
Secure Healthcare Applications Data Storage
in Cloud Using Signal Scrambling Method

DiBao Shu, Meng Chen, Guang Yang Z.

Abstract—A body sensor network that consists of wearable
and/or implantable biosensors has been an important front-end
for collecting personal health records. It is expected that the full
integration of outside-hospital personal health information and
hospital electronic health records will further promote
preventative health services as well as global health. However, the
integration and sharing of health information is bound to bring
with it security and privacy issues. With extensive development of
healthcare applications, security and privacy issues are becoming
increasingly important. This paper addresses the potential
security risks of healthcare data in Internet based applications,
and proposes a method of signal scrambling as an add-on security
mechanism in the application layer for a variety of healthcare
information, where a piece of tiny data is used to scramble
healthcare records. The former is kept locally whereas the latter,
along with security protection, is sent for cloud storage. The tiny
data can be derived from a random number generator or even a
piece of healthcare data, which makes the method more flexible.
The computational complexity and security performance in terms
of theoretical and experimental analysis has been investigated to
demonstrate the efficiency and effectiveness of the proposed
method. The proposed method is applicable to all kinds of data
that require extra security protection within complex networks.

Keywords—Healthcare data; cloud; security; data scrambling

I. INTRODUCTION

With the development of emerging biosensor and mobile
computing technologies, outside-hospital Personal Health
Records (PHRs) that can be easily self-managed by end-users
will experience an exponential growth. The Body Sensor
Network (BSN) [1-4] that consists of wearable and/or
implantable smart sensors has been an important front-end
platform for collecting PHRs, and cloud-enabled healthcare
services are becoming a general trend in the development of
information infrastructure for healthcare.

A number of organizations and working groups have been
developing standards and guidelines specifically for
transmission and preservation of health data, such as Digital
Imaging and Communications in Medicine (DICOM) [5] for
Electronic Medical Records (EMRs) and Health Level 7
Communication Standard (HL7) [6] for Electronic Health
Records (EHRs) and PHRs. As ICT based digital health

activities are becoming ubiquitous in our society, it is
recognized that real benefits from digital health are dependent
on a secure, robust and reliable organizational and technical
framework to enable continuity of healthcare. However, a
recent survey [7] investigating the major PHR systems on the
market discovered that almost none of the PHRs use existing
medical standards for the storage and communication of their
data, which also indicated that the interconnection of large-
scale digital health systems is still at an early stage.

As PHRs can reveal sensitive information including
psychological disorders and diseases, they are vulnerable to
malicious attacks during transmissions and even in cloud
environments, in spite of the fact that most of today's mobile
devices use some forms of secure communication methods [8-
10]. With a growing trend in healthcare, including wireless
networking, health information exchange and cloud computing,
sensitive health records may become increasingly vulnerable to
security and privacy risks. Though it is now well accepted that
health data must be protected end-to-end while it is at source,
in transit, or in use in applications or databases, it is a big
challenge to ensure patient privacy and data security while
retaining data quality and availability.

It is known that patients will be more willing to accept
wireless wearable sensors or accept Internet-enabled healthcare
services if they trust that their healthcare data is kept private
and secure. To address potential security vulnerabilities of
BSNs in open environments, extensive work has been
conducted in the past few years for the cryptographic key
management at the link layer of BSNs [11-13]. Unfortunately,
secure transmission of data might not be ensured from a
network design perspective due to complex network
infrastructures of the pervasive healthcare system. Therefore, it
is worth designing new protection schemes from the
perspective of the data itself.

To address the potential security risks of healthcare data in
cloud based applications, our previous work [14] has proposed
a method of data partitioning and scrambling as an add-on
security mechanism in the application layer for a variety of
healthcare data, where a tiny part of the original data is used to
scramble the remaining part. The tiny part is kept locally while
the remaining part under extra security protection is sent to

 designated clouds.
Shu DiBao is both with the School of Electronic and Information

Engineering, Ningbo University of Technology, Ningbo 315211, China, and

the Hamlyn Centre, Imperial College London, London SW7 2AZ, United

Kingdom

M. Chen is with the School of Electronic and Information Engineering,

Ningbo University of Technology, Ningbo 315211,

G.Z. Yang is with the Hamlyn Centre, Imperial College London, London

SW7 2AZ, United Kingdom

In this work, the method of data scrambling is further
improved in terms of security performance and practicability.
Detailed theoretical and experimental analyses on the
computational complexity as well as security performance are
carried out to demonstrate the effectiveness the proposed
method. The method can be applied to scenarios where either
network-level security cannot be ensured because of complex
network environments, or extra security is required.

