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PREFACE

In 1984, we two authors entered the field of bibliometrics - we now
prefer the mere generally accepted term ‘informetrics' - when we became
actively involved in the programme for higher education in library and
documentation science organised by the University of Antwerp upon the
initiative of the Flemish Interuniversity Council (VLIR). Before long,
interest in a textbook on informetrics was evidenced not only in Flanders,
but also in the Netherlands. Indeed, as a result of the EC-financed Erasmus
project, Leo Cgghe was charged with the responsibility for the informetrics
programme at the University of Amsterdam as well.

Using one of Egghe's short Flemish courses as our starting point, we
began working on the present volume in around 1986. Nowadays the field of
informetrics has become so broad that no introductory book can aim at
completeness. Still, we have tried to cover as many topics as possible. We
occasionally resorted to the use of 'Notes and comments' to refer the reader
to further developments which could not be covered fully in the main text.

In writing this book, we aimed at producing a clearly written text, with
the topics presented in a logical format, a book which would appeal to the
non-specialist (and the non-mathematician). In persuing this objective, we
were confronted by a literature dispersed over a variety of very differently
oriented journals and books. Moreover, as is well known, most scientists
working in this field are informetricians only as a 'second choice'. They
were educated as librarians, physicists, chemists, mathematicians,
sociologists, psychologists or computer scientists, and their different
backgrounds are revealed in their publications. Therefore, unifying these
various points of view was not an easy task.

We expect this book to be of help to the informetrics teacher in
organising his or her course and to be interesting and useful both as a course
book and as background reading for students in library and information science.
We hope in addition that practicing librarians will also find it useful, as we
included many simple, non-mathematical library management techniques.
Researchers and scholars working in the area of science policy may also find
something of interest, since a Tot of recent material has been included.

The book is divided into four parts, each containing a number of
chapters, sections, subsections, and where necessary, sub-subsections. To
refer to these subdivisions we use a decimal system, e.g. 'I.4.3.3' means
Part I, Chapter 4, Section 3, Subsection 3. Equations, tables and figures
are numbered in the same way, up to the section level. Consequently, '[I.5.181'
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meané the 18th equation in Chapter I.5. Numbers for tables and figures are
preceded by the words 'Table' or 'Fig.' (for definitions as well as references).
Therefore, 'Fig.11.4.1' means the first figure in Chapter I1.4. Table captions
are written above the table and figure legends below the figure. References,
which are listed alphabetically, are given in the following form : 'Name (year)'.
For authors not appearing in the list of references as a senior author, there ‘
is a 'see' reference; for authors appearing as both a senior author and a
secondary author {of a different paper), we added a 'see also' reference.

While the reference list is long and covers all aspects of informetrics, it

is, of course, not meant to be exhaustive. We apologise to any authors who

have been unjustly omitted.

We are grateful to Prof. H.D.L. Vervliet, the founder of the programme
for higher education in documentation and library science in Flanders. We are
also greatly indebted to Prof. B.C. Brookes who encouraged us to write this
book and who is really the great champion of the term 'informetrics'. Prof.
Brookes was also Egghe's Ph.D. supervisor at the City University of London (UK).
This thesis forms the basis for Part IV, dealing with informetric 'laws’.

Our sincere thanks are also extended to all those eminent scientists
with whom we have had many lively contacts. We single out for mention here :
A. Bookstein, T. Braun, Q.L. Burrell, W. Gldnzel, D. Kraft, F.F. Leimkuhler,
I.K. Ravichandra Rao, S.E. Robertson, G. Salton, J. Tague, R. Todorov and
A.F.Jd. Van Raan.

Our appreciation is given to our institutes, the Limburgs Universitair
Centrum, the Universitaire Instelling Antwerpen and the Katholieke Industri&le
Hogeschool West-Vlaanderen, for their interest and support. We also wish to
thank the Belgian National Science Foundation, which has supported us on
various occasions.

We thank the typist, Mrs. Reynders, for the excellent production of the
camera-ready copy.

Lastly, it is a great pleasure to acknowledge the pleasant working
relationship with Elsevier Science Publications, and in particular with Heleen
van Gelderen and Susan Massotty.

The authors welcome any criticisms, corrections, additions or any other
form of comments on the book in its present form. As one final word to our
readers, we add the wish that the book will be useful to many persons,
invoived in all kinds of information work.

Leo Egghe Ronald Rousseau
Diepenbeek, Belgium Stene, Belgium

December 1989
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0. INTRODUCTION

There is no measurement (i.e. meaningful data) without theory and no
theory without data. Although this statement may appear to be a vicious circle,
it is not. What we mean is that there is an ongeing infinite spiral, in which
more and more refined theories are being tested better and better through more
refined measurements.

For the communication of scientific insights, experience and discussions,
logic and mathematics are indispensible. Mathematical aids allow models to be
constructed and measurements to be made. On the other hand, meaningful
measurements are only possible because certain laws and theories, whether they
are deterministic or probabilistic, exist. We can understand our measurements
only because we understand theory (at least partially). Thanks to the advent
of the computer, it has now become easier to collect data in libraries or from
sources stored on computer, so that models are being constructed in what we
for the time being will refer to as 'Library and Information Science',

The scientific method of the theory-measurement cycle is very powerful,
but we have to pay a price for it. As we define our theoretical models more
precisely, they become detached from the real world. This is why we have to
supplement our mathematical models, definitions and thearies with verbal
interpretations, again using concepts that can be understood intuitively, but
which are slightly ambiguous and inaccurate,

In the field of 'Library and Information Science' model-building has only
just begun. Very often we have to be satisfied with elementary data collection
and an intuitive explanation. Yet already, we are hearing complaints from the
uninitiated that theories are already too abstract and not really applicable.
Perhaps a book like this can be of help, before theory really takes off. Indeed,
characteristic of the immature state of our science, even its very name is still
a subject of debate. Should one use the term 'bibliometrics' or "scientometrics'
or 'informetrics' (perhaps even 'librametrics')? And what does the term cover?
Does it include science policy issues, theoretical aspects of information
retrieval, some artificial intelligence techniques, theories of questionnaires?

In our view, informetrics deals with the measurement, hence also the
mathematical theory and modelling of all aspects of information and the
storage and retrieval of information. It is mathematical meta-information,

i.e. a theory of information on information, scientifically developed with
the aid of mathematical tools {cf. Burton (1988)). See, for example, Nacke
(1979) and Bonitz (1982) for an early mention of the term 'informetrics'.
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Historically, bibliometrics developed mainly in the West, and arose from
statistical studies of bibliographies. Before the term 'bibliometrics' was
proposed by Pritchard (1969), the term 'statistical bibliography' was in some
use. According to Pritchard (1969), it was Hulme (1923) who initiated the term
'statistical bibliography'. Hulme used the term to describe the process of
i1Tuminating the history of science and technology by counting documents.

Pritchard's timely proposal caught on immediately, but the content of the
term remained somewhat of a problem (Broadus, 1987). According to Pritchard,
bibliometrics means the application of mathematics and statistical methods to
books and other communication media.

On the other hand, the term 'scientometrics' (derived from the Russian
'naukometria') was used mainly in the East and is defined as the study of the
measurement of scientific and technological progress. This also explains the
foundation in 1978 and the title of the journal 'Scientometrics' in Hungary.
For more information on the history and the contents of these names we refer
the reader to Egghe (1988f).

We fully agree with Brookes (1988b) that the term 'bibliometrics' ties us
too narrowly to libraries and the documentary origin of the field. Hence, we
will restrict this term to the mathematical study of libraries and
bibliographies. Scientometrics, on the other hand, deals mainly with science
policy applications. Therefore, we support Brookes (1988b) who advocates the
use of the term 'informetrics', a term which takes cognizance of the fact that
modern technology has imposed on us new non-documentary forms of knowledge
representation and of its transmission and dissemination. Scientists such as
Dou (Dou et al. (1988)) define even the term 'bibliometrics' as the statistical
treatment of downloaded data. Although we do not agree with this definition, it
is symptomatic of the influence computer technology exerts on our field.

