Links Add Value to Research Publications

Tim Ingoldsby
Director of Business Development

ICSTI Conference
17 May 2004
London
Brief History of Linking at AIP

1995: Links to bibliographic databases
 – Provided abstract describing cited article

1996: Links to source articles
 – But only to articles from same journal

1997: Links to source article from other journals
 – But only if both journals on same online service

1998: Links to other databases
 – LANL preprint server
 – MEDLINE, etc.
Brief History of Linking at AIP

• 1999: Links to/from journals of other publishers located on other servers
• 1999: Links to/from value-added resources
 – ISI Web of Science
 – Chemical Abstracts ChemPort
• 2000: CrossRef central linking facility (using DOIs) is established

How links look today
Linking Usage

• 34% of Scitation abstract or full text views come as the result of a link from “the outside”

• 69% of outbound links go to another Scitation destination
 – 13.7% go to CrossRef publishers
 – 10.8% go to secondary database services
Article Links Continue to Add Value

1996 *Applied Physics Letters* reference & citation statistics (avg per article)
- 15 bibliographic links
- 1 full text link
- 0 citing article links

Same articles in 1999 (pre-CrossRef and back file additions)
- 15 bibliographic links
- 2 full text links
- 3 citing article links

Same articles today
- 36 bibliographic links
- 15 full text links
- 6 citing article links
Welcome to PhysicsFinder!

PhysicFinder, from the American Institute of Physics (AIP), is designed to help researchers find information published in AIP and MAIK journals. In particular, it is intended to help those not familiar with AIP and MAIK journals learn about their content. An article's full text is easily accessible to journal subscribers via their subscription and to non-subscribers via fast purchase online. We welcome your comments.

From this homepage, you can explore PhysicsFinder in three primary ways:

TOPICS
Click on the icon at left to browse the topics homepage, https://topics.aip.org. A fully interactive version of the PACS Taxonomy (Physics and astronomy classification scheme) allows you to drill down from topic to sub-topic and instantly see all AIP and MAIK journal research published in a particular category. To begin, click a heading on the left side of the Topics page. On the right side, the Current Topic tree reflects your choice and shows relevant articles titles. Simply click a title to view an abstract and other article details. All branches of the PACS topics tree have their issues -- or articles -- updated daily. Feel free to bookmark or share links to the topics that interest you and check back frequently for new articles. Along with this Dynamic Browse tree, an Alphabetical PACS tree and a static Topical PACS tree are also available, and may serve as the default view for some browsers. In addition, the "Hot Topics" section of this page offers links to PACS topics which contain the most frequently downloaded articles.

AUTHORS
Click on the icon at left to browse by author at http://authors.aip.org. From the Authors homepage, choose the first three letters of the last name of the author you would like to find. This link will bring you to a page that lists all authors that have contributed to an AIP and MAIK journal within that letter set. Click on a name to see a page devoted to that author. Click a title on an author page to view an abstract and other article details. Author pages can also be reached by following the "Authors in this Topic" link on a Topic page or the "Find articles by" link on an article Abstract page. Authors are welcome to link to their PhysicsFinder page.

ABSTRACTS
Click on the icon at left to view a sample article Abstract page. This is the primary view that you will see when you follow any title link within PhysicsFinder, or reach this site from an Internet search engine. The main display contains an article's abstract surrounded by PhysicsFinder tools. Above the abstract, buttons show Referred Articles (references within the article to other AIP and MAIK journal articles), Citing Articles (other AIP and MAIK journal articles which cite the article), and Related Articles (other articles also accessed in a single online session by those who downloaded the primary article). Below the abstract, information is provided on the format, size and DOI of the abstract, an active map of the PACS tree highlights the article's location in the scheme, and links provide access to pages featuring the article's authors, as well as navigation for journal subscribers to freely read the article. AIP and MAIK online articles are sold at the lowest price available from any copyright-compliant source.
Demonstration of a nanophotonic switching operation by optical near-field energy transfer

Tadashi Kawakoe, Kiyoshi Kobayashi, Suguru Sango, and Motoichi Ohtsu

Abstract

We have demonstrated the operation of a nanophotonic switch that uses three CuCl quantum cubes with a size ratio of $1: \sqrt{2}: 2$. The switching mechanism is based on resonant optical near-field energy transfer between the resonant quantized excitonic energy levels of the quantum cubes. Using near-field optical spectroscopy, we observed a switching rise time of less than 100 ps and a repetition rate of 80 MHz. These results suggest the possibility of making a nanophotonic switching device smaller than 20 nm with a figure of merit 10-100 times higher than that of a conventional photonic switch. ©2003 American Institute of Physics.

DOI 10.1063/1.1571977
URL http://content.aip.org/doi/abs/10.1063/1.1571977

Indexed in: copper compounds, optical switches, quantum dots, nanotechnology, quantum data

Referenced Articles

- Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction.
 S. Sango, K. Kobayashi, A. Shojiguchi, T. Kawakoe, and M. Ohtsu.
 Appl. Phys. Lett. 93(6) 2937 (1 Mar 2009)

- Observation of size-dependent features in the photoluminescence of zinc oxide nanocrystallites by near-field ultraviolet spectroscopy.
 Appl. Phys. Lett. 95(5) 1444 (23 Feb 2009)

- Plasmon waveguide for optical far/near-field conversion.
 T. Yatsui, M. Kouragi, and M. Ohtsu.
 Appl. Phys. Lett. 87(7) 488 (31 Dec 2001)

- Fabrication of a nanometric Zn dot by nonresonant near-field optical chemical-vapor deposition.
 Tadashi Kawakoe, Yoh Yamamoto, and Motoichi Ohtsu.
 Appl. Phys. Lett. 93(6) 1114 (23 Feb 2009)

- Near-field optical fiber probe optimized for illumination-collection hybrid mode operation.
 T. Saki and K. Matsuda.
 Appl. Phys. Lett. 74(19) 2773 (19 May 1999)

Citing Articles

- Low-temperature orientation-selective growth and ultraviolet emission of single-crystal 2D nanowires.
 Tao-Wen Kim, Tadashi Kawakoe, Shunsuke Yamazaki, Motoichi Ohtsu, and Takashi Sakaguchi.
 Appl. Phys. Lett. 84(17) 3558 (26 Apr 2004)
Is PhysicsFinder A Success?

• In a word, YES
• From a usage perspective
 – Nearly 1,320,000 page views in March
 – 56% of page views for AIP journals on Scitation™
• From a financial perspective
 – Article sales increase of 400%
 – Monthly sales revenue equates to 5 new institutional subscriptions
• From a technology perspective
 – PhysicsFinder features being migrated to Scitation
For Further Information

Scitation: www.scitation.org
Physics Finder: http://www.physicsfinder.org/

My email: tingoldsby@aip.org
AIP website: www.aip.org
Scitation: www.scitation.org