The remainder of the paper is organized as follows. In
Section II, the background of application-layer security and
existing work related to data scrambling are briefly introduced.
In Section III, the proposed data scrambling method is

explained, followed by theoretical and experimental analyses
in terms of security performance and computational
complexity in Section IV. Finally, a conclusion is given in
Section V.

II. BACKGROUND

A. Digital Health System in Security Risks
Recent years have witnessed significant global growth in

the mobile-health application market, as smart-phones have
become a ubiquitous tool of life in both developed and
developing countries. More smart-phone users will be willing
to use mobile health applications, as it provides an opportunity
for health self-management. With advances in wearable and
implantable medical devices, there will be more new mobile
health applications available that could bring PHRs into the
heart of clinical practice, where EHRs or EMRs collected and
maintained by the healthcare providers are implemented. This
requires the interoperability of PHRs and EHRs/EMRs among
the interconnected digital health systems, where big data
analytics and cloud computing for efficient data analysis and
storage are essentially needed [15]. It will hopefully lead to a
new era of personalized healthcare and medicine by
incorporating relevant big data with patient specific
information extracted from PHRs/EHRs including genomic
data.

The Food and Drug Administration (FDA) of the U. S.
Government states that the correct, timely, and secure
transmission of medical data and information is important for
the safe and effective use of both wired and wireless medical
devices and device systems [16]. Health Insurance Portability
and Accountability Act (HIPAA) and its enhanced version, i.e.
Health Information Technology for Economic and Clinical
Health (HITECH) Act, established a set of rules and
regulations covering a variety of entities, protecting
EMR/EHRs from being disclosed without a patient’s consent
[17-18]. However, whilst many research projects worldwide
are investigating applications of new technologies to pervasive
healthcare solutions, security and reliability of these
technologies is an area that requires further exploration.

It was reported that malicious groups had attempted to hurt
patients via computer-based attacks [19]. For example,
someone using low-cost equipment could wirelessly
communicate with the Implantable Cardioverter Defibrillators
(ICD) to modify settings on the ICD, which can cause the
device to issue a large shock and learn private information
about the patient. With advances in biomedical engineering,
there will be an increasing number of tiny implantable devices
available in the near future, but unfortunately, none of these
disciplines currently ensure that these implantable devices are
robust against adversarial entities.

B. Application-Layer Security
Current strategies of application-layer security focus on the

following aspects, i.e., securing data at its source, applying
application-layer controls across the network, and enforcing
controls at the endpoints, among which the first aspect is of
most importance [20]. Data scrambling is a method that
obfuscates or removes sensitive data [21,22], and is regarded
as one of the important security add-ons for application-
oriented networking scenarios. In advanced cryptography

systems, data scrambling is an important idea for non-secret
encryption.

Recent studies of data scrambling are mostly related to
visual applications. For example, pixel intensity value
prediction has been widely employed as an image processing
technique for pixel de-correlation purposes in various
applications. In [23], Checkerboard Based Prediction (CBP)
was proposed as an efficient pixel estimation technique for
various applications, including de-correlation, compression
and data embedding. The method of CBP follows three steps.
First, every other row and column of pixels are stored to be
utilized as the reference points to predict the rest of the pixels,
i.e., 25% of the pixels in raw values are stored to predict the
remaining 75%. Then, pixel value estimation is invoked in two
passes. In the first pass, pixels are predicted using its diagonal
pixels by calculating the average. In the second pass, the
remaining pixels are predicted using its aligned pixels by
calculating the average. The key feature of the method is to use
a small part of reference pixels, i.e., 25% of the pixel kept in
raw values, to predict the remaining pixels.

However, the existing methods of data scrambling are not
used directly for the purpose of encryption because of
insufficient randomness. Considering the sensitive healthcare
information in cloud environments, we proposed in [14] a
special data scrambling method for healthcare application,
where a small part of data is used to scramble the remaining
data for the purpose of encryption. In this work, the method
has been improved in terms of security performance and
practicability. To the best of the authors’ knowledge, it is the
first method of applying data scrambling to data encryption
with a performance requirement of real-time computing.

