number generator or even a 
piece of healthcare data, which makes the method more flexible. 
The computational complexity and security performance in terms 
of theoretical and experimental analysis has been investigated to 
demonstrate the efficiency and effectiveness of the proposed 
method. The proposed method is applicable to all kinds of data 
that require extra security protection within complex networks. 
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I. INTRODUCTION 

With the development of emerging biosensor and mobile 
computing technologies, outside-hospital Personal Health 
Records (PHRs) that can be easily self-managed by end-users 
will experience an exponential growth. The Body Sensor 
Network (BSN) [1-4] that consists of wearable and/or 
implantable smart sensors has been an important front-end 
platform for collecting PHRs, and cloud-enabled healthcare 
services are becoming a general trend in the development of 
information infrastructure for healthcare. 

A number of organizations and working groups have been 
developing standards and guidelines specifically for 
transmission and preservation of health data, such as Digital 
Imaging and Communications in Medicine (DICOM) [5] for 
Electronic Medical Records (EMRs) and Health Level 7 
Communication  Standard  (HL7)  [6]  for  Electronic  Health 
Records  (EHRs)  and  PHRs.  As  ICT  based  digital  health 

 
activities are becoming ubiquitous in our society, it is 
recognized that real benefits from digital health are dependent 
on a secure, robust and reliable organizational and technical 
framework to enable continuity of healthcare. However, a 
recent survey [7] investigating the major PHR systems on the 
market discovered that almost none of the PHRs use existing 
medical standards for the storage and communication of their 
data, which also indicated that the interconnection of large- 
scale digital health systems is still at an early stage. 

As PHRs can reveal sensitive information including 
psychological disorders and diseases, they are vulnerable to 
malicious attacks during transmissions and even in cloud 
environments, in spite of the fact that most of today's mobile 
devices use some forms of secure communication methods [8- 
10]. With a growing trend in healthcare, including wireless 
networking, health information exchange and cloud computing, 
sensitive health records may become increasingly vulnerable to 
security and privacy risks. Though it is now well accepted that 
health data must be protected end-to-end while it is at source,  
in transit, or in use in applications or databases, it is a big 
challenge to ensure patient privacy and data security while 
retaining data quality and availability. 

It is known that patients will be more willing to accept 
wireless wearable sensors or accept Internet-enabled healthcare 
services if they trust that their healthcare data is kept private 
and secure. To address potential security vulnerabilities of 
BSNs in open environments, extensive work has been 
conducted in the past few years for the cryptographic key 
management at the link layer of BSNs [11-13]. Unfortunately, 
secure transmission of data might not be ensured from a 
network design perspective due to complex network 
infrastructures of the pervasive healthcare system. Therefore, it 
is worth designing new protection schemes from the 
perspective of the data itself. 

To address the potential security risks of healthcare data in 
cloud based applications, our previous work [14] has proposed 
a method of data partitioning and scrambling as an add-on 
security mechanism in the application layer for a variety of 
healthcare data, where a tiny part of the original data is used to 
scramble the remaining part. The tiny part is kept locally while 
the remaining part under extra security protection is sent to 
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In this work, the method of data scrambling is further 
improved in terms of security performance and practicability. 
Detailed theoretical and experimental analyses on the 
computational complexity as well as security performance are 
carried out to demonstrate the effectiveness the proposed 
method. The method can be applied to scenarios where either 
network-level security cannot be ensured because of complex 
network environments, or extra security is required. 

The remainder of the paper is organized as follows. In 
Section II, the background of application-layer security and 
existing work related to data scrambling are briefly introduced. 
In Section III, the proposed data scrambling method is 



explained, followed by theoretical and experimental analyses 
in terms of security performance and computational 
complexity in Section IV. Finally, a conclusion is given in 
Section V. 

II. BACKGROUND 

A. Digital Health System in Security Risks 
Recent years have witnessed significant global growth in 

the mobile-health application market, as smart-phones have 
become a ubiquitous tool of life in both developed and 
developing countries. More smart-phone users will be willing 
to use mobile health applications, as it provides an opportunity 
for health self-management. With advances in wearable and 
implantable medical devices, there will be more new mobile 
health applications available that could bring PHRs into the 
heart of clinical practice, where EHRs or EMRs collected and 
maintained by the healthcare providers are implemented. This 
requires the interoperability of PHRs and EHRs/EMRs among 
the interconnected digital health systems, where big data 
analytics and cloud computing for efficient data analysis and 
storage are essentially needed [15]. It will hopefully lead to a 
new era of personalized healthcare and medicine by 
incorporating relevant big data with patient specific 
information extracted from PHRs/EHRs including genomic 
data. 