We harbour no strong feelings about the vagueness of the term. Do chemists
and physicists quarrel about chemical physics? Is it important to determine
whether a certain paper should be considered as a mathematical paper, an
econometric one, or even an economics paper? Every new field has vague
boundaries and even established fields such as physics and chemistry cannot
be separated in a clear way. So, is not informetrics simply that which
informetricians do?

Of course it is certainly important to clearly define the main problems
in the field (Brookes (1988a)), to look for new, important applications
(Tague (1988)), to pay more attention to the modelling process (Leimkuhler
(1988)) and to make use of dedicated software in computer experiments.
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In an attempt to give informetrics a place among other fields we present
the following diagram (Fig. 0.1) :

mathematics

- operations research

- statistics

probability theory

- discrete mathematics

mathematical analysis

- mathematical information theory

physics

computer science

biometrics, econometrics,
chemometrics, sociometrics,
quantitative linguistics, ...

INFORMETRICS

including

- bibliometrics

- scientometrics

- citation analysis

- theoretical aspects of
information retrieval

library management

sociology of science

history of science

science policy

information retrieval

biometrics, econometrics,
chemometrics, sociometrics,
quantitative linguistics,

Fig. 0.1

In this diagram, we mean that informetrics borrows tools (techniques, models,
analogies) from mathematics, physics, computer science and the other -metrics.
On the other hand, informetrics is used in or applied to : library management,
the sociology of science, the history of science, science policy and information
retrieval. Moreover, we feel that a real interaction between informetrics and
biometrics, econometrics, chemometrics, quantitative Tinguistics and so on
would be very beneficial for all fields involved. Until now there has only been
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a (small) influx from the other fields into informetrics, but we are certain
that our field also has something important to offer to others.

Finally, a short summary of the book. Part I covers statistical methods.
It starts with elementary descriptive statistics and elements of probability.
It continues with an important chapter on inferential statistics (hypothesis
testing), including regression, correlation and nonparametric statistics.
Next, there is a chapter on sampling theory, including overlap problems.

Part I concludes with several techniques of multivariate statistics : multi-
variate regression and correlation, principal component analysis, multi-
dimensional scaling and cluster techniques.

Part II deals with operations research and library management.
Applications of linear programming (including transportation and assignment
problems) are given, followed by elements of queueing theory. Special
attention is paid to book circulation interference.

Part III handles citation analysis : citers' motivations, citation
networks, bibliographic coupling and co-citation analysis, JCR and its citation
measures and obsolescence. Some aspects of science policy applications are
also studied.

Finally, part IV deals with informetric models and their interrelationships.
At the heart of this theory is the dual approach between sources and items
giving rise to the definition of 'Information Production Processes'.
Explanations and applications of the classical informetric laws as well as
fitting methods are provided.



I. STATISTICS

1.0. INTRODUCTION

Statistics play a vital role in the development of informetrics as an
academic discipline and, more importantly, as a practical discipline. The aim
of this part is to introduce the reader to some of the concepts and methods
used in statistical analysis.

Library automation provides managers with an increasing amount of data.
If the head of a library or documentation centre wishes to convert this mass
of numbers into useful information he or she needs ways to summarise large
sets of data. Descriptive statistics (Chapter I.1) can help to fulfil this
aim,

One of the fundamental concepts of statistics is probability (Chapter 1.2).
All statistical tests involve the calculation of probabilities, either directly
or indirectly. Statistical hypotheses are never said to be true or false.
Instead, the probability that they are true or false is stated. We will outline
some simple rules of probability and introduce a number of theoretical
probability distributions.

A central aspect in discovering new knowledge about the real world
consists of observing some arbitrary elements of the set of objects, events
or persons under discussion : a so-called random sample (Chapter I.4). On the
basis of this sample, one makes a statement about the totality of elements
(the population). This part of statistics is called 'inferential statistics'
(Chapter 1.3 and 1.5).

The primary topics in inferential statistics are the testing of
hypotheses, regression, goodness-of-fit tests, the analysis of contingency
tables and multivariate techniques such as principal components analysis,
multidimensional scaling and hierarchical cluster analysis.

The examples given in the text have been kept deliberatedly simple, and
when no special mention is made of how and where data were collected, this
means that they have been conceived for illustrative purposes. The reader
will, however, find numerous references to the literature on informetrics.

An excellent critical review of statistical methods in information
science research can be found in Kinnucan et al. (1987).
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I.1. DESCRIPTIVE STATISTICS

The term 'descriptive statistics' refers to a set of methods, . procedures
and techniques used to represent, summarise, or otherwise communicate the
essential characteristics of a set of raw data. Some important aspects of
descriptive statistics are tabular and graphical representations and the
calculation of a single number representing a particular characteristic of
the data in question. Applying the techniques of descriptive statistics allows
one to make statistical inferences, e.g. the use of chance models to draw
conclusions from data. These conclusions help library managers to solve the

problems they are confronted with.

I.1.1. Tables

Questionnaires, tally sheets and computer printouts all generate data,
usually numbers, in some form or another. Writers, whether they are penning
scientific articles or popular journalism, often represent numerical data in
tabular form, A table not only occupies less space than the narrative form,
but it also enables figures to be located more readily and facilitates
comparisons between different figures or sets of figures. To do this
effectively, a table must be compiled with its future use in mind,

Although the numerical values in a data display are commonly referred to
as 'the data', the numbers are only one element of the data. Indeed, all data
refer to some real-world event; they also include the content elements, 1i.e.
words and phrases that connect these numbers with the observed phenomenon.

At the basic level of description, content elements are the familiar who, what,
how, where and when - defined in more formal terms as observer, matter,
function, space and time ~ and at the next level of description theyrelate

to the aspect of reality measured and the set of reported values, Clark (1987),

Let us begin by taking.a look at the well-known 'Applied Geophysics' data
in Bradford's paper {1934) (Table I.1.1). The title of the table identifies
the time period covered : 1928-1931, incl. The legend indicates the function,
the matter and the observer : the production of papers (references) in journals.

The aspect of paper production being measured is Applied Geophysics : the
table provides information on the number of papers in Applied Geophysics and
their distribution over various journals. The data collector and place where
the collecting occured are mentioned in the body of the paper : it was Mr.

E. Lancaster Jones who carried out the investigation in the Science Museum
Library.

Table I.1.2 (taken from Clark (1987), but slightly amended to include the

place of publication) lists the categories of information needed to provide the
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Table I.1.1. Bradford's Applied Geophysics data
(with original legend)

Applied geophysics, 1928-1931, incl.
A. B. C. D. E.
1 93 1 93 0
1 86 2 179 0.301
1 56 3 235 0.477
1 48 4 283 0.602
1 46 5 329 0.699
1 35 6 364 0.778
1 28 7 392 0.845
1 20 8 412 0.903
1 17 9 429 0.954
4 16 13 493 t.114
1 15 14 508 1.146
5 14 19 578 1.279
1 12 20 590 1.301
2 " 22 612 1.342
5 10 27 662 1.431
3 9 30 689 1.477
8 8 38 753 1.580
7 7 45 802 1.653
1" 6 56 868 1.748
12 5 68 928 1.833
17 4 85 996 1.929
23 3 108 1065 2.033
49 2 157 1163 2.196
169 1 326 1332 2.513

Column A gives the number of journals producing a corresponding
given number of references. Column B gives the corresponding
number of references during the period surveyed. Column C gives
the running sum of the numbers of Column A. Column D gives the
running sum of the numbers of Column B multiplied by A. Column
E gives the common logarithms of Column C numbers.

reader with a complete picture of the data, while Table I.1.3 shows the
resulting descriptor set for Bradford's paper. Note the entry for 'aspect'.
The term ‘aspect' is, by definition, a relative term (it is always an aspect
of something else), and the arrow points to its antecedent, the topic term
in the descriptor set. Thus the entire entry, including the arrow, specifies
not only what was measured, but why : the underlying question the data are
designed to answer.

