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I.3. INFERENTIAL STATISTICS : TESTS OF HYPOTHESES AND SIGNIFICANCE

I.3.1. Sampling

Consider a card index with 10,000 entries. We wish to draw a sample from
this population of 10,000 cards to find the age distribution of books in the
Tibrary. To be able to make reliable inferences about the population as a
whole, this sample must be large enough and unbiased. In the next section we
will discuss some methods to attain this objective.

Let X be the stochastic variable which associates the book's age with
every card. This stochastic variable is termed the ‘population stochastic
variable'. The distribution of X is the population (frequency) distribution.

A sample of size N from this population is then a finite sequence of
random variables X1,X2,...,XN with the same distribution as X. We moreover
require the Xi's to be independent, i.e. (cf. formula [I1.2.5])

P(X1 S XqaXy S XgseeosXy S xN) = P(X1 < >_<1).P(X2 < x2) ves P(XN < xN).
For a sample X1""’XN the sample mean, X, is defined as

o1
X =
L

M=

X: 3 [1.3.1]
g i
and the sample variance is :

g2

1 N 12
= 'N:T' .21 (Xi "'X) . [Io3-2]
1=
S is then called the sample standard deviation.

Theorem. If the population stochastic variable X has a mean u and a variance

o° then

E(X) =u and Var(X) =5 ; [1.3.3]
moreover :

Bs?) = o . [1.3.4]

Proof. The proof of the formulae [I.3.3] follows immediately from formulae
[I.2.14] through [1.2.17]. The proof of formula [I.3.4] is omitted. o

The relations E(X) = u and E(Sz) - 2 express the fact that X and s are
unbiaged estimators for the population mean and variance.

We finally note the following result (the proof is omitted) :
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2
Proposition. If X ~ N(/l;O'z), then X ~ N(u;%).

I.3.2. General remarks on hypothesis testing
In attempting to reach decisions on statistical grounds, it is useful to
make assumptions about the population or populations involved. Such
assumptions, which may or may not be true, are called ‘statistical hypotheses'.
In many instances we formulate a statistical hypothesis for the sole
purpose of rejecting it. For example, if we want to decide whether a given
coin is loaded, we formulate the hypothesis that the coin is fair, i.e.
p = 0.5, where p is the probability of heads. Similarly, if we want to decide
whether one procedure is better than another, we formulate the hypothesis that
there is no difference between the procedures (i.e. observed differences are
merely due to chance fluctuations). Such hypotheses are called 'null Aypotheses',
denoted by HO' Any hypothesis which differs from a stated null hypothesis is

termed an 'alternative hypothesis', denoted by Hy-

Let us next take a closer look at the two kinds of errors that can be
made when statistical decisions are taken. If the null hypothesis is rejected
when it should be accepted, we say that a type I error has been made. If the
null hypothesis is accepted when it should be rejected, we make a type II error.

Clearly a decision procedure should be such that it eliminates or at
least reduces both kinds of error. However, an attempt to decrease one type
of error usually increases the other type of error. In practice, one type of
error may be more serious than the other, and so the null hypothesis is
chosen in such a way that a type I error is worse than a type II error.

The only way to reduce both types of error is to increase the sample size,
but this is not always possible.

In testing a given hypothesis, the maximum probability with which we are
willing to risk a type I error is called the 'level of significance' of the
test. This probability, denoted by o, must be specified before samples are
drawn, so that the results obtained will not influence our choice. Once this
significance level has been determined, we are saying that we will accept H0
unless we witness some event which has a sufficiently small probability (o)
of occuring when H0 is true. This is what some people refer to as 'the principle
of the disbelief in tall stories'. In practice a Tevel of significance of 0.1,
0.05 or 0.01 is customary. If a hypothesis is accepted at a 0.1 level, it is
automatically also accepted at the 0.05 and the 0.01 level.
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1.3.3. Central limit theorem
The following central limit theorem (given without proof) forms the
basis for several statistical tests.

1.3.3.1. Central limit theorem (Lindeberg, 1922)
Let Xp5.e.0Xy be independent random variables which are identically
distributed and have a finite mean u and a variance 02. Then, if

Y =X +X,+ ... +X,,

v =Xt X, ¥
2
¥, - N zb't?
iim P(a § ————— 5 b) = — f e dt [1.3.5]
N c W VET a

that is, the random variable (Y,-Nu)/o VN, which is the standardised
variable corresponding to Yy, ig asymptotically normal.

For several illustrations of this theorem we refer the reader to
Feller (1968, p.244-246).

This theorem, together with the definition of the sample, implies that
if N is large encugh (in practical situations N % 30), the sample mean X is

normally distributed, even if X is not! So, we have
2
X~y ;QN—)
and hence

X- W pios1) . ' [1.3.6]
o/W

1.3.3.2.A simple verification of the central limit theorem
The validity of the central 1imit theorem, which strikes most students
as odd, can be experimentally verified as follows. Students (at least 30) go
to the library and count the number of books on a shelf. Each student counts
10 or 20 shelves and computes the average number of books on one shelf. All
these averages graphed together on a histogram will give a distribution
which will resemble the normal distribution. Note that in this situation
the distribution of the number of books per shelf is not known (and does not
have to be known).
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1.3.4. Tests of means

1.3.4.1. First test of the population mean
Let us take H0 P = g, i.e. we want to test whether the population
mean is Hg- If N 2 30,

X- Mg
= ~ N(031) . [1.3.7]
a/W
and if o is not known - as is usually the case - we estimate o by s (the
observed value of the sample standard deviation) and consider

X - Mg
= ~ N(031) . [1.3.8]
s/VN
Note that the fact that Z is standard normally distributed follows from the
central limit theorem.
If N < 30 and if X is known to be normally distributed, then we have,

according to the proposition in Section 1.3.1,

X -

Ho
= ~ N(031) , [1.3.9]
oV
if ¢ is known, and
X - Mg
= ~ t(N-1) , [1.3.10]
s/W

if we use s as an estimate for o.

In the first case the stochastic variable Z used for the test is standard
normally distributed. For this reason such tests are often referred to as
'z-tests'. In the latter case we use a Student's distribution : this test is
called a 't-test'. We note that the t-test may always be applied and that the
z-test is a good approximation of it for large N. However, we recommend the
use of samples of which the size is larger than thirty.

There are three possible forms for the alternative hypothesis H1 :

1) Hy t 0 # 4y (leading to a two-sided test)
2) Hy tuo Ho
3) Hy s u< Ho (both leading to a one-sided test).

In the first case we will reject Hy if the value of Z (denoted by z) is
larger than y or smaller than -y, where y is the critical point yielding an
area under the distribution curve to the right of y, equal to a/2. For example,
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if a = 0.05 and N > 30, we find in the table for the standard normal
distribution (Table A.1) that y = 1.96. So, in this case the acceptance
region for H0 is 1-1.96,+1.96[. Figure I.3.1 illustrates this situation.

-
| A,

acceptance region for H,

Fig.I.3.1 Acceptance region and critical regions for a two-sided
test on the normal distribution ‘

In the second case (H1 TS uo) we will reject H0 if z is too large.
It only makes sense to do such a one-sided test if it is known for certain
that p is at least as large as Mg or if it makes no difference whether
W=y oru < Hp- The critical point y is here chosen in such a way that
the area under the distribution curve to the right of y is equal to a.

Similarly, in the third case (H1 cu< “0)’ Hy is rejected if z lies
outside the acceptance region ]-y,+c], where y is the same number as in the

preceding case.

1.3.4,2. Examples

1) Suppose that we know that an abstract in the ECONOMIC LITERATURE INDEX
contains an average of y = 79.56 words, with a standard deviation of ¢ = 24.80.
When examining forty abstracts written in German, we observe an average of
67.47 words. Is there a significant difference in the number of words between
German abstracts and the general average?

We decide to do a test on the 1 % level. As there is no a priori reason

to think that German abstracts are shorter or longer than the average, we
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will do a two-sided test. We take :

H0 tu=79.56 ,-

H, : u #79.56 ,

t

For a two-sided test on the 1 % level, the region of acceptance, based on the

standard normal distribution, is : ]-2.576,+2.576[. Now, using [I.3.7]1, z =

(67.47 - 79.56) _
24,8 VAT

hypothesis that German abstracts do not differ from the average case, on the
1 % level (hence also on the 5 % or the 10 % level).

2) We use the same data as in the preceding case but now we assume, more
realistically, that we do not known the standard deviation o. Assume, however,
that we do know the sample variance s2 = 669. We again perform a two-sided test
on the 1 % level : H0 : M= 79.56; H1 : u#79.56, with the same region of
acceptance as in the first sample. In this case, the value of Z is, using
{1.3.8] :

-3.08. So, we reject H0 : meaning that we reject the

67.47 - 79.56 _
V689740

We again reject H0 and conclude that the average number of words in German
abstracts is different from the overall average.

-2.96 .

1.3.4.3. A test for fractions

Based on the equations of Subsection I.3.4.1, we can also test fractions.
Let N denote the number of items in the sample studied, p the proportion of the
sample possessing the characteristic under study, and P the underlying, unknown
proportion of the population which possesses the characteristic. When N is large,
the sample proportion is approximately normally distributed with a mean of u
equal to P and a variance of 02 equal to PQ/N (where Q = 1-P). When (as is
usually the case) we only know p, the observed fraction, we use Eél;gl instead
of %? (as in Subsection I.3.4.1 - see also formula [I.3.2]). The equations y=P

and 02 = %% can be proved, using the binomial distribution.
In this case the null hypothesis H0 is u = P and the alternative
hypothesis is H1 : U # P, We then consider

PP o m0s1) or t(N-1) [1.3.11]

according to N 2 30 or N < 30.
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In accordance with Fleiss (1981, p.13) a correction for continuity
bringing binomial probabilities closer to normal curves, is needed when
1/2N < |P-p}. We then use

|P-p| - 1/2N

—_— {I.3.12]
pAl-p
-1
This test was used, for example, by Buckland et al. (1975) to study the
overlap in bibliographic files and library holdings.

1.3.4.4. Confidence intervals for the population mean u

Based on the results obtained in Section I.3.4.1, we can find a solution
for the following problem. Suppose we draw a sample yielding a sample mean X.
Construct an interval [x-a,x+a] such that the population mean u belongs to
this interval, with a confidence level of 100 (1-a) %.

