
An Overview of Approaches to Quantify Open Data Catalog
Similarity

Jorge Martinez-Gil

Software Competence Center Hagenberg GmbH
Softwarepark 32a, 4232 Hagenberg, Austria

jorge. martinez-gil@ scch. at

Abstract

As open data initiatives continue to gain importance, the need for effective methods to assess

the similarity between different open data catalogs becomes increasingly essential. The task of

measuring catalog similarity can be helpful in many processes, such as catalog curation, data

discovery, and interconnectivity between various open data repositories. This research provides

an overview of existing approaches to quantify the similarity between open data catalogs. We

explore various strategies ranging from the use of traditional methods based on comparing triples

to advanced semantic-based and hashing methods for specific domain languages. Additionally, we

identify key challenges and future research directions in open data catalog similarity measurement.

Keywords: Open Data, Data Catalogs, Semantic Similarity Measurement

1. Introduction

In times when the use of data has exploded exponentially, open data catalogs (ODCs) have

emerged as an indispensable source of information that facilitates transparency, innovation, and

multidisciplinary collaboration [1]. These catalogs, which often must be manually curated through

government agencies, research organizations, or even non-profit organizations, offer invaluable

knowledge spanning a wide range of disciplines, industries, and geographies [8]. However, as the

volume of ODCs skyrockets, methods and tools are needed to facilitate their proper processing.

For example, to assess their quality [2], to quantify their similarity [14], to use them in an effective

way [22], and so on.

The concept of catalog similarity goes far beyond the mere comparison of metadata. The reason

is that behind this concept lies a significant challenge in interconnecting different data repositories.

Therefore, the possibility of automatically determining the similarity of ODC can positively impact

a large group of professionals involved in data economics, for example, researchers, policymakers,

jorge.martinez-gil@scch.at

scientists, etc. In this way, providing methods and tools that facilitate the effective and efficient

comparison of ODCs can facilitate decision-making processes and multidisciplinary collaborations,

and it holds great potential for the collective use and analysis of open data [21].

This research is designed to explore the various possibilities for measuring the similarity of

ODCs. To this end, we aim to explore the different methodologies and techniques to address

this challenge. In fact, we aim to provide a clear roadmap for ODC similarity assessment by

surveying existing approaches in this context. Our goal is to identify the options for ODC similarity

measurement, allowing the user to choose the most appropriate method for the needs of their

specific scenarios. Therefore, we aim to boost the full potential of open data in a wide range of

application scenarios.

The remainder of this paper is structured as follows: Section 2 introduces related work concern-

ing similarity between ODCs and challenges that remain pending. Section 3 provides an illustrative

overview of existing methods to address the challenge of ODC similarity using different compu-

tational approaches. Finally, Section 4 presents the lessons that can be drawn from this research

and possible future research directions.

2. Related Works

ODCs are typically used to describe and organize data assets, making them more discoverable

and accessible for the stakeholders of an organization. The standard DCAT (Data Catalog Vocab-

ulary) [9] is a widely used specification for describing data catalogs, often used with government

and open data portals. When comparing two DCAT data catalogs, it is possible to find similarities

in various aspects inherent to them.

The aspects that should be considered in a specific situation are an open discussion. However,

some viewpoints suggest assessing metadata elements for similarities, including title, description,

keywords, publisher, contact information, access URLs, data formats, and licenses, should work

fine in general cases. The organizational structure of the catalogs, whether hierarchical or based

on tags and keywords, is also a widely suggested option for cases of this kind.

Other aspects that could be considered are compliance with standards like DCAT and addi-

tional metadata elements or support for standards like CKAN1 or Dublin Core2. Also, the data

format and licensing model compatibility suggest similarities in ODCs. The search and discovery

capabilities, including filters and faceted search [19], and other advanced options could also be

1https://ckan.org/
2https://www.dublincore.org/

2

https://ckan.org/
https://www.dublincore.org/

evaluated, along with methods for accessing data such as direct downloads or APIs. Additionally,

the sources and diversity of data, data coverage, versioning support, metadata quality, update

frequency, and the use of linked data principles for semantic relationships can also be sources of

great value to be investigated.