III. THE PROPOSED METHOD

A. System Model
From the point of view of practical applications, it is

required that PHRs collected from subjects in healthcare
service should be securely transmitted to remote servers, which
can be, for example, public cloud servers, and at the same time
should be securely shared among a group of authorized
persons, including healthcare professionals, subjects and their
family members. Due to potential security risks in public cloud
services, we propose a system model at the application layer,
where the sensitive data is scrambled by a tiny piece of data
pre-shared by authorized partied before being sent to a remote
server. As shown in Fig. 1, a tiny piece of data is used for
scrambling and de-scrambling the sensitive data, and the
scrambled format of data in the remote server prevents
unauthorized access to plaintext data.

The system model can be built upon any existing security
mechanisms that might have been standardized in a variety of
communication protocols, such as IEEE Standard 802.15.1 and
802.15.4. To make it more flexible, we call the data for both
scrambling and de-scrambling the ‘tiny data’ while not ‘key’
because it can be closely related to data attributes. For example,
the ‘tiny data’ can be the same for the same type of sensitive
data, while different for different data types. In this work we
focus on the data scrambling method and assume that ‘tiny
data’ is securely shared by authorized parities.

Fig. 1. System model at the application layer

B. Overall Flow of Scrambling Method
The overall flow of the proposed data scrambling method

is depicted in Fig. 2. To start with, the tiny data, denoted as td,
is self-scrambled using a function fss. The self-scrambled result,
denoted as dtc , has the same bit length as the original data.
From practical considerations, the self-scrambled result of
‘tiny data’ should be stored locally for future use. Afterwards,
a non-uniform partitioning function fp and a chain-scrambling
function fcs are sequentially carried out for the sensitive data
for remote storage. For the first block, its length is determined
by the Hamming weight of dtc , and the block is scrambled by

dtc . For each of the subsequent blocks, the block length is
determined by the Hamming weight of the previous scrambled
block, and the current block is scrambled by the previous
scrambled block. The functions of fss, fp, and fcs will be detailed
in the subsections.

Fig. 2. Overall flow of the proposed data scrambling method

An advantage of the proposed scrambling method is that
the lengths of data blocks are varying, which makes it much
harder to attack. To further improve the security level and
make the method widely applicable to a variety of data, the
process of data scrambling can be repeated to completely
eliminate statistical characteristics. The trade-off between
security level and computational complexity will be analyzed
in Section IV.

C. Self-Scrambling of the Tiny Data
The tiny data can be derived from a random number

generator or even a piece of physiological data readily
available at the transmitter. As it may not be random, the
function of self-scrambling depicted in Fig. 3 is deployed,
which aims to reduce statistical characteristics as much as
possible.

In Fig. 3 the function fss is a bitwise operation and the size
of ib is set to one byte for convenience, thus it can be expressed
as

¯
®
­

 �
t�c

 c �

)1(
)2(1

ibb
ibb

b
ik

ii
i (1)

where � represents the operation of exclusive OR. The
statistical analysis of the difference between td and dtc will be
given in Section IV.

1b c 2bc 3b c 1�ckb kb c

Fig. 3. Illustration of self-scrambling function fss for the tiny data

D. Partitioning and Scrambling Method
The non-uniform partitioning function fp and chain-

scrambling function fcs are sequentially carried out for the
sensitive data, as shown in Fig.4. The size of the first block B1
is determined by the Hamming weight of the scrambled tiny
data dtc , i.e.,

minminmax)1mod()(
1

LLLtwl dB ���c (2)
where

1Bl is the size of B1 in bytes,)(�w represents the
Hamming weight of a binary sequence, Lmax and Lmin is the
maximum and minimum size in bytes for the partitioning
process, respectively. An analysis of Lmax and Lmin will be
given later. The first block is then scrambled by dtc as

dtBB c� c 11 (3)
where � represents the operation of exclusive OR, and 1Bc has
the same size as 1B .

block Bi

dt c

Block size computing lBi

block iB c
i > 0

initialize

Hamming weight
of Bi is odd?

bitwise reverse of Bi

Bi

Y

N

initialize

i = 0 i = i+1

Fig. 4. Illustration of block partitioning and chain-scrambling

As the sizes of 1B and dtc are usually different, in Eq. 3 dtc
should be used cyclically if it is shorter than 1B . To reduce
statistical characteristics, prior to the exclusive OR operation, a
bitwise reverse of B1 is performed if the Hamming weight of
B1 is odd. For example, if the binary format of B1 is
0010001000000001, it will be revered before the exclusive OR
operation in Eq. 3 because its Hamming weight is 3. It should
be noted that the condition can be odd or even Hamming
weight, depending on the protocol design.