We will give the solution based on the case of large samples (N 2 30)
with an unknown variance and o = 0.05. It is then easy to find the solution
in other cases. In the situation described above we know that

x4

“H < 1.96) = 0,95 .
s/VN

P(-1.96 <
Consequently :
P(X - 1.96 > < psx+1.9->) =095,

N v

Hence we have found the following 95 % confidence interval for the population
mean Y :

[x - 1.96 >, % +1.96 =1 . [1.3.13]
v Wi

Note that confidence intervals depend on sample size N : the larger N is, the
smaller the length of the confidence interval will be.

Confidence intervals are usually visualised by using 'error bars', i.e.
an interval positioned vertically, with the observed mean in the centre and
where its length is equal to that of the corresponding confidence interval
(cf. Fig.1.3.2).
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Fig.1.3.2 Data and confidence intervais

1.3.4.5. Second test on the mean : two measurements on the same sample

An example will clarify this case. Suppose we want to investigate the
retrieval time of two online catalogues A and B. We determine a number of
books belonging to both systems and measure the times needed by the online
catalogue systems to retrieve them. Let X be the time (in seconds) needed
by system A and Y the time needed by system B to retrieve the same book.
Table I1.3.1 gives the result for a sample of size 14,

Table I.3.1. Retrieval time of two online catalogues

X Y Y-X
6 21 15
12 13 1
8 72 64
28 13 -15
13 40 27
12 51 39
48 34 -14
14 32 18
17 28 1
21 43 22
24 33 9
10 24 14
6 21 15
3 21 18
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When Y-X is considered, this situation is immediately reduced to the case
of the mean of one sample and H0 DMy < 0. In this example N is small and
o is unknown, so that we will have to perform a t-test. The sample mean of
Y-X is 16.0 and the sample variance is (19.93)2.
The t-value 2=¥ =9 oquats — 16 _
s/VTE 19.93/VIT
The region of acceptance for a two-sided test (hence Hy @ py_y # 0) on
a 5 % level, based on t(13), is : 1-2.16,+2.16] (cf. Table A.2). Hence we
reject the null hypothesis and conclude, on a 5 % level, that both systems
have a different retrieval time.
This test was used, for example, in Rousseau (1988a) to compare a two-
year and a four-year impact factor of mathematics journals. (For the notion
of a journal's impact factor, the reader is referred to Chapter 1V.5).

= 3.00 .

1.3.4.6. Third test on the mean : measurements on different samples

The preceding test cannot be used when X and Y are independent (e.g.
distributions of different populations). Consider, for instance, the case
of two booksellers, and suppose that we want to test whether they have the
same delivery time for books. It would be very uneconomical to order the same
books at both booksellers. So we will order different books, distributed at
random to bookseller A and bookseller B. To investigate whether the mean
delivery times differ significantly, we have to develop a new test.

Generally speaking, we are in a situation in which there are two
populations A and B. A sample of size N1 is drawn from A and a sample of
size N2 is drawn from B. Let XpsenesXy be the observed values for the first
sample and Yyseeea¥y the observed va]&es for the second one. From Subsection
1.2.3.2 and the theofem in Section I.3.1 we know that the function ¥ - X is
a random variable with the following characteristics :

var{Y - X) =N.1-+.N.£ .

where Hq and of are the population mean and variance of population A, and Hy
and og are the population mean and variance of population B. In testing for
H0 DMy -y o= 0, we can apply the first test of the population mean (see

Subsection I.3.4.1). In this way, for Ny and N, which are large enough (i.e.

N1 and N2 2 30) :
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~ 1(031) [1.3.14]
o) [e)
1. 9%
+ =
NN

if 9y and 0y are known.,
If 9 and/or o, are not known, we use

Yy-X

~N031) [1.3.15)
5152
L")

with

Ny
2 _ 1 2
T e SRR R

1 i=1

N

2
2 _ 1 2
52 - £ (v,-1)2.
2 M=ty

1f, however, N1 or N2 is small, and if moreover the two populations are
normally distributed, we use

Y-X wesn) [1.3.16]
op . oy
LS

if oy and o, are known. If not, and if 9 and o, are equal, we use

Y-X

~t(N1+N2-2) s [1.3.17]
Sp NT+-NE
with
2 _ 1 _11<2 _11cl
Sy = WrWy =z (Ny=1sq + (N-1sp)

As in the previous cases we advise to take samples of size at least thirty.
Returning now to booksellers A and B, we found that they delivered 100 books
each. Bookseller A had a mean delivery time of 95.9 days with a standard



“1.3. Inferential statistics 51

deviation equal to 97.39, and bookseller B had a mean delivery time of 85.7
days and a standard deviation of 114.98.
Using [I.3.15] yields :

_ 95.9 - 85.7
/B 13720
L

A two-sided test on a 10 % level has an acceptance region of ]-1.645,+1.645{
{see Table A.1). Hence we accept HO’ and we cannot conclude on the basis of
these data that bookseller B is a better (i.e. faster) bookseller than A.

A similar example can be obtained by comparing delivery times for books
from different countries. This third test on the mean, in the form given by
[I.3.17], was used, for example, by Hurt (1980) to show that two studies on
highly cited old papers yielded no significant difference on the number of
citations.

If sample sizes are small (N < 30), population variances are unknown and
there is no reason to believe they are equal, we have a so-called Behrens-
Fischer problem. Welch (1947) derived a series solution to obtain critical
values in this case. This solution was further manipulated by Aspin (1948)
and tabulated to two decimals in the form of tables. These tables can be
found in Pearson and Hartley (1966). The use of these tables to solve the
Behrens~-Fischer problem has since become known as the Welch-Aspin method.

An approximate solution to the Behrens-Fischer problem was recently
proposed by Aucamp (1986). It consists of a simple z-test with a variance
correction factor. It works well for a significance level of a 2 0.05 and
sample sizes which are not extremely small {say not smaller than 10).

If H0 is Hy = Hgs then Aucamp uses the correction factor

= 0.677 .

2 2
_ / 2¢ 2(1-C)
Fedis oy e [1.3.18]
2
51
NT .
where C = ;%_S-g , and considers
+
NT NE
7YX oz . [1.3.19)
S S
1 1
F +
NT NE
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This test was used in Rousseau (1988a).

1.3.5. Chi-square tests

I1.3.5.1. Test on the variance of a normal distribution
To test the hypothesis that a normally distributed population has
variance 02 (on the basis of a sample of size N) one considers the random

variable

2
&= ) S [1.3.20]
(&)

which has a chi-square distribution with (N-1) degrees of freedom. This test
is not very often used in informetrics.

1.3.5.2. x-square test for goodness of fit (x = chi)

In this situation (also called the one-sample case) chi-square is used
to test how well an observed set of frequencies produced by a sample
investigation fits a theoretical frequency distribution.

We illustrate the method by testing whether the arrivals at a
circulation desk in a library follow a Poisson distribution. Suppose that
we have observed the number of arrivals in sixty consecutive one-minute
intervals and found the data given in Table I.3.2.

Table I.3.2. Arrivals at a circulation desk

k 0(k) E(k)
0 4 3.3
1 12 9.6
2 12 13.9
3 14 13.4
4 6 9.7
5 6 5.6
6 4 2.7
7 1 1.1
8 0 0.4
9 1 0.1
10 or more 0 0.2

k : number of arrivals in a 1-minute interval
0(k) : observed number of cases
E(k) : expected number of cases (see text)
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We next propose a Poisson distribution to describe the observed
frequencies and estimate the parameter ) (cf. Subsection 1.2.4.2) from the
data, i.e. we take A = X = 2.87. Note that the observed variance equals 3.54,
which is not equal to x, but does not differ too much either. As a null
hypothesis for the observed data we suppose that it is a Poisson distribution
with a parameter of X = 2.9, The alternative hypothesis is simply that H0 is
not true (for whatever reason). Hence, under the null hypothesis, we expect
the following frequencies

E(k) = 60 P(X=k) = 60 k = 0,1,2,...

29 (2.9)%
—_r
This yields the third column of Table I.3.2.

2-test, there is another matter to be taken
into account : there should not be many categories for which the expected
frequency is small, What is meant in this context by ‘many' and ‘small’' is
a matter of dispute amongst statisticians, but it is safe to adopt the rule
that no expected frequency should be less than five. If this rule has been
broken, one is allowed to combine categories until the offending expected
frequencies have been suitably increased. Applying this to Table I.3,2
results in Table I.3.3.

Before we can perform the x

Table I.3.3. Circulation desk data with contracted classes

. 2

i k 01 Ei (oi'Ei) /84

1 0-1 16 12.9 0.745

2 2 12 13.9 0.260

3 3 14 13.4 0.027

4 4 6 9.7 1.411

5 5 or more 12 10.1 0.357
2.800

: contracted classes
: number of arrivals in a 1-minute interval
: observed number of cases

! : expected number of cases

mox -

i
(Oi-Ei)Z/Ei : terms in the calculation of the xz-va1ue.

The chi-square statistic is calculated as follows :

2
2 _ (04-E5)

X =§——E1—— s [1.3.21]
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where summation is done over all categories of the contracted table. In our
example the xz—value is 2.8. This value should be compared with the critical
value of the xz(n-m-1) distribution, where n is the number of categories in
the contracted table and m is the number of estimated parameters (we omit the
proof). Here we have estimated one parameter, namely A, and as n = 5 we find
the following region of acceptance for a test on the 0.05 level : [0,7.81(
(see Table A.3). Since 2.8 € [0,7.81[, we accept the hypothesis that in this
situation arrival data are Poisson distributed with a mean of 2.9.

Note that in order to apply this test, the data must be frequencies,
i.e. the number of discrete objects occurring in different categories. The
results of the chi-square test will usually be false when applied to data
involving proportions or percentages. Also, the categories must be mutually
exclusive, so that one individual cannot possibly be counted in more than
aone category.

When results for continuous distributions, such as xz, are applied to
discrete situations (such as e.g. in the above example of a discrete Poisson
distribution), certain corrections for continuity can be made. In this case,
it consists of using

2
) (10, -€;| - 0.5)

i|
- i
X f E;* . [1.3.22}

This modification is known as 'Yates' correction'.
A chi-square test for the goodness of fit has been applied in numerous
cases : see e.g. Simonton (1986a,b), Allison (1980), Cohen (1980).