Ideally, tables should contain all the elements necessary to fill in all
the entries in Nancy Clark's editorial table tamer (except, of cours, the
place of publication when original data are submitted for publication).
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Table 1.1.2. Nancy Clark's 'editorial table tamer'

Current source : Author of this representation of data;
publication date and place

Source of data : Data collector; time of data collection

Observer : Respondent group, source of reported values

Matter : Entity(ies) involved in the event discussed
in the table

Function : Nature of the event discussed

Space : Location of this event

Time : Time of this event

Aspect : Aspect of reality + pointer to topic term

Domain : Nature of values

Table 1.1.3. Descriptor set for Bradford's Applied Geophysics
data, composed by R. Rousseau

Current source : S.C. Bradford; Engineering, 137 (1934) 85-86
Source of data : E. Lancaster Jones; 1932 (?)

Observer : Jjournals

Matter : papers

Function : production (publication)

Space : all over the world, but confined to those

primary and abstracting journals available
at the Science Museum Library

Time : 1928-1931 incl. *
Aspect : publications on the subject of Applied
Geophysics [+ highly skewed distribution,

described by a formula which later became
known as Bradford's law]

Domain : 1,93

* From the remainder of Bradford's paper we learn that the
actual data-collection period included part of 1932.

Let us next take a look at tables from another perspective, namely that
of the reader. Suppose a table of data is presented to you : how should you
read this table in order to obtain as much information as possible, as quickly
as possible? For this A. Ehrenberg (1986) presents the following general
guidelines :
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1. Take in the broad subject matter of the table and the variables, without
yet worrying over details, sources, etc. (but if there is a text or
commentary, one should probably glance at this first; it may provide
access to what the table is saying).

2. Focus first on one row and/or one column, preferably of averages. Establish
the range of variation, i.e. the highest and lowest readings, as mental
markers.

3. Round all figures to one or two effective digits in one's head, to
facilitate mental arithmetic and make the results more memorable.

4. Compare the detailed readings in the body of the table against these
patterns as norms.

5. Consider the wider meaning of the results and do a more formal analysis.

[.1.2. Scales of measurement
In this section we briefly introduce the notion of scale. A more complete

description can be found, for exampie, in Roberts (1979).

A nominal scale is used if observations are merely labelled (by a number
or a name). The actual label has no significance (except possibly as a
mnemonic aid), and any change of label will contain the same information.

For instance, in scientometric investigations of countries, the names of the
countries under study could constitute a nominal scale.

Opinions are frequently measured in terms of ordinal data. For instance,
a library patron may be asked to rank the quality of various library services.
The answer only shows the relative position of these services and not the
extent to which one service is better than another. The ordinal scale provides
information about the ordering of categories, but does not indicate the extent
of the differences between observations.

An interval scale of measurements reveals more than the ordering of
categories : it gives the difference between them with respect to a fixed but
arbitrary origin and a fixed but arbitrary unit. A typical example of an
interval scale is the common method of measuring temperature. When comparing
Fahrenheit and Celsius degrees, we vary the origin and the units.

A difference scale gives the exact difference between certain categories;
only the origin is arbitrary. A typical example is the calendar : a year is a
meaningful unit but the fact that this is the year 1990 is purely arbitrary.

In ratio scales, the origin is fixed but the units are arbitrary. Mass
defines a ratio scale, as it is possible to determine a zero point and then
change the unit of mass by multiplying it by a positive constant. Temperature
defines a ratio scale only if the Kelvin scale is used. The term ‘ratio scale'
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has been employed because ratios of quantities make sense on such a scale,
We further note that the use of logarithms changes a ratio scale into a

difference scale.
Finally, when the origin and the units are fixed, we have an absolute

scale. Counting is done on an absolute scale.

1.1.3. Graphical representations

I.1.3.1. Frequency distributions, histograms and frequency polygons
For data not measured on a nominal or an ordinal scale, determining the
frequency distribution is a means of imposing a certain structure on raw data.

As an example, we consider the average number of references of source
publications of the Science Citation Index (taken from Nakamoto (1988) ;
further information about the Science Citation Index will be given in
Section III.1.3).

Table 1.1.4. Average number of references of source
pubiications in the Science Citation Index

A. Year
B. Average number of references

A B A B
1961 12.1 1973 12.3
1962 12.0 1974 13.1
1963 12.1 1975 13.2
1964 11.8 1976 13.7
1965 12.4 1977 14.9
1966 11.2 1978 15.2
1967 11.1 1979 15.0
1968 12.0 1980 15.9
1969 11.3 1981 16.1
1970 1.4 1982 15.5
1971 12.0 1983 15.4
1972 12.3 1984 15.7

For the type of investigation aimed at here, the year does not matter
(column A); only the data in column B will be manipulated. To obtain a
frequency distribution, we first group the data into convenient class
intervals. Table I.1.5 1lists the distribution of the data in Table I.1.4,
To solve the problem of numbers falling on the boundary between two class
intervals, we follow the convention of including the left end point in the
class interval, but not the right end point.
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Table 1.1.5. Distribution of the data in column B from
Table 1.1.4

(11.0,12.1(
[12.1,13.2(
[13.2,14.3(
[14.3,15.4(
[15.4,16.5]

o
M
H
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We will next explain how to draw a Aistogram from this distribution table.
The first step is to establish the horizontal axis. While it is convenient to
have intervals with the same width (as in this example), many distributions
encountered in real informetric situations (such as in the next example) do
not lend themselves to such an approach. The simplified case depicted in
Tabie I.1.5 can easily be drawn as the histogram in Figure I.1.1.

9
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fno 121 132 143 154 165

Fig.1.1.1. Histogram of the frequency distribution in Table I.1.5

Sometimes one may also wish to construct a frequency polygon, in which
case, the same class intervals as in the histogram are used. The next step is
to join the midpoints of the upper horizontal sides of the bars in the
histogram. The two ends of the resulting polygon are then usually linked to
the midpoints of the class intervals adjacent to the intervals used for the
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histogram. When class intervals with the same width are used, it is easy to
see that the area under the polygon is equal to the area under the
corresponding histogram. As two or more frequency polygons can be displayed
on the same graph - which is hardly possible for histograms - they are often
preferred for purposes of graphic comparisons., Figure 1.1.2 illustrates the
frequency polygon for Table I.1.5.
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Fig.1.1.2. Frequency polygon of the distribution in Table I.1.5

As a second example we consider the number of citations in 1984 of papers
published by the first 100 journals in the alphabetical Tist of the Journal
Citation Reports, to papers published in the preceding year 1983, (For further
information on the Journal Citation Reports, the reader is referred to Chapter
111.5).

Table I.1.6 1984 citations of papers published by the first
100 journals in the alphabetical list of the
Journal Citation Reports; covering papers
published in 1983

54 29 4 9 9 3 33 2 32 68
161 446 14 7 228 0 18 10 5 43
2 14 1 129 189 13 18 4 4 6
3 1 0 138 443 3 36 8 5 6
2 2 7 63 93 2 2 13 71 52
384 111 2 13 129 6 6 33 85 130
23 91 7 7 14 75 15 5 147 10
22 5 2 2 ] 58 0 102 154 15
13 5 0 87 448 24 131 225 67 52
23 1 28 1 8 20 339 86 67 48
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Table I.1.7 Frequency table : distribution of citation
data from Table I.1.6

{a,100 40 [100,200f 1
[10,201 14 [200,300[
[20,50({ 13 [300,400(
[50,100[ 15 (400,500

We begin by drawing the x-axis as in Fig.I.1.3.