However, several challenges remain open in the field, and there is still a need for solutions to

handle them, including standardized metadata schemas, addressing data quality issues [13], and

managing evolving catalogs. Additionally, as open data initiatives evolve, future research should

focus on dynamic and real-time similarity assessment, multi-modal data catalogs, and cross-domain

catalog comparisons. In this work, we try to shed light on the topic of similarity [10], as we try to

identify ways in which similarity could be determined automatically.

3. Similarity Methods for Open Data Catalogs

Similarity methods for ODCs play a crucial role in enhancing the discoverability [16] of vast

and diverse datasets available in the public domain. These methods could, for example, employ

techniques such as natural language processing [4, 17], metadata analysis through machine learning

[6, 7], and other kind of semantic-based techniques [18], or even sophisticated combinations of all

of these methods [5], to establish connections and relationships between datasets based on their

content, structure, and context. Although this topic is still very incipient, some authors have some

works that focus additionally on the interpretability [15] to help stakeholders understand how the

similarity value is calculated.

In this work, we focus on calculating similarity scores [11] since this should enable users to find

datasets relevant to their specific needs, even when they may not know the exact dataset names or

categories. This facilitates more efficient data discovery and encourages data reuse and integration

across domains. This can lead to increased collaboration, innovation, and democratizing data-

driven insights [12]. As the volume of open data grows, similarity methods remain essential to

work with ODCs and address complex challenges and data-driven decision-making processes.

In the context of this work, we are going to focus on an illustrative technique for each of the

existing approaches:

1. Considering the two ODCs as two repositories of triples.

2. Considering the two ODCs as two repositories of tokens.

3. Considering the two ODCs as two character sequences.

4. Considering the two ODCs as two documents written in a common purpose-specific language.

3

We will now go deeper into the technical details of these approaches, exploring their unique

attributes, advantages, and potential challenges to gain a comprehensive understanding of their

applicability and potential.

3.1. Considering the two ODCs as two repositories of triples

Calculating the similarity between two ODCs, considering them as repositories of triples, in-

volves comparing the triples associated with the datasets in each ODC to determine their similarity.

This process can be helpful in various data-related tasks, such as data integration or alignment,

where the people work with a granularity at the level of triples.

The idea is simple and based on calculating the similarity between two sets of triples by iterating

through each triple in both ODCs and counting the number of triples common to both ODCs.

Algorithm 1 shows us how an algorithm could implement this. The significant advantage of this

method is its simplicity and ease of understanding.

Algorithm 1 Calculate Similarity Between Two Repositories of Triples

1: Initialize an empty RDF graph g
2: Parse ODCs into g
3: Initialize two empty sets triples and triples2
4: for each triple (s, p, o) in g where s = dataset 001 do
5: Add o to triples
6: end for
7: for each triple (s, p, o) in g where s = dataset 002 do
8: Add o to triples2
9: end for

10: Initialize similarity to 0
11: for each triple p1 in triples do
12: for each triple p2 in triples2 do
13: if p1 = p2 then
14: Increment similarity by 1
15: end if
16: end for
17: end for
18: Calculate similarity as similarity/max(length of triples, length of triples2)

3.2. Considering the two ODCs as two repositories of tokens

Calculating the similarity of two ODCs as two repositories of tokens, whether ordered or un-

ordered, can offer several advantages. For example, tokenizing and comparing data catalogs based

on their tokens allows us to identify similarities without loading and processing the entire datasets

4

quickly. Moreover, the calculations to be performed are highly scalable. The reason is that, as the

size of the ODC grows, the computational cost of comparing tokens remains relatively low.

Algorithm 2 encapsulates the CheckSimilarity function to calculate the similarity between two

ODCs (converted into sets of RDF data) using TF-IDF vectorization and cosine similarity. The

idea is first to convert the ODC into TF-IDF feature vectors and then compute the cosine similarity

between these vectors, representing the similarity between the two ODCs. The result is scaled to a

percentage and returned as the final similarity score. Comparing the similarity is commonly used

in many natural language processing tasks.