1.3.5.3. Tests of independence in contingency tables
A contingency table is a multiple classification. Items under study are
classified according to two criteria, one having m categories and the other

n categories, giving an (m,n) matrix, called a contingency table. This mxn
distinct classifications are called cells. Cell frequencies are denoted by
oij and Zoij = N,
If different categories are mutually exclusive, the probability that an
n
item belongs to the kth category, according to the first criterion, is ij/N
j=1
and the probability that it belongs to the Zth, according to the second
m
criterion, is R OiQ/N. Bearing in mind the fact that two events A and B are
independent if P(AnB) = P(A)P(B) [I.2.5], there is independence between the
two criteria if for every k and £ : P(item belongs to cell (k,2)) = P(item
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belongs to row k).P(item belongs to column %), or

m
z 0,
P21 12 ) Okl
N ) N TN

or

n
z

m
0
=1 =

Ok « X, 04
i=1 0
N =0y -

Cell frequencies given by this formula are expected values Ekl under the null
hypothesis of independence. These are compared with observed frequencies Okz'
Then

2
m n (0..-E;.)
2 - Ez — [1.3.23]
1= j: ‘]j

is xz-distributed with (m-1)(n-1) degrees of freedom. If the expected
frequencies can be computed only by estimating h population parameters,
we have a xz—distribution with {(m-1)(n-1) - h degrees of freedom. We omit
the proofs.

In this case as well, if expected cell frequencies are too small (<5),
we have to combine categories. Yates' correction can also be applied here,
in particular for small (e.g. 2x2) contingency tables. It is recommended
by Kuntz and Mayo (1979, p.372-378), to apply Yates' correction for every
2x2 table. These authors also give a direct discrete test for such
contingency tables.

An example. Search keys are more efficient tools for searching automated
library catalogues than complete author and title information. For the OCLC-
network Kilgour and co-workers developed simple search keys, which eliminate
problems associated with authors' first and middle names or when the user's
knowledge of the author and title are incomplete (cf. Kilgour (1968),
Kilgour et al. (1970), Long and Kilgour (1971), Kilgour et al. (1971}, Long
and Kilgour (1972)). These search keys consist of the first few letters of
the author's last name concatenated with the first few letters of the first
non-article word of the title. For example, the 3-3 search key for Gerard
Salton and Michael J. McGill's 'Introduction to modern information retrieval'
is SALINT.

The chief disadvantage of such algorithms is that one search key may
correspond to several books. Still, this lack of precision is not really



56 1. Statistics

harmful as long as the number of false drops is low.

One way to minimise the problem of false drops would be to use longer
search keys since a longer search key will correspond to fewer books. But,
as reported by Kilgour (1968), a longer search key decreases the chances of
the desired book being found, even if it is in the file.

Another possible way to decrease the number of false drops would be to
divide the file into subject areas. We report here on an investigation done
by Kjell (1974) to determine whether Kilgour's algorithm works equally well
in different subject files. Using the 3-3 key described above on 4148 MARC
records resulted in Table I.3.4. The distinction between science and
technology books and art and literature books was based on Dewey's
classification. Table 1.3.4 must be read as follows : the number 76 in the
column headed ‘double’ means that 76 keys were members of matching pairs,
i.e. that there were 38 pairs.

Table I.3.4. Kjell's observed values of matching 3-3 keys

single double >2 row sums
sci/tech 1958 76 33 2067
art/lit 2032 46 3 2081
column sums 3990 122 36 4148

Under the null hypothesis of independence, i.e. the 3-3 key works equally well
in sci/tech as in art/1it, we have the following table (Table 1.3.5) of

expected values. Here E11 is calculated as explained above : 1299%%§§2292 =

1988.3 and similarly for the other entries. Note that, by construction,
the column and row sums are the same as for the contingency table of the
observed values.

Table I.3.5. Contingency table : expected values associated
with Table 1.3.4

single double >2 row sums
sci/tech 1988.3 60.8 17.9 2067
art/lit 2001.7 61.2 18.1 2081

column sums 3990 122.0 36.0 4148
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. (1958-1988.3)2  (76-60.8)2 | (33-17.9)% |

Computing [I.3.231 yields : T988 3 M 7S
2 2 2
(2032-2001.7) (46-61.2) (3-18.1)° _
T.7 et oTsr < 3.8

The critical value for a test on the 1 % level is 9.21 (x2(2)) (see Table A.3).
Consequently, the null hypothesis of independence is rejected.

To get an idea of which cells are respons;ble for a high Xz-value, it is
- - Oij‘Eij) . .
interesting to construct a table of ————E;E———— values. In this example this
produces Table 1.3.6, showing that the difference in the occurrence of
multiple keys (>2) 1is the cause of the high xz-value.

Table 1.3.6. x-values of Table 1.3.4 versus Table I.3.5

single double >2
sci/tech 0.46 3.8 12.7
art/1it 0.46 3.8 12.6

Other applications of the xz-test for independence can be found, for
example, in Kretschmer and Viachy (1986), Tagliacozzo (1977), Bonzi (1982},
Jamieson et al. (1986), Whitley (1969).

1.3.6. The Kolmogorov-Smirnov test (Kolmogorov (1933, 1941), Smirnov (1939))
This test is a goodness of fit test used to compare an observed
frequency distribution with a theoretical one. To be able to apply it,
distributions have to be converted into cumulative probability distributions.
This implies that data must at least be ordinal; it cannot be applied on
nominal data. On the other hand, there is no minimal requirement for cell
occupancies. The null hypothesis for this test is that sample data have been

drawn from a specified theoretical distribution. The Kolmogorov-Smirnov
statigtic, denoted by D, is simply the maximum absolute difference between

the theoretical and the observed cumulative probability distributions (denoted
respectively by SN and F). The degrees of freedom for the Kolmogorov-Smirnov
goodness of fit test are the number of items in the observed frequency
distribution (not the number of cells!). If the calculated value of D is
greater than the tabulated critical value at the specified significance

level, the null hypothesis is rejected. A table for the K-S test can be found
in the appendix (Table A.4).
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Using the data of Table I.3.2 again, we do a K-S test on the 5 % level.
The null hypothesis is that data are sampled from a Poisson distribution with
a parameter X = 2.9. Original data and cumulative probability distributions
are given in Table I.3.7.

Table 1.3.7. Table for the Kolmogorov-Smirnov test
on Poisson data of Table [.3.2

k 0(k) Sn(k) z 0(1) z E(i) F(k) [F(k) - Sy(K)|
isk isk

0 4 0.067 4 3.3 0.055 0.012
1 12 0.267 16 12.9 0.215 0.052
2 12 0.467 28 26.8 0.447 U.020
3 14 0.700 42 40.2 0.670 0.030
4 6 0.800 48 49.9 0.832 0.032
5 6 0.900 54 55.5 0.925 0.025
6 4 0.967 58 58.2 0.970 0.003
7 1 0.983 59 59.3 0.988 0.005
8 0 0.983 59 59,7 0.995 0.012
9 1 1.000 60 59.8 0.997 0.003
10 or more 0 1.000 60 60.0 1.000 0.000
sum 60

Hence : D = 0.052.

The critical value for a test on the 5 % level with 60 degrees of freedom is
1.36//80 = 0.176 {see Table A.4). We accept the null hypothesis that data are
Poisson distributed with a parameter 2 = 2.9,

We stress the fact that the hypothesised cumulative distribution F must
be specified in advance; when parameters are unknown and must be estimated
from the data, standard tables of the K-S test are, in principle, not valid.

If the theoretical distribution is continuous, its cumulative probability
distribution is also continuous. (The test has, in fact, been conceived for a
continuous distribution, but it can also be used for a discrete one; in this
case the test is somewhat conservative.) Thus, at every jump of the observed
relative cumulative distribution function S, there are two differences between
F and S. The appropriate procedure to follow is to calculate.

Tim |F(y) - S(y)| and 1im |F(z) - S(z)| for every jump point x, and to set D
yX Zx

< >

equal to the maximum over all these differences.

The Kolmogorov-Smirnov test is the best testing procedure for tests on
informetric distributions (see Part IV and Pao (1985), Pao (1986), Nicholls
(1986)). We end this section on K-S by mentioning that there are extensions
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of the classical form we have given here (see e.g. Durbin (1975), Edgeman et
al, (1988), Guilbaud (1988)).

1.3.7. Some other nonparametric tests

So-called parametric tests make assumptions about the distribution of
values in the population from which samples are taken. Nonparametric, or
distribution-free methods, do not involve such assumptions. Tests such as
those on the mean of an observed distribution are parametric tests; the
Kolmogorov-Smirnov test is not. It is generally argued that a parametric
test, used in a situation in which its assumptions are justified, is more
powerful than an equivalent nonparametric method.

Often, however, parametric tests cannot be applied, as there is no a
priori information on the underlying population distribution. In these cases
it is usually necessary to simplify the original stochastic variable. This
means that one uses only ranks. For this reason nonparametric statistics are
often termed 'rank order statistics'. These methods are particularly suited
for ordinal data.

1.3.7.1. Mann-Whitney U-test (Mann and Whitney (1947))
The Mann-Whitney U-test is a test on the difference between two samples
with respect to their position on an ordinal scale. This test can be considered

as a nonparametric analogue of tests on the differences of means (see Section
1.3.4).

Suppose we are interested in the question whether sociclogists at
university A are more productive than sociologists at university B, or whether
observed differences in output can be attributed to chance fluctuations.
Therefore we consider their publication lists over the last ten years.

Results are given in Table I.3.8. Note that seven sociologists work at
university A and eleven at university B.