T !
0 7020 5 100 200 00 400 500

Fig.I.1.3 x-axis for the histogram of Table 1.1.7

According to convention, a histogram represents percents by area. As a
histogram consists of blocks, no special problems arise when all intervals
are equal, as in the preceding example. In this case, however, we have class
intervals of unequal lengths. So we have to adapt the height of each block in
such a way that the area of each block represents the percentage of cases in
the corresponding class interval. Applied to the citation data, this yields
Fig.I.1.4. We note that drawing a vertical scale here would be nonsensical.

Lastly, for data on a nominal scale, classes naturally coincide with the
labels of observations. Properly speaking, in this case we have bar charts,
rather than histograms. Table I1.1.8 depicts data for the daily number of book
Toans in two libraries.

Tabie 1.1.8 Book loans in 1ibraries A and B

Days M Tu W Th F Sa Su

A 120 133 124 107 129 0 0
B 90 91 83 87 86 88 88
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L =
T LU Ly
0 10?0 50 100 200 300 400 500

Fig.I.1.4 Histogram of citation data (Table I1.1.7)

Fig.I.1.5 consists of histograms for libraries A and B (considered as
nominal data). Indeed, Table 1.1.8 can be viewed as a tabular representation

%40 ~
1201
100 1

80—

Mu"w'Th' F'Sa'Su M'Tu'"W'Th ' F 'Sa'su

Fig.I.1.5.a Bar chart for book Fig.1.1.5.b Bar chart for book
loans from library A loans from library B
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of two different kinds of measurement. In the first interpretation, the data
are seen as days of the week. In this case, the total number of observations
in both libraries is 613, and we have nominal data (when the natural order of
days is ignored). This case is depicted in Fig.I.1.5. In the second inter-
pretation, the data are viewed in terms of the numbers of book loans a day.
In this case, the total number of observations is 7, and we are working on

an absolute scale.

1.1.3.2. Logarithms and logarithmic representations
Many important informetric representations make use of graphs with a

logarithmic scale on one or both axes.

I.1.3.2.1. Semi-logarithmic representations

In the case of semi-logarithmic representations, only one of the two axes
is scaled in terms of the logarithm of the variable. Just as normal graphs can
be drawn on special graph paper, semi-~logarithmic graphs can be plotted on
paper in which points {(x,y) are actually represented by (10910 X,y) or
{x, ]0910 y).

1.1.3.2.2. Logarithmic (also called double-logarithmic) representations

In the case of double-logarithmic representations, both axes are
Togarithmically scaled. On double-logarithmic paper, a point (x,y) is
represented by (10910 x, Tog,q y).

1.1.3.2.3. Practical use of logarithms

In general, the logarithmic method of plotting is used when relative
changes are important, since equal linear displacements on a logarithmic scale
indicate equal proportional changes in the variables themselves.

In informetric practice logarithms are mostly used to represent non-
linear relations in a Tlinear way. Consider, for example, the relation

y=Ca" , [I.1.1]

where C and a are strictly positive constants. Taking logarithms of both sides
results in :

10910 y = 1og10 C+x 10910 a . [1.1.2)
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Here we see that plotting (x, 1og10 y) yields a straight Tine. In this case,
it would be better to use semi-logarithmic paper with a logarithmic scale on
the y-axis.

lety =D 1oga x + E, in which a, D and E are constants {where a > 0).
By using the general relation 1oga X = 1oga b.]ogb x and taking b to be 10,
we obtain the relation :

y = (D Tog, 10) Togyy X + E. [I.1.3]

This turns out to be a straight line when semi-logarithmic paper with a
logarithmic scale on the x-axis is used.

Lastly, if y = B x%, in which a and B are constants (where B > 0),
taking logarithms yields :

Togyg x = logyq B + a Togyq x . [1.1.4]
In this case, using double logarithmic paper results in a straight line.

[.1.3.3. Graphical representations : further remarks

Graphs are vital for communication in science : at best they can summarise
vast amounts of quantitative information. Although graphic design as a means
of communicating statistical information was established in the 1800's - with
William Playfair (1786) being the most interesting precursor - the recent
explosion in computer graphics software has led to an increasing use of graphs

and made it easier to design new types.

A survey by Cleveland (1984a) showed that a significant number of graphs
in scientific publications contain mistakes of some kind. Indeed, a detailed
analysis of all the graphs in one volume of Science revealed that 30 % contained
errors. This result was confirmed by Howarth and Turner (1987), who found that
between 18 % and 35 % of the graphs in Geochemical journals contained at least
one error. In both investigations errors were classified according to the
foll.owing four types :

{a) Construction : a mistake in the construction of the graph, such as tick
marks spaced incorrectly, mislabels, missing items and wrong scales.

(b) Degraded image : some aspect of the graph is missing or partially missing
because of poor reproduction.

(c) Explanation : something on the graph is not explained.

{d) Discrimination : items on the graph, such as different symbol types, cannot
be easily distinguished because of the design or size of the graph.
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As a result of this survey Cleveland (1984a) concluded that graphical
communication in science is badly in need of improvement. He pointed out five
areas in which further research and development could assist this improvement,
namely :

1) carrying out studies of how graphs are used;
2) developing new methods for data presentation;
3) developing guidelines;

4) studying human graphical perception;

5) developing software for statistical graphics.

Of these five areas the study of graphical perception is considered of
fundamental importance. When a graph is made, various means are used to encode
information on this graph, such as the positions of symbols, the lengths and
slopes of line segments, areas and colour. A reader later studying this graph
visually decodes the encoded information. This is what Cleveland and McGill
(1987) call graphical perception. Studies in graphical perception should
provide a scientific foundation for the construction of better statistical
graphs.

We conclude this short survey on graphical representation by presenting
a few guidelines (taken from Cleveland (1984a), Cleveland (1985) and Howarth
and Turner (1987)) on how to make more effective graphs.

Guidelines :

1. When feasible, put important conclusions into graphical form. Most
people do not read an entire article from beginning to end; readers skimming
a paper are drawn toward graphs. Try to make graphs and their legends tell the
story of your article.

2. Describe the graphs clearly. The combined information in the figure
Tegend and the text in the body of the paper should provide a clear and
complete description of everything on the graph. Detailed figure legends can
often be of great help to the reader. First describe completely what is graphed
in the display, then draw the reader's attention to salient features, and then
briefly state the importance of these features.

3. Make the quantitative information that is graphed stand out. Be sure
that different items on a graph can be easily visually distinguished.

4, Avoid cluttering graphical displays. For example, too much writing on
the plotting region can interfere with viewers' perception of geometric
patterns,

5. Subject to scaling constraints, choose the scales so that the data fill
up as much of the data region as possible. Do not insist that zero always be
included on a scale showing magnitude. Use a logarithmic scale when it is
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important to understand percentage change or multiplicative factors; a
Togarithmic scale can moreover improve resolution. Use a scale break only when
necessary, and if a break cannot be avoided use a full scale break.

6. Make graphs visually clear and capable of withstanding reduction.
For example, lines must be thick enough, letters must be large enough, and
plotting symbols must be large enough to accomodate the reduction.

7. Finally, recall that graphing data is an iterative, experimental
process and proofread graphs just as any other part of a published manuscript.

For further information on this topic we refer the reader to Cleveland
(1979), Cleveland, Harris and McGill (1983), Tufte (1983), Cleveland (1984b),
Cleveland and McGill (1984), Cleveland and McGill (1986), Clark (1987) and
Becker and Cleveland (1987). We especially recommend Cleveland's book 'The
Elements of Graphing Data' to anyone seriously interested in improving the
clarity of graphical representations of scientific data.

1.1.4. Measures of central tendency
The formulas in this section apply to a sample or to a population of
size N, denoted Xis i=1,2,...,N. How to draw such a sample will be discussed

in Chapter I.4.

1.1.4.1. The mean (also called the average or the arithmetic mean).For data
not measured on a nominal or an ordinal scale the number

, X; [1.1.5]

" M=

-
i
5

is called the mean of the sample (or the population). We will often use y to
denote the mean. Tables I1.1.4B, I.1.6, I.1.8A and 1.1.8B (second interpretation)
contain respectively the following means : 13.2, 58.4, 87.6 and 87.6.