Algorithm 2 Calculate Similarity Between Two Repositories of Tokens

1: function Similarity(odc, odc2)
2: vectorizer ← TfidfV ectorizer()
3: tfidf matrix← vectorizer.fit transform([odc, odc2])
4: cosine sim← cosine similarity(tfidf matrix[0], tfidf matrix[1])[0][0]
5: return cosine sim
6: end function

3.3. Considering the two ODCs as two character sequences

Calculating the similarity of two ODCs using the Longest Common Subsequence (LCS) [3]

method involves finding the longest sequence of items common to both catalogs. LCS provides

a structured approach to aligning sequences of characters. This alignment helps understand how

data items in one catalog correspond to those in the other, which can be crucial for data matching

and integration. The LCS method is often used in various fields to measure the similarity between

sequences, such as information retrieval, text analysis, etc.

Algorithm 3 is intended to construct a matrix dynamically and iteratively comparing their

elements. It utilizes dynamic programming to find the maximum common subsequence length and

returns this value.

Algorithm 4 calculates the similarity between two ODCs. The idea is first to determine their

LCS’s length and then normalize it by dividing it by the maximum length of the input sequences.

The result is a similarity score between 0 and 1, where 1 indicates complete similarity, and 0

indicates no commonality.

The great advantage of the LCS method is that it primarily measures structural similarity

based on the order of items in the catalogs. If the order of items is crucial for the analysis, the

LCS method can be suitable. However, in cases where the item order is less important, it is better

5

Algorithm 3 Calculation of the Longest Common Subsequence

1: function LCS(odc, odc2)
2: m← length(odc)
3: n← length(odc2)
4: lcs matrix← initialize a 2D array of size (m+ 1)× (n+ 1) filled with zeros
5: for i← 1 to m do
6: for j ← 1 to n do
7: if odc[i− 1] = odc2[j − 1] then
8: lcs matrix[i][j]← lcs matrix[i− 1][j − 1] + 1
9: else

10: lcs matrix[i][j]← max(lcs matrix[i− 1][j], lcs matrix[i][j − 1])
11: end if
12: end for
13: end for
14: return lcs matrix[m][n]
15: end function

Algorithm 4 ODC Similarity Calculation using LCS

1: function Similarity(odc, odc2)
2: lcs length← LCS(odc, odc2)
3: return lcs length

max(length(odc),length(odc2))

4: end function

to consider other token-based measures, which focus on item presence or vector representations of

the ODCs.

3.4. Considering the two ODCs as two documents written in a common purpose-specific language

These methods are known for their computational efficiency, especially when working with huge

volumes of text data. It can quickly process large volumes of data, making it a potentially fast

approach for performing calculations. To illustrate this approach, we have chosen the Winnow

hashing algorithm [20], which works very well in identifying similarities between specific-purpose

languages.

The Algorithm 5 adapts the famous Winnow algorithm that takes a text and an integer k,

splitting the text into k-grams, hashing them, and finding the minimum hash value within sliding

windows. This process creates a very valuable fingerprint of the text for later processing and

comparison.

As a second step, Algorithm 6 compares two fingerprints previously calculated using Algorithm

5 by calculating the Jaccard similarity coefficient between their fingerprints. As with previous

cases, a higher Jaccard similarity indicates greater similarity between the texts, making these

6

Algorithm 5 Winnow Algorithm

1: function Winnow(text, k)
2: k−grams← emptylist
3: for i← 0 to len(text)− k do
4: append (k−grams, text[i : i+ k])
5: end for
6: hashes← emptylist
7: for k − gramink−grams do
8: append (hashes, hash(k − gram))
9: end for

10: w ← 10
11: min hashes← emptylist
12: for i← 0 to len(hashes)− w do
13: min hash← min(hashes[i : i+ w])
14: append (min hashes,min hash)
15: end for
16: return min hashes
17: end function

algorithms useful for measuring ODC similarity efficiently.

Algorithm 6 ODC Similarity Calculation using Winnow Hashing

1: function Similarity(odc, odc2)
2: k ← 5
3: fingerprint1← set(Winnow(odc, k))
4: fingerprint2← set(Winnow(odc2, k))
5: return len

(fingerprint1∩fingerprint2) len(fingerprint1 ∪ fingerprint2)

6: end function

4. Conclusion

This research provides an overview of various approaches to quantifying the similarity between

ODCs, shedding light on the diverse methodologies and techniques employed in this domain. Our

analysis has revealed multiple strategies for measuring catalog similarity, ranging from traditional

methods based on comparing triples to advanced semantic-based methods for specific domain

languages. Each approach brings its strengths and limitations, making it essential to choose the

most appropriate method based on the particular goals and characteristics of the catalogs.