Table 1.3.8. Number of publications of sociologists at university A
and at university B

first row : affiliation
second row : number of publications
third row : rank (from lowest producer to highest)

B B B A B A B A B B B A B B A A B A
7 8 11 12 14 15 17 19 20 26 32 40 49 57 61 76 94 102
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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The test is derived from the following line of reasoning. If the publication
output of the sociologists at these universities differs strongly, the lower
numbers of publications will mainly be found for sociologists of one
university and the higher numbers for the others. In the most extreme case
the Towest ranks will all be assigned to one group and the highest ranks to
the other group. If the first group has m members and the second one n members
and if the members of the second group a1l publish more than those of the
first, the sum of the ranks of the second group, denoted generally by T2,
will be maximal. This maximal sum is equal to nm + n(n+1)/2. Indeed, in

this extreme case, the members of the second group occupy ranks m+1 up to
m+n. The sum of these ranks is the sum of the first m+n natural numbers minus
the sum of the first m natural numbers. This is :

(m+n)(2m+n+1) - m(i‘lg‘l) - (m+n)(m£-1— + 2_) - m(ﬂz_[) = mn +[l_(__r_12ﬂ

If the ranks of both groups are mixed, T2 will be smaller than this
maximum. This is the basic idea for considering the statistic U2 calculated
by :

[1.3.24]

U2 is small when groups differ greatly and large when groups differ little.
0f course, a symmetry argument shows that U2 can be large when the ranks of
the elements in the second group are the lTowest. But in this case the roles
of the first and the second group are interchanged. Consider

_ m({m+1)
Uy = mn + - T1 [1.3.25]

where T1 is the sum of the ranks of the elements in the first group, then
use U = min (U1,U2) (since tables for the Mann-Whitney test are based on the
smallest of these two Ui's). We now have that U is small if and only if
groups differ greatly and large if and only if groups differ little. We are
interested in high values of U since the null hypothesis is that both groups
do not differ. However, it is not necessary to compute both U1 and U2’ as
they are related through the formula U1 + U2 = mn. Indeed :

L Mmet) o

U1 = mn 1 and U2 = mn +
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Now, T1 + T2 is equal to the sum of the first (m+n) natural numbers, so that

m(m+1) . n(n+1)  (m+n+1)(m+n)
U1 + U2 2mn + y— + 5 - i

mn

Applying this procedure to the data in Table I.3.8 yields T1 = 79 and
T2 = 92, and thus Uy = 26 and U, = 51. So we will use the value 26. For a
test on the 5 % level the acceptance region for the null hypothesis is
119,+=[. This means that we accept that the pubiication output of the
sociologists of both universities does not differ significantly.

If m and n are both larger than 20, U is approximately normal with a
mean of mn/2 and a variance of nm(n+«m+1)/12. Standardising and applying a
continuity correction produces

mn

7 - (U+0.5) --2-
v/mn(m+n+15
UBRARSS

~N(031) . [1.3.26]

This test has been used by, for example, Smart and Bayer (1986) to study
differences in the citation rates of single and multiple authored articles.

1.3.7.2. The Wald-Wolfowitz runs test (Wald and Wolfowitz (1940))

This test has the same purpose as the Mann-Whitney test : to determine
whether two groups of data differ with respect to their position on an
ordinal scale. However, a different procedure is used to accomplish this.

We consider the same example as in Subsection I.3.7.1. Again,
sociologists are ordered according to their 10-year production. The basic
idea here is that if both groups differ strongly, members of one group will
follow one another closely. If, on the other hand, both groups are similar,
members of both groups will alternate. The number of runs (groups of
consecutive items of the same kind) is used as the test statistic (denoted
by R).

For the example of Subsection I.3.7.1 this is :

BBBABABABBBABBAABA
The number of runs is R = 12, Table A.6 (appendix) lists the critical values
on the 5 % level. Under the null hypothesis that there is no difference between
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groups, R-values that are too small lead to the rejection of HO' In our case

we accept H0 if R > 5. So, we accept the null hypothesis that the publication

output of the sociologists of both universities does not differ significantly.
In this case as well, if m and n are larger, i.e. m+n > 20, we use the

table for the standard normal distribution (Table A.1). Indeed, using the

cell occupancy theory (cf. Section 1.2.5 and Fig.1.2.2), one can prove that

when m and n are large, R is (approximately) normally distributed with a mean

Mg = %g% + 1 and a variance of cﬁ = _Eﬂﬂﬁgﬂﬂ_ﬂ_ﬂl_ .
(n+m)“ (n+m-1)
Hence
(R+ 0.5) - IJR
Z=— " ~Nn031) [1.3.27]
°r

where we have also used a continuity correction. The test is then a one-sided
test to the left : only values which are too small i.e. negative and large in
absolute value, lead to a rejection of the null hypothesis.

1.3.8. Regression and correlation

To study the relation between two quantitative variables, researchers use
scatter diagrams and the notions of covariance and correlation coefficient. If
the correlation coefficient is close to 1 (in absolute value) it makes sense

to fit a linear model.

1.3.8.1. Covariance

Consider a number of observations (x1,y1), (xz,yz), cees (xN,yN); the
first expression used to measure the relation between the stochastic variables
X and Y is the (sample) covariance defined as :

S,y = - ig (x; = X)(y; -9) . [1.3.28)
The covariance can be considered as a generalised variance. If SX,Y #0,
there is some relation between X and Y. A positive covariance means that if
X has a large value, Y also has a large value and similarly for small values;
a negative covariance indicates an opposite relation between X and Y. If X and
Y are independent, their covariance is zero.

Note that the covariance measures a linear relation : it is possible for
stochastic variables to have a perfect - nonlinear - relation, but for their
covariance to be zero.
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The covariance is a good measure of observations measured on an absolute
or a difference scale. If observations are measured on a ratio or an interval
scale, the covariance depends on the units chosen. Of course, the notion of
covariance has no meaning for nominal or ordinal data. Nevertheless, we will
consider some nonparametric tests for the latter cases.

The covariance we have defined in [1.3.28] is the so-called sample
covariance; for the stochastic variables X and Y themselves the covariance
is defined as :

Cov(X,Y) = E((X-uy)(Y-uy)) = E(XY) - uyuy » [1.3.29]
which is meaningful whenever X and Y have finite variances.
1.3.8.2. The product-moment correlation coefficient or Pearson's correlation

coefficient
A measure of association which also makes sense for variables measured

on a ratio or an interval scale is the product-moment correlation coefficient
(often abbreviated to : correlation coefficient). The sample correlation
coefficient is

X,Y .
R = = (or simply R)
XY TS,
N N N
N Toxyy - ()E xi)(f ¥;)
- i=1 i=1 i=1 [1.3.30]
N N N N
JOE (2 B (S
i=1 i=1 i=1 i=t

where SX and Sy are the sample standard deviations of X and Y (see [I.3.2]).
In general, for stochastic variables X and Y their correlation coefficient
oy y (also denoted by p(X,Y) or simply p) is defined as :

p(x,y) = LulX.¥) [1.3.31]
XY
Obviously p(a1X + b1, azY + b2) = o(X,Y); a1,a2,b1,b2 € R; 35,3, > 0.
From Subsection I1.3.8.1 we already know that if X and Y are independent,
their covariance, and hence also their correlation coefficient, is zero.
The correlation coefficient is by no means a general measure of
dependence between X and Y. However, p(X,Y) is connected to the linear
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dependence of X and Y. This is stated in the following theorem (Feller (1968,
p.236)) {(without proof) :

Theorem. We always have |p(X,Y)| < 1; furthermore, lp(X,%)| =1 if and only if

constants a and b exist such that Y = aX + b.

In an interesting tutorial paper Rodgers and Nicewander (1988) sketch
the history of the product-moment correlation coefficient (showing, among
other things, that it is seemingly more appropriate to call it the 'Galton-
Pearson coefficient') and discuss thirteen different ways to look at and
interpret the correlation coefficient.

1.3.8.3. Scatterplots
Scatterplots of data such as in Fig.I.3.3 illustrate the connection
between Pearson's correlation coefficient, SX’ SY and the straight-line

behaviour.
N M - Y|
r=1 - .‘.r"- _l'
o '.:
X X X
¥ Y| . y 5
rest _,,../ui""" # 4 36‘
. o .{‘:
X X X
Y Y y
Q<rel
X X X
bt by no-
r=0 '# .
X X X
Y Y y
-f<re0
X X X
b4 S | A
ro-t “tig,, 5, 1."
- \, s
k¥
X X X
Y] . b4
ro=-1 S 8 A
X X X

Fig.I.3.3 Correlation coefficients of different scatterplots
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1.3.8.4, Linear regression

The correlation coefficient is a measure of the strength of the linear
relation between two variables. When there is a perfect linear relationship
between X and Y, p(X,Y) is equal to 1 or to -1. However, knowing the
correlation coefficient does not characterise the form of the linear
relation. Still, we will need this exact form to be able to do predictions.

There are several methods and criteria which can be used to fit a
straight line to a set of data. A line which minimises the sum of the
squares of the distances from the observed points to the line, measured
parallel to the vertical axis, is known as the least-squares line. This is
the most commonly used best-fit line in informetric studies. Linear regression
is the name conventionally assigned to a technique for calculating the

equation of a least-squares line.
The equation of a straight line is given by (cf. Fig.1.3.4) :

y=as+bx , [1.3.32]

where the constants a and b are said to be the intercept and the slope of the
straight line. The intercept and the slope of the least-squares line of the
set of data points (x1,y1), (x2,y2), vees (xN,yN) are determined by
expressing that the function

f(a,b) = 1_21 (y; - (a+bx1-))2 [1.3.33]
must be minimal. In this way the straight line y = a + bx minimises the sum
of squares of the distances from the observed points to the line, measured
parallel to the vertical axis.

A result from the calculus of functions of several variables requires in
a necessary way that

of

Fri
and

af _

F:0-

This produces respectively

N
-2 ¥ ('y'i = (a"'bx.i)) =0
i=1



66 L. Statistics

and

2

(y, - (a+bx;}) x; =0 .
i Y a+bXsll Xy

M=

1
Consequently, we obtain the following system of linear equations :
N

y. =Na+b = x,
171 isp !

; ( : ¢ : )
N © xy. -(Z x, 2

I D I R N

b = , T =53 [1.3.34]
2 2 S
N = xj- (= Xi) X
i=1 i=t

a=y-bx . [1.3.35]

An example. In his book 'Library Effectiveness : A Systems Approach'
p.90, Morse {1968), considers the following table (Table I.3.9).