1.1.4.2. Weighted mean
If a weighting factor W, 2 0 is associated with every value X; then
N

W= % W5 is the total weight, and
i=1

N
TOW.X, [1.1.6}

is the weighted mean. The (unweighted) mean of I.1.4.1 can be considered as a
weighted mean, where every W, = 1.




1.1. Descriptive statistics 19

1.1.4.3. Geometric mean
If all x; are strictly positive, then the geometric mean (GM) is defined
as

GM = yxj.xz.....x s [I.1.7]

N

i.e. the N-th root of the product of the N values. To compute GM, it is often
easier first to compute the mean of the logarithms of the X; and then to take
its antilogarithm :

GM = 10" |

i

N
1
where m = g i§1 log (Xi) .
The geometric mean is useful in averaging ratios, percentages and rates. The
geometric mean of Table I1.1.4B is 13.13,

1.1.4.4. Harmonic mean
If all x; are strictly positive, then the harmonic mean (HM) is defined
as

_ N
HM = —N—-—T- . {1.1.8]
i=1 %

An example of the use of the harmonic mean is given by Zusne (1976), who used
the harmonic mean of the ages of the author's first and last publications to
predict the peak of creativity of outstanding psychologists. For Table I.1.4B,
the HM is 13.03.

1.1.4.5. Arithmetic, geometric and harmonic mean are related through the
following inequality :

HM < GM < x ,
where the equality signs hold if and only if all values are equal.
1.1.4.6. Median

If the data are arranged in descending order of magnitude, then the median
Md is given by the (N+1)/2-nd value. When N is even, the median is usually
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Eaken as the mean of the two middle values of the set of ordered data. A median
divides the area under the frequency polygon into two equal parts. The medians
of Tables 1.1.4B and I.1.6 are respectively 12.35 and 14.5.

I.1.4.7. Mode

A mode Mo of a sample of size N is the most frequently occurring value,
i.e. the most common value. A mode may not exist at all (e.g. when all
observations are different) and even if it does exist, it may not be unigue.
For nominal scales, the mode is the only meaningful measure of central tendency.
The mode of Table [.1.6 is 2. However, in this case it makes more sense to use
the term 'modal class'. The modal class is then the first class : [0,10[.
Similarly, for Table 1.1.4B, the modal class is the first one : [11.0,12.1[.
Finally, for both libraries (Table I.1.8, first interpretation), the mode is
Tuesday.

[.1.4.8. Applications

Otherwise irregular data curves can be made more regular by using
averages. They make the general trend more conspicious. As such, the use of
averages can be considered as a smoothing technique. A good example of this
is given in Baglow and Bottle (1979) : see Fig.I.1.6.

T T T T T T
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Fig.I.1.6 Use of averages as a smoothing technique
publications by Sir Robert Robinson
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A more elaborate use of weighted averages as a smoothing technique is
described by Winston (1984; p.77) and has been applied to citation data in
Rousseau (1989%).

To apply this method, data (x1.)1.=1’.“’N are ordered in a natural way :
the index i denotes, say, time or locations on a line. Moreover, the X; are
only known up to a limited certainty, indicated by a confidence index Ci»
0= <y < 1. Then the following relaxation procedure is used :

(k) (0)

N (1-61) % {x

; ; (k'1) + X,i_(.k-1)) .

i+

Here xgk) denotes the smoothed value of X; after k iterations; xgo)
starting value of Xi» while Xiy is the right neighbouring value of X; and X -
is the left neighbouring value. For end points (i=1 and i=N) the formula is

changed into :

is the

i) = epd® (e ok
and
xék) = chéo) + (1=¢)) xNEk'1)

Note that these equations consist of two terms. The first is the measured
value, multiplied by its confidence index. This part does not change during
the iteration procedure. The higher the confidence index of this value is, the
more important the term is. The second term is determined by the actual value
of neighbouring data. At any moment a new iterated value can be obtained as the
weighted average of the old value and the old values of neighbouring points.
This procedure usually converges quickly to a stable state.

1.1.5. Measures of dispersion
Measures of central tendency such as the mean are not sufficient to

describe data. A good example is given by Table I.1.8. Here x does not even
give a clear impression of how many books are Toaned out every day : although
the average number of book loans is the same for both libraries, the lending
pattern is completely different {if for no other reason than the fact that
library A is closed during the weekend - let us say A is a business library
and library B is not). We observe that for nominal or ordinal data the notion
of dispersion makes no- sense,
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1.135.1. Variance and standard deviation

The most commonly used measures of dispersion are the variance (denoted
as 02) and its square root, the standard deviation (o).
The variance of a set of data (Xi)’ where i = 1,...,N, is defined as

N

of =g E (x0° [1.1.9]
i=1
The variance can also be expressed in the following ways :
z
SR NI G (1.1.10]
as well as
o? = ifkg 1g1 (%)% [1.1.11]

The standard deviation o is nothing but the square root of the variance.
Mean, median and standard deviation are related through the equation :

lu-Mdj <o

For a proof the reader is referred to, for example, Falk (1981).

For the data in Tables I.1.4B, I.1.6, I.1.8A and I.1.8B the variances are
respectively 2.86, 9311.5, 3124.8 and 5.96; hence the standard deviations are :
1.69, 96.5, 55.9 and 2.44.

I.1.5.2. Range

This is the simplest measure of dispersion. It is defined as the difference
between the highest and the Towest value of a variable observed in an
experiment. Although the range is easy to compute, it depends only on two
extreme values and does not take the distribution into account. This means
that it can be heavily influenced by sampling fluctuations, so that the
range is only a crude measure of dispersion.

For the data in Tables I.1.4B, I.1.6, I.1.8A and I.1.8B the ranges are
respectively 5.0, 448, 133 and 8.

I1.1.5.3. Mean deviation
The mean deviation is defined as :
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1
Ny

nmM=

MD = [x. - x|
1

1

This measure is not often used in practice.

1.1.5.4. Interquartile range

When data are arranged in order of magnitude, the jth quartile Qj, where
j =1,2,3, is given by the j(N+1)/4-th value. Again, it may be necessary to
interpolate between successive values. The second quartile is the median.

Similarly, the jth percentile PJ., where j = 1,...,99, is given by the
j(N+1)/100-th value. Note that P25 = 01, P50 = Q2 = Md and P75 = Q3.

The interquartile range is 03 - 01 or P75 - P25 and may be considered

as a refinement of the range.

I.1.5.5. Coefficient of variation
We define the coefficient of variation V as < . This measure of
dispersion will play an important role in the study of inequality in

informetrics (an aspect of informetrics closely related to econometrics).
For this, see Part IV.

1.1.5.6. Moments
a) The r oment about the origin is given by

r
X; oo (I.1.12]

3
- -

n
2 —
T ™M=2Z

i=1

Note that my = 1 and m; = X .

b) The rth moment about the mean X is given by
N
1 =\r
m.=g F (Xi -x) . [1.1.13}

1.1.5.7 Coefficient of skewness
The coefficient of skewness is defined as the third moment about the mean
divided by the third power of the standard deviation :

M3 m3
- R (1.1.14]
;3 (m2) 72
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I1:1.5.8. Coefficient of kurtosis

The coefficient of kurtosis, also known as the coefficient of pointedness,
is defined as the fourth moment about the mean divided by the fourth power of
the standard deviation :

m4m ]
= [I.1.15
A

1.1.5.9. Standard scores

Data are often standardised so as to be able to compare sets of data with
different means and/or variances. In this case so-called standard scores,
denoted as z;, are used. Standard scores are defined as :

z, =2 ) [1.1.16]

Standard scores have an average of 0 and a variance of 1. They will be put to
frequent use in the section on inferential statistics.