The size of the subsequent block Bi is determined by the
Hamming weight of the previous scrambled block, i.e.,

)2()1mod()(minminmax1 t���c � iLLLBwl iBi
 (4)

The partitioning process ensures that the data is separated in a
random way so that the block sizes vary randomly in the range
of],[maxmin LL and cannot be predicted without knowing the

tiny data. It is then scrambled by its previous scrambled block
as

)2(1 tc� c � iBBB iii (5)
where � represents the operation of exclusive OR, and iBc has
the same size as iB . Similar to Eq. 3, 1�ciB should be used
cyclically if it is shorter than iB . To reduce statistical
characteristics, prior to the exclusive OR operation, a bitwise
reverse of iB is also performed if its Hamming weight is odd.

E. Data Descrambling Process
In this subsection, the descrambling process by any

authorized user holding the ‘tiny data’ will be detailed. Fig. 5
depicts the process of data descrambling. To start with, the tiny
data is self-scrambled using the function fss. The self-
scrambled result will be stored locally for future use.
Afterwards, a non-uniform partitioning of the scrambled data
and a chain-descrambling are sequentially carried out, similar
to the process of data scrambling.

dt c

iB c

Fig. 5. Illustration of the data descrambling process

The size of the first block 1Bc is calculated as
minminmax)1mod()(

1
LLLtwl dB ���c c

Then, the descrambling of the first block is done as
dtBB c�c 11

where 1B has the same size as 1Bc , dtc is used cyclically if it is
shorter than 1Bc , and a bitwise reverse of 1Bc is performed prior
to the exclusive OR operation if the Hamming weight of 1Bc is
odd.

The size of the subsequent block)2(tc iBi is calculated as
minminmax1)1mod()(LLLBwl iBi

���c �c
The block iBc is then descrambled by its previous block 1�ciB as

1�c�c iii BBB
where iB has the same size as iBc , 1�ciB is used cyclically if it is
shorter than iBc . Afterwards, the Hamming weight of iB is
checked. If it is odd, a bitwise reverse will be performed. If the
process of data scrambling is repeated, the process of data
descrambling should also be repeated to recover the original
data. To check if the recovered data is the same as the original
data, a message authentication code can be easily applied
without a significant increase in computational cost.

IV. ANALYSIS AND EXPERIMENTS

A. Parameter Configuration
To prevent parallel attacks using existing network

technologies, the sizes of data blocks are designed to vary in
the range of],[maxmin LL as given in Eq. 4, i.e.,

minminmax1)1mod()(LLLBwl iBi
���c �

where Lmin and Lmax are the minimum and maximum sizes of
the data blocks in bytes, respectively. Since the size of 1�ciB is
in the range of],[maxmin LL , the averaged Hamming weight of

1�ciB in a statistical sense is

)(24
2

)()(minmax
minmax

1 LLLLBw i � u
�

 c� (6)
Therefore, the statistically averaged result of the modulo
operation in Eq. 4 will be

)1mod()24(
)1mod()]1(2)(2[

)1mod()(2
)1mod()(

minmaxmin

minmaxminmaxminmax

minmaxminmax

minmax1

���
������

���
��c�

LLL
LLLLLL

LLLL
LLBw i

 (7)
In order to get a statistically even distribution, it is required
that ��� ��t� minmaxmin LLL , i.e.,

�� �d minmax LL (8)
Thus, the configuration of Lmin and Lmax has to meet the
requirement in Eq. 8.

Regarding the size of ‘tiny data’, it is reasonable to set it in
the range of],[maxmin LL . As mentioned before, ‘tiny data’ can
be different for different types of healthcare data. It can also
embed subject information and time information for different
time periods. Therefore, there will be more than one single
‘tiny data’ needed if a variety of healthcare data is in service.
Therefore, a larger size of ‘tiny data’ will result in an increase
in the local storage, which though improves the security level.
From a security point of view, it is suggested that the size of
‘tiny data’ should be set to no less than 32 bytes. The reason
for this setting will be given in the next subsection.