Table I1.3.9. Mean second-year circulation N(m) for those books that

in their first year had a circulation m

m 0 1 2 3 4 5 6 7 8 9 1
N(m) 6.4 0.7 1.2 1.3 2.2 2.4 2.5 3.7 3.8 4.5 5
Estimated 0.42 0.82 1.22 1.62 2.02 2.42 2.82 3.22 3.62 4,02 5

Applying equations [I1.3.34] and [I.3.35] on these data results in :

b = 0.400 and a = 0.418 ,

with 5x, = 58, Ty, = 278, Exqy; = 205.9, X} = 454 and Ty} = 95.02.
Thus, the equation of the least-squares line is, using [I1.3.32] :

y = 0.418 + 0.4 x

Moreover, the Pearson correlation coefficient R is 0.979. This result is
illustrated in Fig.l1.3.4.
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N(m)

N W |

e 3

N I R A R A I A A R D B B
1 2 3 4 5 6 7 8 9 w0 1n 12 13

Fig.I.3.4 Linear regression line for Morse's circulation data
(Table 1.3.9)

If we let Yest denote the estimated value of y for a given x, as obtained
from the regression curve of y on x, then one can show that

2
: (¥~ ¥4 est)

RE=1-l— [1.3.36]
?(yi')’)
i
Now, one also has :
=\2 _ 2 -2
? (y~| __Y) = f (}’1- ‘.V.i’est) +§ ()’1 ’est'Y) s [1.3.37]

where the Tleft-hand side is called the 'total variation', the first sum on
the right is called the ‘uneaplained variation', and the second sum is called
the 'explained variation'. This terminology has arisen because the deviations
Y4 Y5 est behave in an unpredictable manner, while the deviations yi,est -y
are explained by the least-square regression and so tend to follow a definite
pattern.

Substituting [1.3.37]1 in [1.3.36] yields :
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-2 2 2y2
1; (y.i -y)© - z '(.V]- -yi,est) f (y'i,est_y)

R = i -
);(Y-i“;’)r >;(y,--)7)7
i i
_ explained variation
total variation (1.3.38]
Thus R2 can be interpreted as the fraction of the total variation which is

explained by the least-squares regression line. It is often referred to as
the ‘coefficient of determination',

Regression relies on a lot of assumptions., If these assumptions are not
met, inferences made from a regression are invalid - at least from a
theoretical point of view - although the regression equation may still be
of value in describing the relationship between two variables. For cases
where x = t(time) the regression line indicates a trend, making (careful)
predictions possible. This situation provides a simple example of time series
analysis.

1.3.8.5. Pearson's product moment correlation coefficient as a measure of fit

A regression line can be calculated for any scatterplot, but what we
actually need is a measure of how well the regression Tine fits the data and
a statistical test on this measure.

As a measure to indicate a linear relationship, Pearson's product-moment
correlation coefficient is used. The test statistic (for N which is large
enough, i.e. N > 10) is

" /_2'1q 'Rz , {1.3.39]

which can be shown to be (approximately) t-distributed with N-2 degrees of
freedom. For N which is small (N < 10) one uses Table A.7 of critical values.
The null hypothesis is H0 tR=0,
Hy : R£D (for a two-sided test).

X 9
In the previous example we found R = 0.979, so that t(9) = 0.979 =
’ 1-(0.979)7
14.4, leading to the rejection of the hypothesis that there is no linear

correlation (on any reasonable level). One is led to the same conclusion
when using tables of critical correlation coefficients.

We note that when N is large (as is often the case in sociometric studies
using questionnaires), H0 is already rejected for rather small values of R.
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For example, when R = 0,3, N = 125, t(123) = R V/—lzgz = 3.49. For a two-
1-R

sided test on the 1 % level the acceptance region for the hypothesis R = 0
is 1-2.61,+2.61[ (see Table A.2), leading to the rejection of Ho in a very
significant way.

Other test statistics.
1) To test the hypothesis that the regression coefficient b is equal to a
specified value B, one uses the stochastic variable

B-b
75 vN-Z , (1.3.40]
¥sx' "X

which is t-distributed with N-2 degrees of freedom.

This can also be used to find confidence intervals for population regression
coefficients.

2) To test the hypothesis that the regression line passes through the origin
(H0 :a = 0), we use the statistic

N(N-2) £ (K, - x)°
: [1.3.41)

(2 X(E (y; = Y5 oee)”)
1

i i,est

which is t-distributed with N-2 degrees of freedom.

Pearson's correlation coefficient has been used in many informetric
papers. We mention only a few of them : Etnyre and Kretlow (1975), Zusne
(1976), Williams (1978), Tomer (1986), Nelson (1988).

1.3.8.6. Spearman rank correlation

The Spearman rank correlation coefficient is a nonparametric measure of
the relationship between two sets of ranked data. It is widely applied as an
alternative to Pearson's correlation coefficient with its restricting
assumptions. The Spearman test is usually applied to ordinal data, but can
also be applied to other data if they are converted to a ranked form.

The equation for the Spearman rank correlation coefficient is :

6z dl
R, =1 -—2 , [1.3.42]
s N(N%-1)
where Rs denotes the Spearman rank correlation coefficient, di is the differ-

ence in ranking for the 1th item and N is the number of items studied. Like
the product-moment correlation coefficient, the Spearman coefficient can have

69



70 1. Statistics

a value between -1, indicating perfect negative correlation between the two
sets of rankings, and +1, indicating perfect positive correlation. A value of
0 indicates an absence of correlation.

In Rousseau (1988a) the following table of the impact factors of
mathematical journals is presented (Table I1.3.10). (The notion of an impact
factor will be explained in Chapter III.5).

Table I.3.10. Ordering of mathematical journals according to their
2-year and 4-year impact factor {1985). Data based
on the JCR (see Part III for more information on this
data source)

A Journal, abbreviated as in the JCR

B Ordering according to the 2-year impact factor
C Ordering according to the 4-year impact factor
D Absolute value of difference in rank (di)

A B c D
COMMUN ALGEBRA 1 3 2
P K NED AKAD A MATH 2 14 12
DISCRETE MATH 3 8.5 5.5
NAGOYA MATH J 4 12 8
MATH SCAND 5 8.5 3.5
B SCI MATH 6 7 1
J MATH SOC JPN 7.5 5 2.5
P AM MATH SOC 7.5 13 5.5
B SOC MATH FR 9 1 8
J NUMBER THEORY 10.5 6 3.5
Q J MATH 10.5 2 8.5
ANN SCI ECOLE NORM S 12 X! 1
MATH USSR SB 13 15 2
CAN J MATH 14 10 4
STUD MATH 15 4 1

Note that an average rank is used for ties. As £ d? = 582.5, the Spearman rank

correlation coefficient of these data is : 1

Rg =1~ (6)(582.5) _ o4

The test in this situation resembles the one used for Pearson's correlation
coefficient. We take

H0 : there is no correlation between both rankings, i.e. RS = 0;

H1 : Rs # 0.
For N > 10 we actually use the same test as for Pearson's coefficient : the
stochastic variable
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R ‘/_N -2 [1.3.43]
s 1-R§

is t-distributed with (N-2) degrees of freedom. For smaller values of N
special tables of critical values must be consulted.

For the example of impact factors t(13) = -0.14. For a test on the 5 %
level the acceptance region for HD is 1-2.16,+2.16[. Therefore, we accept the
null hypothesis that both rankings are uncorrelated.

The Spearman rank correlation coefficient is used, for example, by
Tomer (1986), He and Pao (1986), Nelson (1988). Bear in mind that in the
case in which non-ordinal measurements are converted to rankings, there is
bound to be some loss of information (roughly 10 %). There is also no reason
to expect that rank correlation should produce the same result as product-
moment correlation when the two techniques are applied to a common data set.
Rank correlation may well be a more reliable measure in many instances,
since it does not depend on any, possibly unwarranted, assumptions about
the frequency distribution of the variable. See in this respect also Brookes
and Griffiths (1978).

1.3.8.7. Kendall's tau (cf Kendall (1970), Hajek (1969))

The stochastic variable t (tau) has the same purpose as Spearman's rank
correlation coefficient, namely to investigate the relationship between
ordered data. The use of Kendall's tau as a testing procedure is as powerful
as Spearman's Rs'

Peritz (1986) presents the following table (Table I.3.11).
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Table I.3.11. Journals on demography and family

A Journal B
B Number of times cited according to Journal Citation
Reports (1983)
C Rank according to B
D Number of papers in Population Index 1984
E Rank according to D
A B c D E
1 Journal of Marriage and the Family 1793 1 20 10
2 Demography 548 2 47 1
3 Family Planning Perspectives 523 3 23 7.5
4 Population Studies 454 4 25 6
5 Studies in Family Planning 266 5 27 5
6 Journal of Biosocial Science 262 6 36 4
7 Social Biology 248 7 1 12.5
8 Population and Development Review 233 8 43 2
9 Population 209 9 39 3
10 International Migration Review 146 10 23 7.5
11 Population Bulletin 104 " 6 15
12 Journal of Family History 87 12 ] 18
13 Population Index 49 13 4 16
14 International Journal of Sociology of
the Family 30 14 0 18
15 International Migration 29 15 12 "
16 Demografia 22 16.5 1" 12.5
17 Journal of Family Welfare 22 16.5 22 9
18 Population and Environment 15 18 8 14
19 Population Research and Policy Review 4 19 0 18
Kendall's tau is defined as :
cer L8 T son(R-R.) s n(Q; -Q.) = gre [1.3.44]
NOR-TY (2 goq P97 77 SM 7Ry = ey .3

In this case the R's denote rankings in the first list, Q's rankings
in the second list, while sgn(x) is the sign of x and is +1 if x is positive
and -1 if x is negative.

Minimum and maximum values for t are -1 and +1. One can show that t is
approximately normal. If both lists are independent, E(t) = 0 and

var(t) =

2(2N+5)
'gN‘(‘N’_—r)‘ . [1.3.45]

For Peritz' table we find the underlying table (Table 1.3.12) :
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Table 1.3.12. Calculation of Kendall's tau for Peritz' data (based
on Table I.3.11)
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This yields 119 + signs and 49 - signs, and hence t = 0.392; its variance is
0.0279. Then

2 =-0:392 5 55,
Vv0.0279

On the 5 % level the acceptance region for a one-sided test (one could also
do a two-sided test) is 1-«,1.645[. Thus we reject the null hypothesis that
both lists are independent.