I.1.5.10. Grouped data

In observations X{seeesXy SOMe numbers can be equal. Assume that the set
of observations {x1,...,xN} is the same as the set {y1,...,yp} (all yj are
now different), and that yj appears fj times, where j = 1,...,p, in the set
{x1,...,xN}. We then have :

£y
i¥3

1" Mo

v
X =
N =1

and

12 2 )
(g = yif.) -x" .
Nj=1 JJ
This follows immediately from the definitions of X and 02.
I.1.5.11, Other measures of dispersion

There are other measures aiming at a description of the dispersion or the
concentration of data, such as the Gini index, Pratt's measure, Theil's

measure and several others. These will be discussed further on in this book
(see Subsection IV.7.1.3).
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I.1.5.12. A graphical representation of dispersion : the box-and-whisker plot.

This graph shows selected percentiles of the data as illustrated in
Fig.1.1.7 for the citation data in Table I.1.6. A1l values beyond the 10th
and the 90th percentiles are graphed individually.

16—l ° —

T —— 90 th  PERCENTILE

——— 75th  PERCENTILE

5 —

14— L

13— —
—— 50 th PERCENTILE

12— l —~—— 25 th  PERCENTILE =
: —~—— 10 th  PERCENTILE

17 —

Fig.1.1.7 Box-and-whisker plot of data in Table I1.1.6
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“

'1.2. ELEMENTS OF PROBABILITY THEORY

1.2.1. Probabilities

Probability theory studies situations that depend on chance. Such
situations will be called 'experiments' or 'random'experiments'. The set of
all possible outcomes of an experiment is called the 'sample space' or the
'universe' of the experiment and is denoted by Q. For instance : if the
experiment is tossing a die, the sample space is {1,2,3,4,5,61}. Every subset
of the universe is called an event. For instance, A = {2,4,67 is the event
'an even natural number, different from zero and smaller than seven'. The
probability of an event A — Q is denoted as P(A).

Developing the theory of probability in an axiomatic way would take up
too much space and would furthermore distract us from our real objectives.
Instead, we will adopt an intuitive approach and refer the reader interested
in a more formal approach to books on probability theory such as Feller (1948,
1968) or Neuts (1973).

I1.2.1.1. Some probabilistic equations and inequalities
(1) For every event AcQ : 0 £ P(A) < 1.
(2) 1f A® is the complement of A with respect to @ (A = @A), then
P(A®) = 1 - P(A).
(3) The impossible event, ¢, has a probability of zero : P(¢) = 0.
(4) If for every i and j, 1 # ] : Ai n Aj = ¢, then

N
P (U

N
U oA) = £ PR . [1.2.1]
i =

(R
In particular, if An B = ¢, then P(A U B) = P(A) + P(B).
(5) If A and B are events, then
P(A u B) = P(A) + P(B) - P(An B) . [1.2.2]
(6) For any events A and B, we have
P(A) = P(A n B) + P(A n BS) . [1.2.3]
1.2.1.2. Conditional probabilities

Let A and B be two events such that P{(B) > 0. Then the conditional
probability of A given B is denoted as P(A|B) and is defined as
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P(A|B) = fiérgygl [1.2.4]

or
P(A 0 B) = P(A[B).P(B)

Events A and B are said to be <ndependent if P(A|B) = P(A) or, equivalently,
P(B|A) = P(B).
By {I.2.4] this is also equivalent with

P(A n B) = P(A).P(B) [I.2.5]

1.2,1.3. An example

We assume that the average computer time that an online system needs to
find a particular paper is proportional to the number of entries in the file.
When P(A) is set equal to the number of papers written by author X divided by
the total number of papers in the file, we see that the time ty needed to find
any paper written by X is ¢/P(A), with c as a constant of proportionality.

If we know, however, that we need a paper on subject B (subject code Y),
using this information to find such a paper by X will result in a probability
of P(A[B) = P(A n B)/P(B). Next, if author X writes almost exclusively on
subject B, then P(A n B) ~ P(A). Furthermore, since a subject code is usually
a small part of the complete file, we get P(B) « 1. Hence P(A[B) » P(A).
So, the computer time needed to search the subfile with code Y, tX in Y is
much smaller than the time needed to search the whole file. Thus ty = c/P(A)
and ty sy = c/P(A|B). Hence :

X inY _ P(A) <1
T, " PATB)

I.2.1.4. Bayes' rule

We finally mention, without giving the proof, the following formula,
known as Bayes' rule : if @ is the disjoint union of the events A1,A2,...,An
and if, for every j, P(Aj) # 0, then, if B is an event with P(B) > 0 :

P(B|A,)P(A.)
P(A;[B) = — | J__J . [1.2.6]

r P(B|A)P(A,)
oy "I

27
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*

1.2.2. Distribution functions

1.2.2.1. Discrete stochastic variables

A discrete stochastic variable X {also called & random variable) is a
function from a countable universe @ = {w1,mz,...} to R (the real numbers)
and thus :

X:0+R:w~> Xw) .

The set {w € Q|X{w) = ;1 1s an event for every i = 1,2,... . This event is
also denoted as {X = Xi}’ The probability of this event is denoted as P(X=xi).
The function

X; > P(X=xi) i=1,2,...

is the discrete probability distribution of the stochastic variable X,
For example, let © be the set of all books in a library and let X be the
stochastic variable which relates the book's 'age' to every book. The event

An = {X=n} is the set of all books that have been in the library's possession

for exactly n years. The distribution of books according to age is then given
by

N~ [0,1] : n~> P(An) .

It is natural in this case to define P(An) as the number of books with age n
divided by the total number of books in the library.
Note that a discrete stochastic variable always satisfies the relations :

P(X=xi) 20 (i=1,2,...)
and

£ P{X=x,) =1
:I 1

1.2.2.2. Continuous stochastic variables

We will also use the concept of a continuous stochastic variable
X:Q-~»> R 3

where Q is a non-denumerable set. In this case P(X=x), x € R cannot be
defined. However, such expressions as P(x1 £X<x) =Plwe le1 s X(w) ¢ Xy}
are meaningful. Indeed, when variables are continuous, their individual



1.2. Elements of probability theory 29

occurrence cannot be measured and is furthermore not important; for instance,
an exact temperature, such as n degrees, cannot be measured. What can be
measured is a range of temperatures [x1,x2] (say m € [3.1, 3.21).

P(x1 s Xg xz) then denotes the fraction of Q that is in this situation.

In mathematics, the existence of a function f 2 0 is shown such that for
every X,.X, € R:

X2
[ f{x) dx = P(x1 < Xs x2) s [1.2.7]
X
1

where the integral on the left denotes the area under the graph of f between
the abscissae Xy and Xoe The function f is called the 'probability density
function' of the continuous stochastic variable X. We note that density
functions f satisfy

?? f(x) dx =1

-00

1.2.2.3. Cumulative distribution functions
The cumulative distribution of a stochastic variable X is defined as

P(Xsx) = F(Xx) 5 ~» < x < += [1.2.81

If X is a discrete stochastic variable then

#

F(x) T P(X=xi)

X. £ X

1

If X is a continuous stochastic variable then

F(x) = f f(u) du

Conversely, we see that

f(x) = 9L [1.2.9]

for continuous functions f.
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I.2.3. Characteristic values of a stochastic variable

1.2.3.1. Two types of stochastic variables

a) Discrete stochastic variables
The mean (expectation) of a discrete stochastic variable is defined
as

E(X) = £ x. P(x=xi) . [1.2.10]

1ts variance is :

"

Var(X) = £ (x; - E(X))? P(X=x;) [1.2.11]

1

1

£ x2 P(xex) - (E(0)?
1

If the sum in the above expressions is infinite, the mean or the variance of
X is said not to exist.

b) Continuous stochastic variables
In this case the mean and the variance are defined as follows :

+00
E(X) = [ xf(x) dx [1.2.12]
2 2
Var(X) = [ (x-E(X))" f(x) dx [1.2.13]
= +? xzf(x) dx - (E(X))2 .