The Food and Drug Administration (FDA) of the U. S. 
Government states that the correct, timely, and secure 
transmission of medical data and information is important for 
the safe and effective use of both wired and wireless medical 
devices and device systems [16]. Health Insurance Portability 
and Accountability Act (HIPAA) and its enhanced version, i.e. 
Health Information Technology for Economic and Clinical 
Health (HITECH) Act, established a set of rules and 
regulations covering a variety of entities, protecting 
EMR/EHRs from being disclosed without a patient’s consent 
[17-18]. However, whilst many research projects worldwide 
are investigating applications of new technologies to pervasive 
healthcare solutions, security and reliability of these 
technologies is an area that requires further exploration.  

It was reported that malicious groups had attempted to hurt 
patients via computer-based attacks [19]. For example, 
someone using low-cost equipment could wirelessly 
communicate with the Implantable Cardioverter Defibrillators 
(ICD) to modify settings on the ICD, which can cause the 
device to issue a large shock and learn private information 
about the patient. With advances in biomedical engineering, 
there will be an increasing number of tiny implantable devices 
available in the near future, but unfortunately, none of these 
disciplines currently ensure that these implantable devices are 
robust against adversarial entities. 

B. Application-Layer Security 
Current strategies of application-layer security focus on the 

following aspects, i.e., securing data at its source, applying 
application-layer controls across the network, and enforcing 
controls at the endpoints, among which the first aspect is of 
most importance [20]. Data scrambling is a method that 
obfuscates or removes sensitive data [21,22], and is regarded 
as one of the important security add-ons for application-
oriented networking scenarios. In advanced cryptography 

systems, data scrambling is an important idea for non-secret 
encryption. 

Recent studies of data scrambling are mostly related to 
visual applications. For example, pixel intensity value 
prediction has been widely employed as an image processing 
technique for pixel de-correlation purposes in various 
applications. In [23], Checkerboard Based Prediction (CBP) 
was proposed as an efficient pixel estimation technique for 
various applications, including de-correlation, compression 
and data embedding. The method of CBP follows three steps. 
First, every other row and column of pixels are stored to be 
utilized as the reference points to predict the rest of the pixels, 
i.e., 25% of the pixels in raw values are stored to predict the 
remaining 75%. Then, pixel value estimation is invoked in two 
passes. In the first pass, pixels are predicted using its diagonal 
pixels by calculating the average. In the second pass, the 
remaining pixels are predicted using its aligned pixels by 
calculating the average. The key feature of the method is to use 
a small part of reference pixels, i.e., 25% of the pixel kept in 
raw values, to predict the remaining pixels.  

However, the existing methods of data scrambling are not 
used directly for the purpose of encryption because of 
insufficient randomness. Considering the sensitive healthcare 
information in cloud environments, we proposed in [14] a 
special data scrambling method for healthcare application, 
where a small part of data is used to scramble the remaining 
data for the purpose of encryption. In this work, the method 
has been improved in terms of security performance and 
practicability. To the best of the authors’ knowledge, it is the 
first method of applying data scrambling to data encryption 
with a performance requirement of real-time computing. 

III. THE PROPOSED METHOD 

A. System Model 
From the point of view of practical applications, it is 

required that PHRs collected from subjects in healthcare 
service should be securely transmitted to remote servers, which 
can be, for example, public cloud servers, and at the same time 
should be securely shared among a group of authorized 
persons, including healthcare professionals, subjects and their 
family members. Due to potential security risks in public cloud 
services, we propose a system model at the application layer, 
where the sensitive data is scrambled by a tiny piece of data 
pre-shared by authorized partied before being sent to a remote 
server. As shown in Fig. 1, a tiny piece of data is used for 
scrambling and de-scrambling the sensitive data, and the 
scrambled format of data in the remote server prevents 
unauthorized access to plaintext data.  