Kendall's tau {or better, the related value S) offers some practical
advantages above Spearman's rank order correlation coefficient. Indeed, when
processing questionnaires it often happens that some respondents turn in
their answers very late., If RS has already been calculated at that moment
and one wishes to include the late answers as well, one has to compute RS
all over again. This is not the case for S : if a late answer is included
in the ranking, one only has to consider +1's and -1's (as described above)
for couples (i,j), where i or j is the latecomer, and add this to the previous
value of S. This is only a small part of the total work (and in fact, if this
reply bad not been so late, this would have been done already).

Kendall's tau is also used in DaniYowicz and Szarski (1981).
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1.4. SAMPLING THEORY

In the above chapterwe used samples to perform statistical tests.
However, we did not tell how to draw a sample or how to find the minimum
sample size necessary to estimate a population characteristic within
specified confidence 1limits. These questions will be the main topic of this
section. Special attention will be paid to typical problems occurring in
lTibrary and information science. Before starting off the study of sampling
we remind the reader of the (obvious) fact that a sample does not have to be
taken if the population is not too large : just check the property under
investigation on every element of the population.

I.4.1, Classical sampling disciplines

The most important pitfall when drawing samples is the introduction of
bias, i.e. giving relatively smaller attention to relatively larger classes
in the population and vice-versa. This may result in an unreliable estimate
of the true (but unknown) population characteristic. For example, if one
wants to find out how many times a year citizens visit the local public
Tibrary, it would be wrong to hand out questionnaires only to persons entering
the Tibrary, as people who never visit the library will certainly not be

included in the sample!

I.4.1.1. Random sampling : the technique

In order to avoid bias in sampling one must make sure that every element
in the population has an equal chance of being included. This type of sampling
is called 'random sampling'. Random sampling is what one should always try to

achieve.

In practice one uses a table of so-called 'random numbers' or (directly)
the output of a computer random generator. In recent years, these random
number generators have been built into personal computers and even into most
pregrammable calculators.

For the readers' convenience we reproduce a small part of such a table
here (Table I.4.1). A larger table can be found in the appendix (Table A.9).
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Table 1.4.1. Random numbers

72682
21443

... 01176 ...
80582
13177
21785
47458
40405

... 71209 ...
85561

Suppose we want to take a sample of 50 persons from a population of 5000.

To do this, the persons have to be numbered from 1 to 5000. Then we start
anywhere in the table (e.g. where you see the number 72682). Since the
enumeration uses four digits, we select only numbers consisting cf four
digits. Here we choose 7268. But 7268 > 5000, so that there is no person
corresponding to this number. This means that we have to make another choice.
We are free to move in the table in any direction we want. Suppose we decide
to go downwards. The next number is 2144, meaning that person 2144 becomes an
element of our sample. The next number is 117, 8058 is rejected, and then we
get 1317 and so on, until we have a sample of size fifty.

I.4.1.2. Random sampling : drawbacks and remarks on the method (cf. Bookstein
(1974))

a) The main drawback of this method is that it is tedious, if only for
the reason that every element in the population must be numbered. This is
usuaily not a big problem in computer files, but it definitely is when
sampling from card files or, more importantly, from book shelves. It is
precisely for this reason that other sampling methods are considered, at
the cost of introducing a bias. One tries to find sampling techniques that
are easy to carry out, that can be done quickly and that approximate as closely
as possible the results obtained by random sampling (see below).

b) In numbering the population elements one must ensure that no element
is numbered twice (do not mix co-authors or author and subject files), or
that no elements are left unnumbered (books that are on loan perhaps?).

c) The following procedure is not allowed. Suppose we sample from a

population of size 850. If we encounter 000 or a number larger than 850, we
do not toss this number out. Instead, we skip.only the first digit and add the
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next digit from the table of random numbers. Instead of 855 we will take,
say, 556 (cf last line of Table I.4.1). This is not a-correct procedure for
it increases the probability of numbers between 510 and 850 and 1 to 9 being
chosen (and hence decreases this probability for numbers between 10 and 509).

d) In random sampling we often have to throw out a lot of random
numbers. Suppose, for instance, that the population consists of only 300
elements. We will still need 3-digit random numbers, which results in a 70 %
loss of time and effort. This can be partially remedied by ignoring the
numbers between 901 and 999 (10 % of the choices) and than dividing every
other random number by 3 and using the first natural number greater than or
equal to this quotient. No bias will occur.

e) Random numbers generated by most random number generators are not
really random. Indeed, as any sequence of numbers produced by an algorithm
must be deterministic, it eventually repeats earlier values. Therefore,
numbers obtained in this way are called 'pseudo-random numbers'. Mainframe
computers have usually been provided with subroutines libraries for generating
high-quality pseudo-random numbers, which can also be converted to samples from
other, non-uniform, distributions. Personal computers and calculators, however,
are often supplied with a random number generator which may be totally
inadequate for serious scientific work (although perhaps good enough for
some small tests in a library). For a technical account of random number
generators, the reader is referred to Knuth (1981). For background on the
use of random number generators for small computers and a note of warning,
one may consult Ripley (1983) and Fullerton (1987).

1.4.1.3. Random permutations

We will discuss in this section a special random sampling technique.
Suppose we wish to study the activity in k sections of a large library. To
avoid bias we visit these k sections every day in a different order. This

means that we need random permutations, i.e. a random arrangement of the k
areas. Although such permutations can be obtained from sampling in random
number tables, dedicated tables of random permutations are much easier to
work with (see e.g. Moses and Oakford (1963)).

Jain (1972) presents a plan for sampling in-library use in which the
investigator goes through the book shelves in different areas of the Tibrary.
The sequence in which these areas are surveyed is determined by using random
permutations.
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I1.4.1.4. Systematic sampling

a) A technique used often to avoid the tedious task of random sampling
is called 'systematic sampling'. We will explain this sampling technique in
terms of book shelves, although it can be applied generally.

We begin with any arbitrary book and then take whatever book lies 30 cm
further along the shelf. The third book is again 30 cm further along the shelf,
so that we are picking a book every 30 cm to compose the sample. Naturally,
30 cm is an arbitrary number, as one can take whatever distance one wants.
This is also related with the sample size; (see further).

An obvious bias inherent in this method is that thick books have a
bigger chance of being chosen than thin ones. Problems also occur at the end
of the shelves or when books are leaning against each other.

b) A variant of the above method consists of changing length elements
(30 cm) into counting (e.g. every 30 books) or time elements (e.g. every
30 minutes). So we take an arbitrary book and obtain the sample by taking
every 30th book. Although we have eliminated the most obvious bias of the
above method, the present method is taking much more time. Imagine a sample
in the whole library : one would have to count every book! Still, it is
faster than random sampling.

¢) When the time variant (checking some library activity, say, every
30 minutes) is used, some bias may be introduced. When studying a school
library it is not a good idea to sample every 30 minutes when classes take
an hour (yielding short peaks of activity). Also, in the case of quality-
checking of a printing job, it might be that a printing error appears every
30 copies. Checking response times of online services yields another example

in which systematic sampling is not always unbiased. It might be that at
fixed time periode average response times are larger than at other times.

An almost complete solution to these problems will be given in Section
I.4.2.

1.4.1.5. Stratified random sampling

This type of sampling is not really a new method. One applies random
sampling (or any other good sampling method) to different sections of the
population, but the contributions of the sections to the sample are fixed in
advance.

Suppose we investigate the use of a local public library by adults.
This results in contingency table I.4.2.
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Table 1.4.2, Library users

High school degree
yes no totals
. yes 200 10 210
library use  y, 200 90 290
totals 400 100 500

This sample shows that 42 % of the adults are library users. We also see that
80 % of the persons in the sample have a high school degree. However, suppose
we know from census data that in this particular village only 60 % of the
adults have a high school degree. In view of this knowledge we can take the
following actions :

1. We can modify the above results, so that we end up with 60 % high
school degrees in the sample. This yields the following revised table (Table
1.4.3).

Table I.4.3. Library users - revised table

High school degree
yes no totals
; yes 150 20 170
library use 3 150 180 330
totals 300 200 500

This revised table results in only 34 % of library users, a more
reliable result. There was an obvious overrepresentation in the sample of
persons with a high school degree.

2. In case we have not yet performed the sampling, we can sample persons
with and without a high school degree separately, in such a way that population
proportions are respected.

A bias can occur, especially in small samples, and it is precisely in
these cases that stratified random sampling can help. This technique is
particularly useful in situations where the property under investigation is
homogeneous within groups and heterogeneous between groups (Lied and Tolliver
(1974)).

1.4.2. The Fussler sampling technique
In an attempt to combine speed and randomness, Fussler (1961) introduced
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the following technique : use systematic sampling by length, but then select
for the sample the kth book (k stays fixed and is preferably small; one can
even take k equal to one) behind the one located by systematic sampling. This
method has the same advantages as sampling by length (one does not have to
number hundreds of books, using large random tables), and as we will show,

is at least as good and usually better.

The quality of the Fussler sampling technique has been investigated by
Bookstein (1983), Rousseau (1988b) and Egghe (1988c). Since we consider this
technique to be very important in informetrics and since it is easy to use,
we will study this technique in greater detail.

1.4.2.1. The idealised situation consisting of two separate categories

A. Bookstein uses the model of sampling in a card file, in which in an
(idealised) situation the cards can only have two possible thicknesses.
Everything depends on the way the 'thin' and 'thick' cards are clustered.
If we denote a thin card by t and a thick card by T, we can measure the degree
of clustering by counting the number of groups of t's and T's. For instance,
the clustering ttTTTTtTTtttttTTttTt has five groups of consecutive t's and
four groups of consecutive T's, and therefore a total of nine runs (cf. Sub-
section I.3.7.2 or Section I.2.5). The distribution of these runs can be shown
(see Subsection 1.2.5.2 and especially Fig.1.2.2) to be approximately normal,
as indicated in Fig.I.4.1.

P(R)
ptFTTT T randomly FTITT AT
{perfect clustering) distributed (no clustering ie.

anticlustering)

Fig.1.4.1 Probability distribution of runs of thick and thin cards
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Bookstein (1983) studied only the left-hand side of the curve in Fig.
I.4.1 and showed in this case that, no matter how the t's and T's are
clustered, there is less bias with Fussler's sampling technique than with
sampling by length. Indeed, if P1 denotes the probability of picking a thin
card at random, P2 the probability of picking a thin card by using sampling
by length and P3 the same probability in the case of sampling by Fussler's
procedure (using k = 1,2,3,...; say k = 1), Bookstein has shown that for
clusters belonging to the left-hand side of Fig.Il.4.1, we will always have

P, s Pys P,

0f course, the inequalities will be reversed for sampling thick cards. The
Fussler technique is therefore always closer to the random sampling technique
than sampling by length is.