-o0

Similar to the discrete case, E{X) or Var(X) are said not to exist when
integrals do not converge.

1.2.3.2. Some theorems on the mean and the variance (no proofs are given)

1) If X is a random variable and a,b € R, then
E(aX+b) = aE(X) + b [1.2.14]
and

Var(ax+b) = a® var(X) . [1.2.15]



1.2. Elements of probubility theory 31

2) If X and Y are random variables, then

E(X+Y) = E(X) + E(Y) . [I.2.16]

3) If X and Y are independent random variables, i.e., by [I.2.5],
P(Xsx, Y2y) = P(X<x).P(Y<y) for every x,y, then

Var(X+Y) = Var(X) + var(Y) . [1.2.17]

1.2.4. Examples

1.2.4.1. The binomial distribution

Consider an experiment that can be repeated under the same conditions.
Assume that this experiment has two possible outcomes : success, with
probability p, and failure, with probability q = 1-p. Such an experiment is
called a 'Bernoulli trial'. We are currently interested in the probability
of having x successes in n independent Bernoulli trials. If X denotes the
number of successes in n trials, then X is a discrete stochastic variable with
values x = 0,1,2,...,n. This discrete stochastic variable has a binomial

distribution with parameters n and p (we omit the proof) :

n
P(x=x) = () p*g"™* [1.2.18]
X
where x = 0,1,2,..., n, g = 1-p and (2) is the binomial coefficient 'n over x',
which is defined as — ",
x1{n-x)!
This is given in notation as : X ~ B{n;p). If can be shown that for a binomial

distribution E(X) = np and Var(X) = npq.

I1.2.4.2. The Poisson distribution

Assume that patrons arrive randomly at a library's circulation desk with
an average of A arrivals per minute {(or any other time unit). The probability
of having n arrivals in a one-minute interval is then given by (we omit the

proof) :
e MM
P(X=n) = —n'— > n = 0,1,2,.-. . [1.2.19]

The Poisson law is shown to hold for every situation in which there is a random
pattern of occurrence. If X has a Poisson probability distribution, then

E(X) = X and Var(X) = x (we omit the proof). This is given in notation as :

X ~ P()).
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The property E(X) = Var(X) is important for practical purposes : if,
one sees in a sample that X m 62, this is a strong indication that the
property under study has a Poisson distribution. (This suspicion must, of
course, be confirmed by using a statistical test (see Section I1.3.5).) If
an observed frequency distribution is not a Poisson distribution, the
frequencies are not the result of a random process. The implication is that,
in this case, it would be worthwhile to look at the situation more closely
in the hope of establishing cause and effect.

Poisson's law will play an important role in queueing theory (Chapter
I1.3). It is also used as a model to describe multiple discoveries in science,
see Simonton (1978, 1986a and 1986b) and Price (1963).

1.2.4.3. The normal distribution

A continuous stochastic variable X has a normal distribution with
parameters u and o (=0 <y < +03 0 <0 < +o) if its density function is
given by

1 20

f(x) = e , =0 < X < 40 [1.2.20]

o V/or

This is given in notation as : X ~ N(u;oz).

The normal distribution is also called the 'Gaussian distribution'., If X
has a normal distribution, then it can be shown that E(X) = p and Var(X) = 02.
For the density function f(x) we note that

1) f(x) is symmetric with respect to p, and thus f(u-x) = f(u+x) ;
2) 1im f(x) = 1im f(x) =0 3

Xr=00 Xr4oo
3) f(x) attains its maximum for x = y;
4) f(x) increases for x < y and decreases for x > u;
5) f(x) has inflection points in x = py + 0.
See Fig.l.2.1.
The normal distribution is the most important probability distribution
in statistics. It forms the basis for a large group of statistical tests known

as parametric techniques. Several of these techniques will be discussed in
Chapter I.3.
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0.2 |
] N(30;6.25)
0.1 _|
N(-5.25)
] N (30 ; 25)
0.0 4 | [
=70 0 20 0 40

Fig.1.2.1 Various normal distributions

If X ~1V(u;02), then Z = X ; U ~ n(031), as follows from [I.2.20].
The continuous stochastic variable Z is called the ‘standard normal
distribution' : E(Z) = 0 and Var(Z) = 1.

Values for P(Z<z), where z 2 0, are given in the appendix (Table A.1).
Other values can easily be obtained from this as shown by the following
calculations (based on the above properties of f) :

1) P(Zzz) =1 -P(Zs2) .
2) P(Z<z) for z < 0 is equal to P(Zz-z) =t - P(Z<-z), which can be found
in the tables as -z > 0.

2P(0cZ<z)=2(P(Z<gz)-0.5)=2P(Z<z) - 1.

iIA

n

3) P(~zsZs+z) (for z 2 0)
4) P(Zg-zor Zz+z) (forz20) =1 - P(-zcZ < +z) =1-(2P(Zs2z) - 1) =
2 -2P(zcz) .



34 1. Statistics

1.2.4.4, The negative binomial distribution
A discrete stochastic variable X has a negative binomial distribution with

parameters n and p if

P(X=x) = (n 1+X) pnqx . [I.2.21]
X
where x = 0,1,2,..., n >0, 0<ps1,q-=1-p.

For this distribution E(X) = ng/p and Var(X) = nq/p2 (we again omit the
proof). This is given in notation as : X ~ NBD(n;p). The negative binomial
distribution is also termed 'Pasral’'s distribution'. For integer values of n
it gives the number of failures before the nth success in a sequence of
Bernoulli trials where the probability of success upon each trial is p and
the probability of failure is g = 1-p. The special case where n = 1 is called
a ‘geometric distribution'. The NBD will play a role in library circulation
models.

1.2.4.5. The negative exponential distribution
A continuous stochastic variable X has a negative exponential distribution

with parameter b > 0 if its density function is given by

flx) =g e, 0sx <o . {1.2.22]
Then P(X<x) = 1 - e'x/b. Its mean is b and its variance is b2 (we omit the
proof).

1.2.4.6. The xz-distribution {chi-square)
A continuous stochastic variable X has a xg-distribution with n degrees
of freedom if its density function is given by

n n X
_n -1 -
fx) =2 2@ e ?, x20, neN, 1.2.23]
This is given in notation as : X “sz(n). The symbol I'(t) denotes the gamma

function, defined as
B ot-1 -x
r{t)=/ x e "dx, t>0 . [1.2.24]
0

The gamma function satisfies the recursion formula r(t+1) = tr(t), and if t is
a positive integer, I'(t) is equal to (t-1)! (t-1 factorial). We will not be



1.2. Elements of probability theory 35

overly concerned with this gamma function as we will always use tabulated
values of the xz—distribution.

If X has a chi-square distribution with n degrees of freedom, its mean
and variance can be shown to be E(X) = n and Var(X) = 2n. We further note the
following theorem (without proof). Let X1,X2,...,Xn be independent normally
distributed stochastic variables with a mean of 0 and a variance of 1. Then
X = X% + ..+ Xﬁ «,xz(n). The xz—distribution will play an important role in
hypothesis testing.

1.2.4.7. Student's t distribution
A continuous stochastic variable X has a t~distribution with n degrees of

freedom if its density function is given by

1 n+1
r(.ri 2 -
2 1+_)S__

-2 ) [1.2.25]
r(z) Vi n

—
—_
x

,~°°<x<+oo,n€l\l0

This is given in notation as : X ~ t(n). The t-distribution will be used in

the section on hypothesis testing, where it will often play a role similar to the
normal distribution, in the case of small samples. The shape of the t-
distribution resembles that of the standard normal distribution. Its mean is
also 0 and its variance is n/(n-2) (n > 2) (we omit the proof). As in the case
of the normal distribution we also have :

P(-x<X<x) =2 P(X<x) -1
and
P(Xs-x or X2x) =2 -2P(X<x) ,

where X ~ t(n).