The system model can be built upon any existing security 
mechanisms that might have been standardized in a variety of 
communication protocols, such as IEEE Standard 802.15.1 and 
802.15.4. To make it more flexible, we call the data for both 
scrambling and de-scrambling the ‘tiny data’ while not ‘key’ 
because it can be closely related to data attributes. For example, 
the ‘tiny data’ can be the same for the same type of sensitive 
data, while different for different data types. In this work we 
focus on the data scrambling method and assume that ‘tiny 
data’ is securely shared by authorized parities.  



 
Fig. 1. System model at the application layer 

B. Overall Flow of Scrambling Method 
The overall flow of the proposed data scrambling method 

is depicted in Fig. 2. To start with, the tiny data, denoted as td, 
is self-scrambled using a function fss. The self-scrambled result, 
denoted as dtc , has the same bit length as the original data. 
From practical considerations, the self-scrambled result of 
‘tiny data’ should be stored locally for future use. Afterwards, 
a non-uniform partitioning function fp and a chain-scrambling 
function fcs are sequentially carried out for the sensitive data 
for remote storage. For the first block, its length is determined 
by the Hamming weight of dtc , and the block is scrambled by 

dtc . For each of the subsequent blocks, the block length is 
determined by the Hamming weight of the previous scrambled 
block, and the current block is scrambled by the previous 
scrambled block. The functions of fss, fp, and fcs will be detailed 
in the subsections. 

 
Fig. 2.  Overall flow of the proposed data scrambling method 

An advantage of the proposed scrambling method is that 
the lengths of data blocks are varying, which makes it much 
harder to attack. To further improve the security level and 
make the method widely applicable to a variety of data, the 
process of data scrambling can be repeated to completely 
eliminate statistical characteristics. The trade-off between 
security level and computational complexity will be analyzed 
in Section IV.  

C. Self-Scrambling of the Tiny Data 
The tiny data can be derived from a random number 

generator or even a piece of physiological data readily 
available at the transmitter. As it may not be random, the 
function of self-scrambling depicted in Fig. 3 is deployed, 
which aims to reduce statistical characteristics as much as 
possible. 

In Fig. 3 the function fss is a bitwise operation and the size 
of ib  is set to one byte for convenience, thus it can be expressed 
as 

¯
®
­

 �
t�c

 c �

)1(
)2(1

ibb
ibb

b
ik

ii
i                                       (1) 

where �  represents the operation of exclusive OR. The 
statistical analysis of the difference between td and dtc  will be 
given in Section IV. 
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Fig. 3.  Illustration of self-scrambling function fss for the tiny data 

D. Partitioning and Scrambling Method 
The non-uniform partitioning function fp and chain-

scrambling function fcs are sequentially carried out for the 
sensitive data, as shown in Fig.4. The size of the first block B1 
is determined by the Hamming weight of the scrambled tiny 
data dtc , i.e., 

minminmax )1mod()(
1

LLLtwl dB ���c                    (2) 
where 

1Bl  is the size of B1 in bytes, )(�w  represents the 
Hamming weight of a binary sequence, Lmax and Lmin is the 
maximum and minimum size in bytes for the partitioning 
process, respectively. An analysis of Lmax and Lmin will be 
given later. The first block is then scrambled by dtc  as 

dtBB c� c 11                                               (3) 
where �  represents the operation of exclusive OR, and 1Bc  has 
the same size as 1B .  
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Fig. 4.  Illustration of block partitioning and chain-scrambling 

As the sizes of 1B  and dtc  are usually different, in Eq. 3 dtc  
should be used cyclically if it is shorter than 1B . To reduce 
statistical characteristics, prior to the exclusive OR operation, a 
bitwise reverse of B1 is performed if the Hamming weight of 
B1 is odd. For example, if the binary format of B1 is 
0010001000000001, it will be revered before the exclusive OR 
operation in Eq. 3 because its Hamming weight is 3. It should 
be noted that the condition can be odd or even Hamming 
weight, depending on the protocol design.  

The size of the subsequent block Bi is determined by the 
Hamming weight of the previous scrambled block, i.e., 

)2()1mod()( minminmax1 t���c � iLLLBwl iBi
    (4) 

The partitioning process ensures that the data is separated in a 
random way so that the block sizes vary randomly in the range 
of ],[ maxmin LL  and cannot be predicted without knowing the 



tiny data. It is then scrambled by its previous scrambled block 
as 

)2(1 tc� c � iBBB iii                            (5) 
where �  represents the operation of exclusive OR, and iBc  has 
the same size as iB . Similar to Eq. 3, 1�ciB  should be used 
cyclically if it is shorter than iB . To reduce statistical 
characteristics, prior to the exclusive OR operation, a bitwise 
reverse of iB  is also performed if its Hamming weight is odd. 