The right-hand side of Fig.I.4.1, however, has an equal chance of accurring
as the left-hand side. As will be shown further on, here it is even true that
P2 < P1 < P3. However, the following inequality holds for all types of
clustering of thin and thick cards :

|p1 - p3| SPy-P [I.4.1]

showing that Fussler's technique is never worse than sampling by length. In
particular, for the most common cases (the middle part of Fig.I1.4.1) P1 ~ P3.
See Fig.I1.4.2.

most frequently occurring
positions of l_?a
—————y

A A 28 -P

2 A 26 -
1 ]

] \

) range of Py

Fig.1.4.2 TIllustration of the inequality |P, - P.} S P, - Pos
showing that Fussler's technique 15 alaays bétter
than sampling by Tength
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Furthermore, Rousseau (1988b) uses the terminology of thin and thick
books on a library shelf. Note that if we denote 1 'Pi by P% (i =1,2,3),
P{ denotes the probability of sampling thick books. For these probabilities
[1.4.1] directly yields :

lpi - pé| SPy-Pi. [1.4.2]
B. Proof of the inequality : IPl - P3| S P, - P, (which includes also
the proof of the case studied by Bookstein).
We will assume that the collection is made up of ne thin books, having
an average thickness Wes and of ne thick books, having an average thickness We.
We define ry = ng/ng (where we assume ng # 0) and o = We/W,.
In the case of random sampling books are picked at random. The probability
that the book will be a thin one is given by :

"t 1
P, = = . [1.4.3]
1 N +ne 1+r1
The probability P1 is what we are trying to achieve by using other techniques.
In the case of sampling by length each physical location has an equal
chance of being selected. Thus the probability that a thin book will be chosen

is given by :

n.w
_ t7t 1
P2 = gy * Nz =7 T, [1.4.4]

As ry 2 1, we note that P2 < P1.

Let P3 be the probability that a thin book will be chosen by Fussler's
method. Let Pt denote the probability that the book situated k books after a
thin one will alsc be a thin one, and let Pf be the probability that the book
situated k books after a thick one will be thin. Note that the probabilities
Py and P., being conditional probabilities do not add up to one unless the
number of thick books equals the number of thin ones. Then

+
Py = PPy + (1-P,)P, = —T—Pt +:1:§Pf . [1.4.5]

Further, n, = Py + nePe (neglecting end effects) or Pe = (1 —Pt)/r1.
Substituting this value for Pf in [1.4.5] yields :

i Pt(1-r2) * 1y

P . [1.4.6]
e
3 +rr, ;
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So, P3 is not equal to P1 but depends on Pt’ which indicates the degree to
which thin books are clustered together. As 0 é-Pt £ 1 and ro 2 1, we also
see that P; 2 P,. Bookstein (1981) also points out that if there is no
clustering, i.e. P, = 1/(1+r1), then P; = P, and Fussler's method is completely
successful. On the other hand, if books of one type cluster together and
Pt =1, then P3 = P2. In that case nothing is gained with respect to
sampling by Tength.

To show the inequality announced under B., we first prove that
1 - Pt £ry.

Let e be the number of thin books which are at a 'distance' k books
from a thin book. Then Pt = rt/nt. Those thin books which are not at a
'distance' k books from a thin book are necessarily situated at a distance k
books from a thick book (again neglecting end effects). So there are at least
- thick books. This yields : ne - re < ne or 1 - Pt S ry-

Proof of the inequality showing that the Fussler method is at least as

good as sampling by length.

We recall that P2 < P1 and that P2 < P3. If now P2 < P1 < P3, then
clearly |P, - Pl < [Py = Py|. If P, < Py < Pg, then

e

[Py - P3l s [Py - Pyl

S
Ry LAy N B
1+rw2 1+r1=1+r1 1+rw2
=

H1-rﬂPt+r2H1+rﬁ —(1+qrﬁ §(1+qrﬂ -(1+q)
&=
1=Py-Prpsrg,

which is true according to the above remark. o

The probability P3 can be expressed as a linear combination of the
probabilities P1 and P2, as follows :

P3 = (1--O)P2 + OP1 N

where
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C(er)(1-py)

0
™

For a proof we refer the reader to Rousseau (1988b).

One final remark : problems with end effects can be eliminated by working
modulo N, where N is the total number of elements in the population. In
practical terms, this means considering the first book as the one following
immediately after the last one.

1.4.2.2. Fussler sampling in book shelves : the case of a discrete
distribution of thicknesses (Egghe (1988c))

The above-mentioned results do not deal with the realistic situation of
more than two types of thicknesses on a book shelf. In fact, in reality we
have a finite number of possible thicknesses of books, say (in increasing
order) :

d1 <dy, <... < dn .

Denote by P1(dj) : the probability of picking a book with thickness dj’ using
random sampling.

Denote by Pz(dj) : the probability of picking a book with thickness dj’ using
sampling by length.

Denote by P3(dj) : the probability of picking a book with thickness dj, using
the Fussler sampling technique (i.e. sampling by length as above and taking
the kth book after it, k € {1,2,3,...} arbitrary but fixed).

The following theorem shows that the Fussler sampling procedure is
always better than sampling by length, no matter how the books of different
thicknesses are clustered on the shelf. Note that, in view of inequalities
[1.4.1] and [1.4.2], we need the absolute value signs on both sides of the
inequality. Based on implications of the theorem, we recommend the Fussler
sampling technique for most practical cases.

Theorem (Egghe (1988c)). For every j = 1,...,n one has :
|P1(dj) - P3(dj)[ < ]Pl(dj) - Pz(dj)[ . [1.4.7]

Proof. Determine any j = 1,...,n. In the set {dj’dj+1""’dn} the books with
thickness d. are thin and the books with thickness greater than dj are thick.
Hence inequality [I.4.1] yields (now using conditional expectations in
{dj,...,dn}) :

83
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[ACHECHRSRT I IR N CHEC PR ]

n

< P1(dj{{dj,...,dn}) - Pz(djl{dj,...,dn}) .

Using the definition of conditional expectations, we thus find :

P Ryl | ) Rldy)
F1(131,...,3n}) P3({dj,...,dn}) P{({dj,...,dn}) PZ(THj,...,dn})
or
Pl Pl | Pyl (e s

4 ) : (d,) ; (d,) : (d,)
£ P,(d £ P,(d T P,(d r P, (d
4= 1°72 9=j 3'7y 2=j 178 =3 2\"e

Likewise, books with thickness d. are thick in the range of books with
thickness {d1,...,dj}. So, by using inequality [I.4.2] we now have :

nl

S ACHICHRRCI) R A CHECARIN R )

|Py(dy1{dqseeeads}) = Paldslidy,... d

As above, we find :

Pild) Pyl | Rl yly)

: P.(d,) : Po(d,) : P,(d,) ; P.(d,) e
b3 b3 b b3
=1 2 21 32 oy 22 e U2

To simplify further calculations, we adopt some new notations. We take

n .
a; = £ P.(d) (i
2=j 172

1,2,3)

and :

a

i Pi(dj) (i =1,2,3)

(since j is fixed we do not mention the index j in a, and ai).
So, in this new notation formulae [1.4.8]1 and [1.4.9] become :

] R
% %3

0.1 C!z
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and

4 ) 43 . 2 ) 2
ay + T- ap  ag+ T- aq = a, + T- a, A+ T- oy

From these inequalities, it follows that :

%1%3

lajeg - agey| < a0y - 3, 5,

and

(a1+1 -u1)(a3+1 -a3)
a, + T- )

|a1(1-a3) -a3(1-a1)| s a, -a1(a3+1—a3) .

Hence, using a triangular inequality

lay - a3|

N

< |a1a3 - a3oc1] + |a1(1 -a3) - a3(1-a1)[

(a, +1-0,){a,+1-0,) a,a
L 13 3.4 3} - a1(a3 +1-2 a4)

£ a2+1—a2 o,
n v n
(Pyldg) + 1 - = Pld ))((P3(dy) + 1 - E Pyldy))
= P,(d,) 2= 4=
2 (d,) : p(d,)
P.(d.) +1- £ P (d
2'7j ’FjZJL

n n
2>=:j Py(d,) éj Py(d,) n
- - Py(dy) [P3(dg) + 1 -2 % Pyldy)l. [1.4.10)

r Pd) =3
5 Tl

2

We now accept a second order approximation :

for all j,j' = 1,...,n (since Pz(dj) is small). Now inequality [I.4.10]
becomes :
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A

n
S Poldy) [Pgldg) +1 -2 Zij P3(d,)]

n
P1(dj) [P3(dj) +1 -2 sz P3(d2)]

We take

n
a = P3(dj) +1-2 gij P3(d2) .

Then [1.4.11] reads :

[Py(d;) - P3d))] = alPyldy) - Py(d,)) .

3
Now :
() -2 5 P(d)
af=1-Pd.) -2 £ P, (d ifj<n
KA | g=j+1 3'L
=1 - Pald;) ifj=n

<1 in all cases .
Furthermore, since

n n
1= % P,d,) 2z = P,L{d,)
PTIRE A
we have :
n
azl -2 )E.P3(d2);—1
=)
in all cases.

From [1.4.13] and [I.4.14] it now follows that

Ja] 1

in all cases. Inequalities [I.4.12] and [I.4.15] then imply :

[Py(d;) - P3(dg)] s [Py(dy) - Pyldy)]

for every j = 1,...,n. o

(I.4.11]

1.4.12)

[1.4.13]

[1.4.14]

[I.4.15]
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Remarks :
1. From the definition of o we see that if dj is small (the thinner
books), o ~ -1. For these books we have, using inequality [I.4.12] :

If dj is large (the thicker books), o« ~ +1 and hence, using [I1.4.12] :

(d.)] P

[Py(d5) - Pl

2(dj) - P1(dj) .