Identifying these varied approaches stresses the importance of selecting the most appropriate

method based on the specific needs and characteristics of the catalogs in question. Catalogs

spanning different domains may require tailored similarity metrics. Additionally, the scale of

7

catalogs, the granularity of data, and the available computational resources must all be considered

when choosing the right approach.

In future work, it is necessary to keep researching in this direction since solutions are needed in

this context. As open data initiatives grow in importance, catalog similarity measurement will play

a vital role in facilitating data interoperability, discovery, and utilization across diverse domains

and sectors.

References

[1] Albertoni, R., Browning, D., Cox, S., González-Beltrán, A. N., Perego, A., & Winstanley,

P. (2023). The W3C data catalog vocabulary, version 2: Rationale, design principles, and

uptake. CoRR, abs/2303.08883 . doi:10.48550/arXiv.2303.08883. arXiv:2303.08883.

[2] Albertoni, R., & Isaac, A. (2021). Introducing the data quality vocabulary (DQV). Semantic

Web, 12 , 81–97. doi:10.3233/SW-200382.

[3] Bergroth, L., Hakonen, H., & Raita, T. (2000). A survey of longest common subsequence

algorithms. In Proceedings Seventh International Symposium on String Processing and Infor-

mation Retrieval. SPIRE 2000 (pp. 39–48). IEEE.

[4] Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: pre-training of deep bidirec-

tional transformers for language understanding. In J. Burstein, C. Doran, & T. Solorio (Eds.),

Proceedings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,

MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers) (pp. 4171–4186). Association

for Computational Linguistics. doi:10.18653/v1/n19-1423.

[5] Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better than selecting

the best one? Mach. Learn., 54 , 255–273. doi:10.1023/B:MACH.0000015881.36452.6e.

[6] English, T. M., & Gotesman, M. (1995). Stacked generalization and fitness ranking in evolu-

tionary algorithms. In J. R. McDonnell, R. G. Reynolds, & D. B. Fogel (Eds.), Proceedings of

the Fourth Annual Conference on Evolutionary Programming, EP 1995, San Diego, CA, USA,

March 1-3, 1995 (pp. 205–218). A Bradford Book, MIT Press. Cambridge, Massachusetts.

[7] Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis

lectures on human language technologies, 10 , 1–309.

8

http://dx.doi.org/10.48550/arXiv.2303.08883
http://arxiv.org/abs/2303.08883
http://dx.doi.org/10.3233/SW-200382
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e

[8] Lakomaa, E., & Kallberg, J. (2013). Open data as a foundation for innovation: The enabling

effect of free public sector information for entrepreneurs. IEEE Access, 1 , 558–563. doi:10.

1109/ACCESS.2013.2279164.

[9] Maali, F., Erickson, J., & Archer, P. (2014). Data catalog vocabulary (dcat). w3c recommen-

dation. World Wide Web Consortium, (pp. 29–126).

[10] Martinez-Gil, J. (2019). Semantic similarity aggregators for very short textual expressions:

a case study on landmarks and points of interest. J. Intell. Inf. Syst., 53 , 361–380. doi:10.

1007/s10844-019-00561-0.

[11] Martinez-Gil, J. (2022). A comprehensive review of stacking methods for semantic similarity

measurement. Machine Learning with Applications, 10 , 100423.

[12] Martinez-Gil, J. (2023). A comparative study of ensemble techniques based on genetic pro-

gramming: A case study in semantic similarity assessment. Int. J. Softw. Eng. Knowl. Eng.,

33 , 289–312. doi:10.1142/S0218194022500772.

[13] Martinez-Gil, J. (2023). Framework to automatically determine the quality of open data

catalogs. CoRR, abs/2307.15464 . URL: https://doi.org/10.48550/arXiv.2307.15464.

doi:10.48550/arXiv.2307.15464. arXiv:2307.15464.