E. Data Descrambling Process 
In this subsection, the descrambling process by any 

authorized user holding the ‘tiny data’ will be detailed. Fig. 5 
depicts the process of data descrambling. To start with, the tiny 
data is self-scrambled using the function fss. The self-
scrambled result will be stored locally for future use. 
Afterwards, a non-uniform partitioning of the scrambled data 
and a chain-descrambling are sequentially carried out, similar 
to the process of data scrambling. 

dt c

iB c

 
Fig. 5.  Illustration of the data descrambling process 

The size of the first block 1Bc  is calculated as 
minminmax )1mod()(

1
LLLtwl dB ���c c  

Then, the descrambling of the first block is done as 
dtBB c�c 11  

where 1B  has the same size as 1Bc , dtc  is used cyclically if it is 
shorter than 1Bc , and a bitwise reverse of 1Bc  is performed prior 
to the exclusive OR operation if the Hamming weight of 1Bc  is 
odd. 

The size of the subsequent block )2( tc iBi  is calculated as  
minminmax1 )1mod()( LLLBwl iBi

���c �c  
The block iBc  is then descrambled by its previous block 1�ciB  as 

1�c�c iii BBB  
where iB  has the same size as iBc , 1�ciB  is used cyclically if it is 
shorter than iBc . Afterwards, the Hamming weight of iB  is 
checked. If it is odd, a bitwise reverse will be performed. If the 
process of data scrambling is repeated, the process of data 
descrambling should also be repeated to recover the original 
data. To check if the recovered data is the same as the original 
data, a message authentication code can be easily applied 
without a significant increase in computational cost. 

IV. ANALYSIS AND EXPERIMENTS 

A. Parameter Configuration 
To prevent parallel attacks using existing network 

technologies, the sizes of data blocks are designed to vary in 
the range of ],[ maxmin LL  as given in Eq. 4, i.e., 

minminmax1 )1mod()( LLLBwl iBi
���c �  

where Lmin and Lmax are the minimum and maximum sizes of 
the data blocks in bytes, respectively. Since the size of 1�ciB  is 
in the range of ],[ maxmin LL , the averaged Hamming weight of 

1�ciB  in a statistical sense is 
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Therefore, the statistically averaged result of the modulo 
operation in Eq. 4 will be  
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In order to get a statistically even distribution, it is required 
that ��� ��t� minmaxmin LLL , i.e., 

�� �d minmax LL                                                    (8) 
Thus, the configuration of Lmin and Lmax has to meet the 
requirement in Eq. 8. 

Regarding the size of ‘tiny data’, it is reasonable to set it in 
the range of ],[ maxmin LL . As mentioned before, ‘tiny data’ can 
be different for different types of healthcare data. It can also 
embed subject information and time information for different 
time periods. Therefore, there will be more than one single 
‘tiny data’ needed if a variety of healthcare data is in service. 
Therefore, a larger size of ‘tiny data’ will result in an increase 
in the local storage, which though improves the security level. 
From a security point of view, it is suggested that the size of 
‘tiny data’ should be set to no less than 32 bytes. The reason 
for this setting will be given in the next subsection. 

B. Security Analysis 
Our security analysis is based on the assumption that an 

attacker has obtained the scrambled data from the remote 
server or any communication links. Since it does not have the 
‘tiny data’ for descrambling, a brute-force attack is 
unavoidable. If the ‘tiny data’ is random, the brute-force attack 
on td will averagely take )18(2 �udtl  times of search. For each 
attack attempt, the attacker needs to calculate the size of the 
first block and to do the exclusive OR operation. For example, 
if 

dt
l  is set to 32 in bytes, which is the suggested minimum size 

value for ‘tiny data’ as described in the previous subsection, 
the average number of attack attempts will be 2552 .  

The extreme case for the ‘tiny data’ is that a piece of 
physiological data is directly used. Because the statistical 
characteristics of physiological data are well known, the search 
space of attacks will be reduced to a limit value, e.g. 38)317( 22  � , 
provided that the size of ‘tiny data’ is set to 32 bytes. 
Therefore, if physiological data is used as the ‘tiny data’, the 
size should be significantly increased to ensure the difficulty of 
attacks. From performance considerations, the priority is to set 



‘tiny data’ to a random number with other useful information 
embedded.  