B. Security Analysis
Our security analysis is based on the assumption that an

attacker has obtained the scrambled data from the remote
server or any communication links. Since it does not have the
‘tiny data’ for descrambling, a brute-force attack is
unavoidable. If the ‘tiny data’ is random, the brute-force attack
on td will averagely take)18(2 �udtl times of search. For each
attack attempt, the attacker needs to calculate the size of the
first block and to do the exclusive OR operation. For example,
if

dt
l is set to 32 in bytes, which is the suggested minimum size

value for ‘tiny data’ as described in the previous subsection,
the average number of attack attempts will be 2552 .

The extreme case for the ‘tiny data’ is that a piece of
physiological data is directly used. Because the statistical
characteristics of physiological data are well known, the search
space of attacks will be reduced to a limit value, e.g. 38)317(22 � ,
provided that the size of ‘tiny data’ is set to 32 bytes.
Therefore, if physiological data is used as the ‘tiny data’, the
size should be significantly increased to ensure the difficulty of
attacks. From performance considerations, the priority is to set

‘tiny data’ to a random number with other useful information
embedded.

On the other hand, it is more difficult to attack directly on
the scrambled data because statistical characteristics are
eliminated by the unique scrambling process and more
importantly, the size of each data block may vary randomly,
which can greatly increase the difficulty of attacks and
efficiently prevents parallel attacks using up-to-date network
computing technologies.

More analysis of security performance from the
perspective of experiments will be given later.

C. Complexity Analysis
The proposed method contains four types of operations,

including exclusive OR operation for both self-scrambling and
chain-scrambling, Hamming weight calculation for both data
partitioning and bitwise reverse trigger, modulo operation for
data partitioning, and bitwise reverse operation. All the
operations are with low complexity, and the computational
complexity of the proposed method is O(n).

Regarding space complexity, which is the measure of the
amount of storage space temporarily occupied by an algorithm,
as there is no change of temporary space regardless of the
amount of data to be processed, the space complexity of the
proposed method is a constant and thus can be expressed as
O(1). More complexity analysis from the perspective of
experiments will be given in the subsection IV.D.

D. Experimental Analysis
y Real-time performance

An experimental system was set up in laboratory to
evaluate the real-time performance of the proposed method, as
shown in Fig. 6. Electrocardiogram (ECG) data acquired by a
mini holter was transferred via Bluetooth links to the subject’s
mobile phone, where the proposed method was deployed to
scramble the healthcare data. The scrambled data was further
transferred via Wi-Fi and a wired local area network to a cloud
server for storage. The descrambling process was deployed at a
laptop for data recovery.

The A/D converter in the mini holter has a sampling rate of
250 Hz and a resolution of 12 bits. The models of mobile
phone and laptop computer are HuaWei P9 with Android 6.0,
Lenovo X1 Carbon with Windows 7, respectively. A specific
APP for data scrambling and descrambling was developed for
both Android and Windows operation systems, with a stamp
technique for time tracking.

For uplink communications at a subject’s mobile phone,
i.e., ECG data collected and transferred to the local server, the
time delay between packet receiving and forwarding was
investigated. Only Bluetooth/Wi-Fi connections and the
specific APP were running during the experiments.

For downlink communications at user’s laptop, i.e., ECG
data received from the server, the time delay between packet
receiving and data display was investigated. Only Wi-Fi
connections and the specific APP were running and all
unnecessary processes were terminated at the laptop during the
experiments.

For both uplink and downlink experiments, a number of 8
trials were carried out, and for each trial, 90K bytes of ECG
data was tested. Results of average time delay with standard
deviations are given in Table I. For the uplink experiments, the
time delay between data receiving and forwarding is about 243

seconds for 90K-byte ECG data, which is mainly because of
the acquisition rate at the side of mini holter. There is very
slight difference between the cases with and without the
method deployment. For the downlink experiments, the time
delay between data receiving and display is only about 0.7
seconds, which benefits from fast Wi-Fi communications. As
comparison, the deployment of the proposed method
contributed to 0.2 seconds more time delay. It can be
concluded from the experimental results that the proposed
method has no significant effect on real-time performance.