[14] Martinez-Gil, J., & Chaves-Gonzalez, J. M. (2019). Automatic design of semantic similarity

controllers based on fuzzy logics. Expert Syst. Appl., 131 , 45–59. doi:10.1016/j.eswa.2019.

04.046.

[15] Martinez-Gil, J., & Chaves-Gonzalez, J. M. (2021). Semantic similarity controllers: On the

trade-off between accuracy and interpretability. Knowl. Based Syst., 234 , 107609. doi:10.

1016/j.knosys.2021.107609.

[16] Martinez-Gil, J., & Chaves-Gonzalez, J. M. (2022). Sustainable semantic similarity assess-

ment. Journal of Intelligent & Fuzzy Systems, 43 , 6163–6174. doi:10.3233/JIFS-220137.

[17] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed represen-

tations of words and phrases and their compositionality. In Advances in Neural Information

Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems

2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States.

(pp. 3111–3119).

9

http://dx.doi.org/10.1109/ACCESS.2013.2279164
http://dx.doi.org/10.1109/ACCESS.2013.2279164
http://dx.doi.org/10.1007/s10844-019-00561-0
http://dx.doi.org/10.1007/s10844-019-00561-0
http://dx.doi.org/10.1142/S0218194022500772
https://doi.org/10.48550/arXiv.2307.15464
http://dx.doi.org/10.48550/arXiv.2307.15464
http://arxiv.org/abs/2307.15464
http://dx.doi.org/10.1016/j.eswa.2019.04.046
http://dx.doi.org/10.1016/j.eswa.2019.04.046
http://dx.doi.org/10.1016/j.knosys.2021.107609
http://dx.doi.org/10.1016/j.knosys.2021.107609
http://dx.doi.org/10.3233/JIFS-220137

[18] Navigli, R., & Martelli, F. (2019). An overview of word and sense similarity. Nat. Lang. Eng.,

25 , 693–714. doi:10.1017/S1351324919000305.

[19] Paoletti, A. L., Martinez-Gil, J., & Schewe, K. (2016). Top-k matching queries for filter-

based profile matching in knowledge bases. In S. Hartmann, & H. Ma (Eds.), Database and

Expert Systems Applications - 27th International Conference, DEXA 2016, Porto, Portu-

gal, September 5-8, 2016, Proceedings, Part II (pp. 295–302). Springer volume 9828 of Lec-

ture Notes in Computer Science. URL: https://doi.org/10.1007/978-3-319-44406-2_23.

doi:10.1007/978-3-319-44406-2_23.

[20] Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: local algorithms for docu-

ment fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on

Management of data (pp. 76–85).

[21] Skoda, P., Bernhauer, D., Necaský, M., Kĺımek, J., & Skopal, T. (2020). Evaluation framework

for search methods focused on dataset findability in open data catalogs. In M. Indrawan-

Santiago, E. Pardede, I. L. Salvadori, M. Steinbauer, I. Khalil, & G. Kotsis (Eds.), iiWAS ’20:

The 22nd International Conference on Information Integration and Web-based Applications

& Services, Virtual Event / Chiang Mai, Thailand, November 30 - December 2, 2020 (pp.

200–209). ACM. doi:10.1145/3428757.3429973.

[22] Subramaniam, P., Ma, Y., Li, C., Mohanty, I., & Fernandez, R. C. (2021). Comprehensive

and comprehensible data catalogs: The what, who, where, when, why, and how of metadata

management. CoRR, abs/2103.07532 . arXiv:2103.07532.

10

http://dx.doi.org/10.1017/S1351324919000305
https://doi.org/10.1007/978-3-319-44406-2_23
http://dx.doi.org/10.1007/978-3-319-44406-2_23
http://dx.doi.org/10.1145/3428757.3429973
http://arxiv.org/abs/2103.07532

	Introduction
	Related Works
	Similarity Methods for Open Data Catalogs
	Considering the two ODCs as two repositories of triples
	Considering the two ODCs as two repositories of tokens
	Considering the two ODCs as two character sequences
	Considering the two ODCs as two documents written in a common purpose-specific language

	Conclusion