On the other hand, it is more difficult to attack directly on 
the scrambled data because statistical characteristics are 
eliminated by the unique scrambling process and more 
importantly, the size of each data block may vary randomly, 
which can greatly increase the difficulty of attacks and 
efficiently prevents parallel attacks using up-to-date network 
computing technologies. 

More analysis of security performance from the 
perspective of experiments will be given later. 

C. Complexity Analysis 
The proposed method contains four types of operations, 

including exclusive OR operation for both self-scrambling and 
chain-scrambling, Hamming weight calculation for both data 
partitioning and bitwise reverse trigger, modulo operation for 
data partitioning, and bitwise reverse operation. All the 
operations are with low complexity, and the computational 
complexity of the proposed method is O(n).  

Regarding space complexity, which is the measure of the 
amount of storage space temporarily occupied by an algorithm, 
as there is no change of temporary space regardless of the 
amount of data to be processed, the space complexity of the 
proposed method is a constant and thus can be expressed as 
O(1). More complexity analysis from the perspective of 
experiments will be given in the subsection IV.D. 

D. Experimental Analysis 
y Real-time performance 

An experimental system was set up in laboratory to 
evaluate the real-time performance of the proposed method, as 
shown in Fig. 6. Electrocardiogram (ECG) data acquired by a 
mini holter was transferred via Bluetooth links to the subject’s 
mobile phone, where the proposed method was deployed to 
scramble the healthcare data. The scrambled data was further 
transferred via Wi-Fi and a wired local area network to a cloud 
server for storage. The descrambling process was deployed at a 
laptop for data recovery. 

The A/D converter in the mini holter has a sampling rate of 
250 Hz and a resolution of 12 bits. The models of mobile 
phone and laptop computer are HuaWei P9 with Android 6.0, 
Lenovo X1 Carbon with Windows 7, respectively. A specific 
APP for data scrambling and descrambling was developed for 
both Android and Windows operation systems, with a stamp 
technique for time tracking. 

For uplink communications at a subject’s mobile phone, 
i.e., ECG data collected and transferred to the local server, the 
time delay between packet receiving and forwarding was 
investigated. Only Bluetooth/Wi-Fi connections and the 
specific APP were running during the experiments.  

For downlink communications at user’s laptop, i.e., ECG 
data received from the server, the time delay between packet 
receiving and data display was investigated. Only Wi-Fi 
connections and the specific APP were running and all 
unnecessary processes were terminated at the laptop during the 
experiments.  

For both uplink and downlink experiments, a number of 8 
trials were carried out, and for each trial, 90K bytes of ECG 
data was tested. Results of average time delay with standard 
deviations are given in Table I. For the uplink experiments, the 
time delay between data receiving and forwarding is about 243 

seconds for 90K-byte ECG data, which is mainly because of 
the acquisition rate at the side of mini holter. There is very 
slight difference between the cases with and without the 
method deployment. For the downlink experiments, the time 
delay between data receiving and display is only about 0.7 
seconds, which benefits from fast Wi-Fi communications. As 
comparison, the deployment of the proposed method 
contributed to 0.2 seconds more time delay. It can be 
concluded from the experimental results that the proposed 
method has no significant effect on real-time performance. 

 
Fig. 6. Architecture of the experimental system 

Table I. Experimental results of time delay 

Condition
 
Method 

Uplink time delay between 
data receiving and forwarding, 
averagefSD in seconds 

Downlink time delay between 
receiving and displaying data, 
averagefSD in seconds 

with 244 ± 41 0.90 ± 0.12
w/o 243 ± 36 0.72 ± 0.07

y Randomness performance 
To better demonstrate the randomness of the scrambled 

results, detailed performance analyses using the MIT-BIH 
database and self-built physiological databases have been 
carried out in this study. Specifically, ECG signals from both 
MIT-BIH arrhythmia database and our elf-collected database 
from healthy subjects are used. All data were converted into 
decimal format based on a quantization resolution of 8 bits. 