Fig. 6. Architecture of the experimental system

Table I. Experimental results of time delay

Condition

Method

Uplink time delay between
data receiving and forwarding,
averagefSD in seconds

Downlink time delay between
receiving and displaying data,
averagefSD in seconds

with 244 ± 41 0.90 ± 0.12
w/o 243 ± 36 0.72 ± 0.07

y Randomness performance
To better demonstrate the randomness of the scrambled

results, detailed performance analyses using the MIT-BIH
database and self-built physiological databases have been
carried out in this study. Specifically, ECG signals from both
MIT-BIH arrhythmia database and our elf-collected database
from healthy subjects are used. All data were converted into
decimal format based on a quantization resolution of 8 bits.

To evaluate the randomness of self-scrambled tiny data
generated from physiological data, the autocorrelation
coefficient is performed, i.e.,

)]()([)(WW �
 txtxER (9)
which shows how strongly the data under investigation is
related to itself. The autocorrelation coefficients were
calculated on both the original tiny data and its self-scrambled
results. In general, the higher the correlation coefficient is, the
stronger the relationship is. As shown in Table II, the
autocorrelation coefficients of the self-scrambled results had
been significantly decreased. Generally, if the correlation
coefficient is less than 0.1, it means that there is a random or
nonlinear relationship.

Furthermore, two examples of original tiny data and its

self-scrambled result, as well as their autocorrelation
coefficients, are depicted in Fig. 7 for easy comparison. The
example of original tiny data on the left was with little changes,
while the one on the right comes with an R wave. Both of the
extreme cases indicated acceptable randomness of self-
scrambled results, and thus the performance stability of the
self-scrambling can be confirmed.

Table II. Comparison of autocorrelation coefficients before/after self-
scrambling of the tiny data from physiogical signals (Ĳ= 1)

 Round 1 Round 2 Round 3
MIT-BIH
arrhythmia
database

0.7789±0.0236 -0.0272±0.0063 -0.0060±0.0284

Self-built
ECG database 0.8012±0.0158 -0.0181±0.0095 -0.0073±0.0196

Regarding block sizes during the partitioning process,

autocorrelation coefficients were also used to demonstrate its
randomness. Fig. 8 shows an example of calculated block
lengths in bytes and their autocorrelation coefficients while
Lmin and Lmax is set to 32 and 64, respectively. It can be seen
that most of the autocorrelation coefficients when Ĳ>0 are less
than 0.2, which demonstrate good independency among block
sizes calculated with Eq. 2&4.

Examples of scrambled data for cloud storage and their
autocorrelation coefficients are shown in Fig. 9. As can be seen
from the figure, both results from round-1 scrambling and
round-2 scrambling have good independency among the
scrambled data. Based on the autocorrelation evaluation, there
is no significant difference between the results from 1-round
and 2-round scrambling, which actually demonstrate the
effectiveness of the proposed method.

To further assess if the statistical characteristics of the
original data can be eliminated after being scrambled, the
randomness test using NIST standards has been carried out. A
total of 5000 samples were randomly selected, and the numeric
results of randomness tests are given in Table III. It can be
seen from the table that a good randomness performance has
been achieved, regardless of the number of rounds. Therefore,
for most of the physiological data, a single round of
scrambling is sufficient, though more rounds can result in a
higher security level as it needs more attack efforts.

E. Application to Image Data

To apply the proposed method to high-dimensional data,
such as images and cine sequences, it is suggested to perform
data compression and dimensional transform prior to the
scrambling process, as shown in Fig. 10. Benefiting from the
block-chaining design of the proposed method, the processes
of dimensional conversion and data scrambling can be done
almost synchronously. An example of image scrambling with
BMP format is shown in Fig. 11, where pixels were input line
by line.

In total, 2 rounds of scrambling process were carried out

with different ranges of block lengths, [32, 64] or [64, 128] in
bytes, and the sizes of tiny data obtained from the original
image were set to 32 and 64 bytes, respectively. For
experimental demonstration, only pixel data is scrambled while
the file header remains as plaintext. Normal encryption
schemes can also be applied to the file header for additional
security. The scrambled results of the tiny data and the
remaining data are merged together for image display. It can
be seen from the figure that although there is a lot of redundant
information in images with BMP format, the scrambling
results using the proposed method still have the characteristics

Table III. Numeric results of randomness tests using the NIST standards

Database Num of
rounds

Percentage of passing the test
Cusum test Freq. test

MIT-BIH
1 99.14% 97.90%
2 99.27% 97.56%
3 99.31% 97.12%

Self-built
ECG

database

1 99.66% 96.23%
2 99.52% 97.58%
3 99.91% 96.92%

(a) (b)