1.2.4.8, Other distributions

Other distributions will be introduced when and where they are needed.
In particular, informetric phenomena are characterized by special distributions
known as Lotka's, Zipf's, Bradford's, Mandelbrot's or Pareto's distributions
(see Part IV). A concise statement of the foremost facts relating to the most
important statistical distributions can be found, for example, in Hastings and
Peacock (1975).
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1.2.5. Cell occupancy problems
Many probabilistic situations can be described, regardless of whether or

not they are related to informetrics, by using a model consisting of cells and
objects (or balls) within the cell. For instance, a cell can represent an
author and the balls in the cell papers written by this author. In this section
we will mainly be concerned with three classical cell occupancies : the Bose-
Einstein, the Fermi-Dirac and the Maxwell-Boltzmann distributions.

1.2.5.1. Recognisable objects

N

Theorem. Let LOPRRRYS be such that % r. =or. This population of r objects
=1

can be distributed over the N cells, such that the i-th cell contains r;

objects (7 = 1,...,N), in the following number of ways :
r!
[[.2.26]

! ! !
2"1.1‘2. e I’N.

(Bear in mind that 0! = 1),

Proof. We take r objects for the first cell : this can be done in (;‘) ways.
1

Then we take ro objects for the second cell : this can be done in
(r;r1)ways.we continue in this manner until we reach the last cell for which
2

there is no longer any choice : we have to take the remaining N objects. This
yields a total of
N-1
roorry r- s r,
( ).( ) IPRPUR (R P )
1" N

choices. According to the definition of the binomial coefficients, this is

equal to :

N-1
- (r - = r.)!
rl (rery)t =1 r! o
Hr-r,J7T * 4 Tttt T or - r,T ... T
KR rotlr = = r)! N T2 N
2 jo1 J

If the r; are not fixed, there are N possible cell occupancies (i.e. the

number of mappings from a set of r elements to a set of N elements : for every
element in the first set, there are N possible assignments). The Maxwell-
Boltzmann distribution assumes that all these N' cases are of equal probability,



1.2. Elements of probability theory 37

so that each has a probability of 1/N".
The probability of obtaining a specific cell occupancy (ri's fixed) then

becomes :
r! -r
r—!—'.—'—r_!' - N . [1.2.27]

Based on the above reasoning, the Maxwell-Boltzmann distribution would
seem to be the most logical one. However, less intuitive distributions are
more commonly encountered (especially in physics). These will be studied in
Subsection I.2.5.2.

[.2.5.2. Unrecognisable objects

In the case of unrecognisable objects, only the number of objects in every
cell is important. Switching two objects from different cells leaves the
distribution unchanged. If a total of r objects is to be distributed over N
cells, every solution (i.e. every N-tuple) of the equation

r.=r, r,20,
1 1

II.MZ

1

yields a possible configuration. Two cell distributions can be distinguished
if the corresponding N-tuples (r1,r2,...,rN) are different.

Theorem. 1. The number of distinguishable cell distributiong (r objects over

N cells) equals

N4p-1 N+r-1
A, p=1 )= ). [1.2.28]

2. The number of distinguishable cell distributions in which no cell

remains empty is :

B =( J)=( ). [1.2.29]

Proof. 1. Let us visualise a configuration of N cells with r objects as a row
of bars and stars such as in the following configuration :

(ol b B Rl B

There are consequently N+1 bars and r stars. Every configuration is obtained
by placing r stars in (N+1+r) - 2 = N+r-1 spaces (begin and end with a bar).
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This can be done in
N+r-1
r

possible ways. Once the stars have been assigned, the remaining spaces are
automatically occupied by the N-1 bars. This proves part 1 of the theorem.

2. Demanding that no cell should remain empty is equivalent to requiring
that no two bars should be adjacent. Let us therefore consider a row of r stars
and observe that there are r-1 spaces between the stars. Let us next pick N-1
of these r-1 spaces (this is only possible if N < r) for the bars, This can be
done 1in (;::) different ways. This ends the proof of the theorem. o

The numbers 1/Ar,N’ expressing the equal probability of all distinguishable
cell distributions, yield the so-called Bose-Einstein distribution. It is often
applied in the theory of photons, nuclei and atoms containing an even number of
elementary particles, see e.g. Feller (1968, p.41).

The Fermi-Dirac distribution assumes that :

a) it is impossible for two or more particles to be in the same cell (hence
r < N and for every i = 1,...,N : ry = 0or1);

b) all distinguishable distributions satisfying a) have an equal probability
of occurring.

Hence, with the Fermi-Dirac distribution, there is a total of (ﬁ) possibie

arrangements, each having probability

Ny-1
() (1.2.30]

This model applies not only to electrons, neutrons and protons, but also
to misprints in a book. If a book contains N symbols of which r are misprints,
this situation can be configured as N cells and r balls, with at most one ball
in each cell. The distribution of misprints consequently follows a Fermi-Dirac
distribution.

Another theoretical application of the use of the Fermi-Dirac occupancy
model is in the use of files of library patrons. When entering the library for
the first time, users fill out a form stating their name, date of birth,
address and so on. This form is all that remains in the library once the user
has left. Especially when forms are incomplete, one might ask if every library
user is uniquely determined by these data. If yes, the data follow a Fermi-
Dirac distribution in the total population of the region served by the library.
For more information on this topic, the reader is referred to Leiser (1972).
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We will conclude this section on occupancy problems by applying the
second part of the above theorem. Assume that we are observing the entrance
to a library. If the person entering is a male, we write down the letter M
and if it is a female we write down the letter F. After a certain amount of
time, we obtain a chain such as :

MMFFFMFMMMMFFMFFE |

Suppose further that we terminate our observations after a certain time.
The following questions may then be posed :

(1) What is the probability of obtaining a distribution of M's and F's as
observed?

(ii) Do persons enter the library in groups of the same sex (a question on
human social behaviour)?

Without performing any statistical test we can already solve part of these
questions. Suppose we have observed m men and f women; suppose moreover that we
have n runs of M's (i.e. groups of consecutive M's). Hence there are n-1, n
(as in the above chain) or n+1 runs of F's. For illustrative purposes, let us
say that there are n+1 runs of F's. Consequently, n runs of M's means, in fact,
that n cells are to be occupied by M's, but no cell may remain empty.

According to the above theorem, this can be done in (m'}) different ways.

Analogously, the n+1 runs of F's yield (f 1) possibilities. Altogether, there
are (n 1)(f 1) possibilities for n runs of M's and n+1 runs of F's. The total
number of different situations, with every number of runs allowed, is clearly

CUREC S

.

Hence, question (i) boils down to computing

(m-1)(f 1)

'—?-—73——— [I.2.31]
For n = 1,2,..., min(m,f), the above equation yields a discrete distribution,
as shown by Fig. I.2.2.

As can be seen from this figure, the points belong to a more or less
normal distribution and it can be shown that, in the limit, this is indeed the
case. On the left we encounter the situation n =1, i.e. MMM.. .MFF...F
(perfect clustering) and on the right the situation n = min(m,f) MFMFMF...MF
(anti-clustering), with the random situation in the middle.
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AP

M. ...MMF.. FF randomly MFMF._ . MF

{perfect clus tering) distributed {no clustering i.e.
anticlustering )

Fig.1.2.2 Distribution of M's and F's

Based on these considerations, it is possible to test hypotheses to find
out whether or not arrivals occur in groups according to sex. The Wald-
Wolfowitz runs test (see Subsection 1.3.7.2) can be used for this purpose.
Note that if only the left tail is rejected we can conclude that the arrivals
are distributed equally; if both the left and the right tails are rejected,
we can conclude that the arrivals are distributed randomly.

The Bose-Einstein distribution has been used by Hill (1974) to derive an
important informetric law (to be discussed in Part IV), namely Zipf's law.
Hi11's procedure was also applied later in Orlov et al. (1985), where thermo-
dynamic principles were used to describe document distributions.