To evaluate the randomness of self-scrambled tiny data 
generated from physiological data, the autocorrelation 
coefficient is performed, i.e., 

)]()([)( WW �
 txtxER                               (9) 
which shows how strongly the data under investigation is 
related to itself. The autocorrelation coefficients were 
calculated on both the original tiny data and its self-scrambled 
results. In general, the higher the correlation coefficient is, the 
stronger the relationship is. As shown in Table II, the 
autocorrelation coefficients of the self-scrambled results had 
been significantly decreased. Generally, if the correlation 
coefficient is less than 0.1, it means that there is a random or 
nonlinear relationship. 

 
Furthermore, two examples of original tiny data and its 

self-scrambled result, as well as their autocorrelation 
coefficients, are depicted in Fig. 7 for easy comparison. The 
example of original tiny data on the left was with little changes, 
while the one on the right comes with an R wave. Both of the 
extreme cases indicated acceptable randomness of self-
scrambled results, and thus the performance stability of the 
self-scrambling can be confirmed. 

Table II.  Comparison of autocorrelation coefficients before/after self-
scrambling of the tiny data from physiogical signals (Ĳ= 1) 

 Round 1 Round 2 Round 3
MIT-BIH 
arrhythmia 
database 

0.7789±0.0236 -0.0272±0.0063 -0.0060±0.0284 

Self-built
ECG database 0.8012±0.0158 -0.0181±0.0095 -0.0073±0.0196 



 
Regarding block sizes during the partitioning process, 

autocorrelation coefficients were also used to demonstrate its 
randomness. Fig. 8 shows an example of calculated block 
lengths in bytes and their autocorrelation coefficients while 
Lmin and Lmax is set to 32 and 64, respectively. It can be seen 
that most of the autocorrelation coefficients when Ĳ>0 are less 
than 0.2, which demonstrate good independency among block 
sizes calculated with Eq. 2&4. 

Examples of scrambled data for cloud storage and their 
autocorrelation coefficients are shown in Fig. 9. As can be seen 
from the figure, both results from round-1 scrambling and 
round-2 scrambling have good independency among the 
scrambled data. Based on the autocorrelation evaluation, there 
is no significant difference between the results from 1-round 
and 2-round scrambling, which actually demonstrate the 
effectiveness of the proposed method. 

To further assess if the statistical characteristics of the 
original data can be eliminated after being scrambled, the 
randomness test using NIST standards has been carried out. A 
total of 5000 samples were randomly selected, and the numeric 
results of randomness tests are given in Table III. It can be 
seen from the table that a good randomness performance has 
been achieved, regardless of the number of rounds. Therefore, 
for most of the physiological data, a single round of 
scrambling is sufficient, though more rounds can result in a 
higher security level as it needs more attack efforts. 

 

 

 
E. Application to Image Data 

To apply the proposed method to high-dimensional data, 
such as images and cine sequences, it is suggested to perform 
data compression and dimensional transform prior to the 
scrambling process, as shown in Fig. 10. Benefiting from the 
block-chaining design of the proposed method, the processes 
of dimensional conversion and data scrambling can be done 
almost synchronously. An example of image scrambling with 
BMP format is shown in Fig. 11, where pixels were input line 
by line. 

 
In total, 2 rounds of scrambling process were carried out 

with different ranges of block lengths, [32, 64] or [64, 128] in 
bytes, and the sizes of tiny data obtained from the original 
image were set to 32 and 64 bytes, respectively. For 
experimental demonstration, only pixel data is scrambled while 
the file header remains as plaintext. Normal encryption 
schemes can also be applied to the file header for additional 
security. The scrambled results of the tiny data and the 
remaining data are merged together for image display. It can 
be seen from the figure that although there is a lot of redundant 
information in images with BMP format, the scrambling 
results using the proposed method still have the characteristics 

Table III.  Numeric results of randomness tests using the NIST standards 

Database Num of 
rounds 

Percentage of passing the test 
Cusum test Freq. test 

MIT-BIH 
1 99.14% 97.90% 
2 99.27% 97.56% 
3 99.31% 97.12% 

Self-built 
ECG 

database 

1 99.66% 96.23% 
2 99.52% 97.58% 
3 99.91% 96.92% 

(a)                                                       (b) 

Fig. 8.  Examples of vaying block sizes in the range of [32, 64] (a. 
distribution of block sizes; b. autocorrelation coefficients)

Fig. 10.  Process flowchart of high-dimensional data 

            (a) 

             (b) 
Fig. 7.  Physiological tiny data and its scrambled results (a. signals; b. 

autocorrelation coefficients; ‘-‘ for original, ‘+’ for 1-rnd, ‘*’ for 2-rnd)

(a) 

(b) 
Fig. 9.  Examples of scrambling results (a) and autocorrelation coefficients 

(b) (Lmin=32, Lmax=64; left: 1-round; right: 2-round)



of good independency. Moreover, the difference of ranges in 
block sizes does not affect the scrambling results. 