Fig. 8. Examples of vaying block sizes in the range of [32, 64] (a.
distribution of block sizes; b. autocorrelation coefficients)

Fig. 10. Process flowchart of high-dimensional data

 (a)

 (b)
Fig. 7. Physiological tiny data and its scrambled results (a. signals; b.

autocorrelation coefficients; ‘-‘ for original, ‘+’ for 1-rnd, ‘*’ for 2-rnd)

(a)

(b)
Fig. 9. Examples of scrambling results (a) and autocorrelation coefficients

(b) (Lmin=32, Lmax=64; left: 1-round; right: 2-round)

of good independency. Moreover, the difference of ranges in
block sizes does not affect the scrambling results.

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Examples of scrambling results with BMP image (a. original image;

b. illustration of pixel scan pattern; c. round-1 with length range [32, 64]; d.

round-2 with length range [32, 64]; e. round-1 with length range [64, 128]; f.

round-2 with length range [64, 128]).

A type of autocorrelation based on neighborhoods can be
calculated as

R = (E[xij * x(i-1) j] + E[xij * x(i+1) j] + E[xij * xi (j -1)] + E[xij * xi (j +1)]) 4 (10)
where xij represents an arbitrary pixel that is not on the image
edge. As shown in Table IV, there is no obvious difference
among the results of autocorrelation calculation for different
ranges of block sizes as well as the round index. Therefore, it
is suggested that the configuration of block sizes and round
index will be only dependent on the security level that the
system needs to achieve.

Table IV. Autocorrelation coefficients of scrambled BMP images

 lengh range channel round-1 round-2 round-3
 R 0.0073 0.0113 0.0020

[32, 64] G 0.0030 0.0306 0.0117

 B 0.0222 0.0193 0.0107

 R 0.0033 0.0285 0.0027

[64,128] G 0.0220 0.0204 0.0055

 B 0.0011 0.0008 0.0155

V. CONCLUSION

In this paper, a novel method of signal scrambling has been
proposed for securing sensitive healthcare data, where a tiny
piece of data is used to partition and scramble the healthcare
data for extra protection. The scrambled data is sent for cloud
storage, while the tiny data is kept locally for data retrieval. As
a security add-on at the application layer, the method can be
easily embedded into any existing communication systems.
Both theoretical and experimental analyses have been carried
out to demonstrate the computational complexity and security
performance of the method, especially the randomness

characteristics of scrambling results. It is also demonstrated
that the proposed method can be deployed flexibly with any
kind of data that require strengthened security protection. The
promising method can be applied to scenarios where either
network-level security cannot be ensured because of complex
network environments, or extra security is required for
sensitive data, such as healthcare information. In future,
studies on the management of local database will be carried out
to make the method suitable for practical and easy use.

REFERENCES

[1] G.Z. Yang, “Body sensor networks”, Second Edition, Springer, 2014,

ISBN 978-1-4471-6374-9.

[2] B.P.L. Lo, I. Henry, G.Z. Yang, “Transforming health care: body sensor

networks, wearables, and the Internet of things,” IEEE Pulse, 2016, 7(1):

4–8.

[3] Y.L Zheng, X.R. Ding, C.C.Y. Poon, et al., “Unobtrusive sensing and

wearable devices for health informatics,” IEEE Transactions on

Biomedical Engineering, 2014, 61(5): 1538–1554.

[4] C.C.Y. Poon, Y.T. Zhang, S.D. Bao, “A novel biometrics method to

secure wireless body area sensor networks for telemedicine and m-

health,” IEEE Communications Magazine, 2006, 44(4):73–81.

[5] M. Vossberg, T. Tolxdorff, D. Krefting, “DICOM image communication

in globus-based medical grids,” IEEE Transactions on Information

Technology in Biomedicine, 2008, 12(2): 145–153.

[6] E. Park, H.S. Nam, “A service-oriented medical framework for fast and

adaptive information delivery in mobile environment,” IEEE

Transactions on Information Technology in Biomedicine, 2009, 13(6):

1049–1056.

[7] A. Helmer, M. Lipprandt, T. Frenken, et al., “Empowering patients

through personal health records: a survey of existing third-party web-

based PHR products, ” Electronic Journal of Health Informatics, 2011,

6(3):1–19.