 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 11.  Examples of scrambling results with BMP image (a. original image; 

b. illustration of pixel scan pattern; c. round-1 with length range [32, 64]; d. 

round-2 with length range [32, 64]; e. round-1 with length range [64, 128]; f. 

round-2 with length range [64, 128]). 

A type of autocorrelation based on neighborhoods can be 
calculated as 

R = (E[ xij * x(i-1) j ] + E[ xij * x(i+1) j ] + E[ xij * xi ( j -1) ] + E[ xij * xi ( j +1) ]) 4 (10) 
where xij represents an arbitrary pixel that is not on the image 
edge. As shown in Table IV, there is no obvious difference 
among the results of autocorrelation calculation for different 
ranges of block sizes as well as the round index. Therefore, it   
is suggested that the configuration of block sizes and round 
index will be only dependent on the security level that the 
system needs to achieve. 

Table IV. Autocorrelation coefficients of scrambled BMP images 
 

 

   lengh range channel round-1 round-2 round-3  
 R 0.0073 0.0113 0.0020 

[32, 64] G 0.0030 0.0306 0.0117 

 B 0.0222 0.0193 0.0107 

 R 0.0033 0.0285 0.0027 

[64,128] G 0.0220 0.0204 0.0055 

  B 0.0011 0.0008 0.0155  

 

V. CONCLUSION 

In this paper, a novel method of signal scrambling has been 
proposed for securing sensitive healthcare data, where a tiny 
piece of data is used to partition and scramble the healthcare 
data for extra protection. The scrambled data is sent for cloud 
storage, while the tiny data is kept locally for data retrieval. As 
a security add-on at the application layer, the method can be 
easily embedded into any existing communication systems. 
Both theoretical and experimental analyses have been carried 
out to demonstrate the computational complexity and security 
performance of the method, especially the randomness 

characteristics of scrambling results. It is also demonstrated 
that the proposed method can be deployed flexibly with any 
kind of data that require strengthened security protection. The 
promising method can be applied to scenarios where either 
network-level security cannot be ensured because of complex 
network environments, or extra security is required for 
sensitive data, such as healthcare information. In future,  
studies on the management of local database will be carried out 
to make the method suitable for practical and easy use. 

REFERENCES 

[1] G.Z. Yang, “Body sensor networks”, Second Edition, Springer, 2014, 

ISBN 978-1-4471-6374-9. 

[2] B.P.L. Lo, I. Henry, G.Z. Yang, “Transforming health care: body sensor 

networks, wearables, and the Internet of things,” IEEE Pulse, 2016, 7(1): 

4–8. 

[3] Y.L Zheng, X.R. Ding, C.C.Y. Poon, et al., “Unobtrusive sensing and 

wearable devices for health informatics,” IEEE Transactions on 

Biomedical Engineering, 2014, 61(5): 1538–1554. 

[4] C.C.Y. Poon, Y.T. Zhang, S.D. Bao, “A novel biometrics method to 

secure wireless body area sensor networks for telemedicine and m- 

health,” IEEE Communications Magazine, 2006, 44(4):73–81. 

[5] M. Vossberg, T. Tolxdorff, D. Krefting, “DICOM image communication 

in globus-based medical grids,” IEEE Transactions on Information 

Technology in Biomedicine, 2008, 12(2): 145–153. 

[6] E. Park, H.S. Nam, “A service-oriented medical framework for fast and 

adaptive information delivery in mobile environment,” IEEE 

Transactions on Information Technology in Biomedicine, 2009, 13(6): 

1049–1056. 

[7] A. Helmer, M. Lipprandt, T. Frenken, et al., “Empowering patients 

through personal health records: a survey of existing third-party web- 

based PHR products, ” Electronic Journal of Health Informatics, 2011, 

6(3):1–19. 

[8] S. Subashini, V. Kavitha, “A survey on security issues in service delivery 

models of cloud computing,” Journal of Network and Computer 

Applications, 2011, 34(1): 1–11. 

[9] R.H. Weber, “Internet of things – new security and privacy challenges,” 

Computer Law & Security Review, 2010, 26(1): 23–30. 

[10] A.J. Jara, M.A. Zamora, A.F.G. Skarmeta, “An architecture based on 

internet of things to support mobility and security in medical 

environments,” Proceedings of 7
th
 IEEE Consumer Communications and 

Networking Conference, 2010, pp: 1–5. 

[11] S.D. Bao, C.C.Y. Poon, Y.T.Zhang, and L.F. Shen, “Using the Timing 

Information of Heartbeats as an Entity Identifier to Secure Body Sensor 

Network,” IEEE Transactions on Information Techonology in 

Biomedicine, 2008, 12(6): 772–779. 

[12] K.K. Venkatasubramanian, A. Banerjee, S.K.S. Gupta, “PSKA: Usable 

and secure key agreement scheme for body area networks,” IEEE 

Transactions on Information Technology in Biomedicine, 2010, 14(1): 

60–68. 

[13] Tadapaneni, N. R. (2016). Overview and Opportunities of Edge 

Computing. Social Science Research Network.  

[14] S.D. Bao, Y. Lu, Y.K Yang, et al., “A data partitioning and scrambling 

method to secure cloud storage with healthcare applications,”Proceedings 

of IEEE International Conference on Communications, 2015, London, 

United Kingdom, pp. 2075–2079. 

[15] J. Andreu-Perez, C.C.Y. Poon, R.D. Merrifield, et al., “Big data for 

health,” IEEE Journal of Biomedical and Health Informatics, 2015, 19(4): 

1193–1208. 

[16] FDA of U.S., “Radio frequency wireless technology in medical devices,” 

https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandG 

uidance/GuidanceDocuments/ucm077272.pdf, 2013. 

[17] Tadapaneni, N. R. (2018). Cloud Computing: Opportunities And 

Challenges. International Journal of Technical Research and 

Applications. 

[18] G.J. Annas, “HIPPA regulations – A new era of medical-record privacy,” 

The New England Journal of Medicine, 2003, 348(15): 1486–1490. 

[19] D. Blumenthal, “Launching HITECH,” The New England Journal of 

Medicine, 2010, 362(5): 382–385. 



[20] T. Denning, K. Fu, T. Kohno, “Absence makes the heart grow fonder: 

new directions for implantable medical device security,” Proceedings of 

3
rd

 USENIX Workshop on Hot Topics in Security, 2008, San Jose, CA, 

USA, pp. 1–7. 

[21] J. Granjal, E. Monteiro, J.S. Silva, “Application-layer security for WoT: 

extending CoAP to support end-to-end message security for internet- 

integrated sensing applications,” Proceedings of International Conference 

on Wired/Wireless Internet Communication, 2013, pp. 140–153. 

[22] F. Miao, S.D. Bao, Y. Li, “Biometric key distribution solution with 

energy distribution information of physiological signals for body 

sensor network security,” IET Information Security, 2013, 7(2):87–96. 

[23] Rao, M. L., Gulraiz, J. J., Farooq, A., & Rehman, S. (2017). Future 

Challenges, Benefits of Internet of Medical Things and Applications in 

Healthcare Domain. 

[24] G.D. Ye, “Image scrambling encryption algorithm of pixel bit based on 

chaos map,” Pattern Recognition Letters, 2010, 31(5): 347–354. 

[25] A. Ibaida, I. Khalil, “Wavelet-based ECG steganography for protecting 

patient confidential information in point-of-care systems,” IEEE 

Transactions on Biomedical Engineering, 2013, 60(12): 3322–3330. 

[26] R.M. Rad, K. Wong, R. Moradi, et al., “A unified data embedding and 

scrambling method,” IEEE Transactions on Image Processing, 2014, 

23(4): 1463–1475. 

[27] Fatima, S. S., Alsaadi, F., & Ahmad, A. A Comprehensive Review on 

Cloud Computing Security Issues. 

[28] Abdullah, A., Phamhung, P., & Namhuh, E. (2017). An Architecture of 

Thin Client in Internet of Things and Efficient Resource Allocation in 

Cloud for Data Distribution. The International Arab Journal of 

Information Technology, 14. 