[8] S. Subashini, V. Kavitha, “A survey on security issues in service delivery

models of cloud computing,” Journal of Network and Computer

Applications, 2011, 34(1): 1–11.

[9] R.H. Weber, “Internet of things – new security and privacy challenges,”

Computer Law & Security Review, 2010, 26(1): 23–30.

[10] A.J. Jara, M.A. Zamora, A.F.G. Skarmeta, “An architecture based on

internet of things to support mobility and security in medical

environments,” Proceedings of 7
th
 IEEE Consumer Communications and

Networking Conference, 2010, pp: 1–5.

[11] S.D. Bao, C.C.Y. Poon, Y.T.Zhang, and L.F. Shen, “Using the Timing

Information of Heartbeats as an Entity Identifier to Secure Body Sensor

Network,” IEEE Transactions on Information Techonology in

Biomedicine, 2008, 12(6): 772–779.

[12] K.K. Venkatasubramanian, A. Banerjee, S.K.S. Gupta, “PSKA: Usable

and secure key agreement scheme for body area networks,” IEEE

Transactions on Information Technology in Biomedicine, 2010, 14(1):

60–68.

[13] Tadapaneni, N. R. (2016). Overview and Opportunities of Edge

Computing. Social Science Research Network.

[14] S.D. Bao, Y. Lu, Y.K Yang, et al., “A data partitioning and scrambling

method to secure cloud storage with healthcare applications,”Proceedings

of IEEE International Conference on Communications, 2015, London,

United Kingdom, pp. 2075–2079.

[15] J. Andreu-Perez, C.C.Y. Poon, R.D. Merrifield, et al., “Big data for

health,” IEEE Journal of Biomedical and Health Informatics, 2015, 19(4):

1193–1208.

[16] FDA of U.S., “Radio frequency wireless technology in medical devices,”

https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandG

uidance/GuidanceDocuments/ucm077272.pdf, 2013.

[17] Tadapaneni, N. R. (2018). Cloud Computing: Opportunities And

Challenges. International Journal of Technical Research and

Applications.

[18] G.J. Annas, “HIPPA regulations – A new era of medical-record privacy,”

The New England Journal of Medicine, 2003, 348(15): 1486–1490.

[19] D. Blumenthal, “Launching HITECH,” The New England Journal of

Medicine, 2010, 362(5): 382–385.

[20] T. Denning, K. Fu, T. Kohno, “Absence makes the heart grow fonder:

new directions for implantable medical device security,” Proceedings of

3
rd

 USENIX Workshop on Hot Topics in Security, 2008, San Jose, CA,

USA, pp. 1–7.

[21] J. Granjal, E. Monteiro, J.S. Silva, “Application-layer security for WoT:

extending CoAP to support end-to-end message security for internet-

integrated sensing applications,” Proceedings of International Conference

on Wired/Wireless Internet Communication, 2013, pp. 140–153.

[22] F. Miao, S.D. Bao, Y. Li, “Biometric key distribution solution with

energy distribution information of physiological signals for body

sensor network security,” IET Information Security, 2013, 7(2):87–96.

[23] Rao, M. L., Gulraiz, J. J., Farooq, A., & Rehman, S. (2017). Future

Challenges, Benefits of Internet of Medical Things and Applications in

Healthcare Domain.

[24] G.D. Ye, “Image scrambling encryption algorithm of pixel bit based on

chaos map,” Pattern Recognition Letters, 2010, 31(5): 347–354.

[25] A. Ibaida, I. Khalil, “Wavelet-based ECG steganography for protecting

patient confidential information in point-of-care systems,” IEEE

Transactions on Biomedical Engineering, 2013, 60(12): 3322–3330.

[26] R.M. Rad, K. Wong, R. Moradi, et al., “A unified data embedding and

scrambling method,” IEEE Transactions on Image Processing, 2014,

23(4): 1463–1475.

[27] Fatima, S. S., Alsaadi, F., & Ahmad, A. A Comprehensive Review on

Cloud Computing Security Issues.

[28] Abdullah, A., Phamhung, P., & Namhuh, E. (2017). An Architecture of

Thin Client in Internet of Things and Efficient Resource Allocation in

Cloud for Data Distribution. The International Arab Journal of

Information Technology, 14.