2. The quantity [P1(dj) - Pz(dj)[ is large for small or large dj's.
Obviously, for average values of d. this difference is small. But no matter
how large |P1(dj) - P2(dj)| is, inequality [1.4.7] of the theorem is valid
and it might be that, when books of thickness dj are randomly distributed
amongst the other books (which is likely to be the case in book shelves),
P1(dj) o P3(dj) even when |P1(dj) - Pz(dj)l is large. So the Fussler sampling
technique's strongest impact is in eliminating the largest bias (for dj small
or dj large) encountered when sampling by length.

3. The sign of P1(dj) - P3(dj) depends on the degree of clustering of
the books with thickness dj.

1.4.2.3. Fussler sampling in the case of a continuous distribution function
The Fussler sampling technique can also be applied in the case of

sampling from a continuous distribution (e.g. a continuous distribution of
time periods). A typical case is the following. To find the distribution of
checkout times in a library one might take a random sample from the
population of all users (situation 1); one might also sample by time, e.g.
every 10 minutes (situation 2). This method is biased towards the cases
requiring a longer service time. In situation 3 one samples every 10 minutes,
but the next borrower is taken. This is Fussler's technique with k = 1.

Let tm denote the maximal checkout time and let tO’t1 € [O,tm], tO < t1.
For i = 1,2,3 denote the probability of picking a borrower with a checkout time
in the interval [to,t1] by Pi[to’t1]’ where the sampling method is as described
in situation i above.

Theorem (Egghe (1988c)). For every tyty € [O,tm], t, < ty, one has :

1

- < -
1P leynt,) = Polty,t,1] < [P Le,,¢,] Pylt,,t,1] . [I.4.16]

Proof. The proof follows the lines of the previous theorem. We observe in
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this case that the times in [to,t1] are short with respect to the time
interval [to,tm] and that the times in [to,t1] are.long with respect to the
time interval [0,t1]. o

A similar inequality can be proved for density functions of continuous
probabilities (Egghe (1988c)).

Another application of a continuous situation can be found by returning
to the situation described in Bookstein (1983). Indeed, as mentioned by
Buckland, Hindle and Walker (1975), different tensions in various parts of
a card drawer, furthermore dependent on time, can result in a continuously
changing 'real’ thickness (including the air between the cards).

The general conclusion is that all these uncontrollable physical aspects
do not bother us : the Fussler sampling procedure is as quick and simple as
sampling by length {or time) but gives less bias, and in fact is reduced in
most common cases to random sampling.

1.4.3. Overlap

1.4.3.1. Statement of the problem

We consider the collections of two libraries A and B and study the
overlap between their book or journal collections. To establish the idea,
we will consider the case of book titles. This situation is depicted
schematically in the Venn diagram of Fig.I.4.3.

Fig.1.4.3 Venn diagram of book titles of 1ibraries A and B,
Q2 denotes the set of all book titles

Studying overlap in book titles between libraries A and B means finding
answers to at least one of the following questions :
- What is the set A n B?
#(AnB) #(AnB)
75 and i

~ Determine » i.e. the proportion of books in A that are
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also in B and vice versa.
Note that, using the notation of probability theory (Subsection 1.2.1.2},

#(AnB) _ P{(ANB) _ - #(AnB) _ -
=g = P - P(A|B), and similarly =g = P(B|A). Of course also it
is interesting to know P(A[B) and P(B|A) as well, where A = B~A and B = ASB,

but these numbers folliow from the preceding ones from the equation
P(A[B) + P(A|B) =1 .

When drafting a union catalogue, the study of overlap between several
libraries becomes important. If n libraries A1,A2,...,An want to join forces,
the following questions will have to be answered :

- How many titles are held by exactly 1, exactly 2, ..., exactly n Tibraries?
- Given that a title is in library Ai’ what is the probability that it will be
in none, one, two, ... of the others.

1.4.3.2. The importance of knowing overlap

Whether the overlap between collections is large or small, it is always
important to find out what its extent is. A few practical examples are given
below.

Collaboration between two (or more) libraries with respect to automation
is much more economical when library collections have a big overlap.

When a union catalogue is produced, there are two conflicting viewpoints
concerning overlap. If the aim is to cover (as much as possible) all libraries
of a certain region (country, state), a big overlap is desirable for economical
reasons. In this case, the union catalogue will not be too large, with respect
to the catalogues of the most important 1ibraries, so that printing costs are
reduced. On the other hand, if the aim is to cover as many titles as possible,
then a small overlap is preferred. Many smaller libraries having an overlap of,
for example, more than 90 % with the larger libraries might then be excluded
from the union catalogue, thus saving a lot of holding indicators.

The lower the overlap between two online files is, the more important
it is to search both. Conversely, if the overlap between two online files is
big, and if money is a problem, a savings of about 50 % can be reached by
only searching one file (and still obtaining, say, 80 % of the total recall
that one would have obtained when searching both files). In a recent study on
forensic medicine (Snow and Ifshin (1984)) the overlap among MEDLINE and EMBASE
on a number of sample questions was 30 % overall. However, in conjunction with
the analysis of uniqueness (references found in only one of the databases
studied, the others being BIOSIS, SCISEARCH and CASEARCH), it was found that



90

if MEDLINE or EMBASE were omitted from the search on forensic medicine topics,
nearly one-third of the total recall would be lost.

The relation between over]ap'and IL (Interlibrary Lending) is rather
complicated. Suppose that library B is used by Tibrary A for interlending
purposes. If the overlap between A and B is small, this seems favourable for
A : it has access to a lot of material that it does not own itself. However,
if A is special library or a small scientific research library, highly
specialised in one topic, it is important to find a larger library that has
much more, on this specialised topic as well. In this case the overlap of the
second library with respect to the first may well be nearly 100 %!

I.4.3.3. Some practical considerations

1.4.3.2.1. General aspects

Buckland et al. (1975) discuss several pitfalls of sampling in catalogues
or external lists (e.g. national bibliographies) for measuring overlap.
Summarising, we can say that the main problems are the inconsistency between
the classification rules of different libraries and the lack of sufficient
external lists. Therefore, these authors recommend adopting a direct statistical
approach : pick a random sample from A (a library say, or an online file) and
check this sample against the holdings of B (a different library or online
file). The fraction of the sample from A which is also in B is then taken as
an estimate X for the overall proportion of A which is in B (i.e. P(B|A)). The
actual number of items held in common is then - approximately - found by
multiplying by the total number of items”in A.

1.4.3.3.2. Overlap and the binomial distribution

It can be assumed that the number of items from a sample in A, also found
in B, is a binomial random variable. Indeed, every item in A has a probability
p of also being in B (so we consider the experiment of picking one item in A
and verifying whether it actually belongs to the intersection of A and B).
This is a Bernoulli experiment with parameter p, cf. Subsection 1.2.4.1).
For this Bernoulli experiment the average u is p and its variance is p(1-p).
For N Bernoulli trials (sample of size N), the sampling mean X is normally
distributed with parameters p and cZ/N = p(1-p)/N (where N is large). Hence
X~ n(p,p(1-p)/N).

In actual sampling, the variance of ¥ is unknown, so that we will use
x(1-x)/(N-1) (cf. Subsections 1.3.1 , 1.3.4.3 and 1.3.4.4). In this way a 95 %
confidence interval is given by
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X - 1.96\//-’-‘}({_;’;‘—) L% et96 /X [1.4.17]

where X is the observed fraction in the sample. As noted earlier, this interval
for P{B|A) also produces an interval for P(B|A) = 1 - P(B|A).

1.4.3.3.3. The case of several libraries

Suppose we have a group of Tibraries. How much of the material is
duplicated, triplicated and so on? The obvious way to proceed is to take a
stratified sample (according to library size) and then check this sample against
the holdings of each library. This would yield an estimate on the number of
items held by 1,2,3,...,n libraries. This procedure, however, introduces a
bias. Let p be the probability of including a particular book in the sample.
This p is constant for every library since we use a stratified sample. Then 1-p
is the probability of not drawing this book in one particular library. As we
draw an independent sample in every library, the probability that a particular
title will not be in the sample when this title belongs to the holdings of k
libraries is (1-p)k. Hence, this title has a probability of 1 - (1-p)k of
being included in the sample. For example, when p = 0.01 and k = 5, this title
has a probability of 0.049 (instead of 0.01) of being in the sample (see also
Table I.4.4).

Table I.4.4. Probabilities that titles belonging to k libraries
will belong to a stratified sample if p = 0.01
(see the text for the meaning of p)

=

1-(1-p)¥

0.010
0.020
0.030
0.039
0.049
0.059
0.068
0.077
0.086
0.096

CWRNOATTPWN =

—

To correct this bias, it is sufficient to multiply the number of books found
in k libraries by 1/(1- (1-p)k) and, if one wishes, to normalise the numbers.
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1.4.4, Sample size
In Subsections 1.3.4.4 and 1.4.3.3.2 we briefly discussed how to

construct a confidence interval around estimates made from samples. Obtaining
from this the minimum sample size necessary to estimate, for example, the
population mean within specified confidence limits,is a fairly straightforward
calculation.

I.4.4.1. Tests on the mean
In Subsection 1.3.4.4 we found the following 95 % confidence interval
for the population mean p (large sample, i.e. N 2 30; o known) :

x~1.9 -2, x+1.9 2]
vN v

Suppose now that we specify in advance that the length of this interval must
be at most L. This yields the following inequality :

2 (1.96 ) <L
W
or
3.2 0 s W L
or
N5 (3.92)% o2
2 =

L

If 0 = 36, L = 10, this equation results in N 2 199.15, indicating that we
need a sample size of 200 or larger.

In many cases, however, it is more natural to specify a relative error
on the mean, expressing the maximum length of a confidence interval as a
fraction of X, say Bx, where B is usually 0.1 or 0.2.

We then have to solve the following inequality :

3.92 % < gx
vN
or

N> (3.92)2 o

B x

[1.4.18)]
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This leads, however, to a kind of circular argument : the sample size N needed
to find X is given as a function of X!

The way to deal with this problem is to simply draw two samples. First,
we draw a provisional, small sample. This gives us a rough estimate for X (and
for 52 if the variance is unknown). This first estimate is used to determine
N from [1.4.18]. We include the provisional sample in the final larger sample
so as not to waste time or energy in drawing the first sample. This type of
sampling tactic is called 'two stage sampling'. Note that we have explained
how to determine the sample size in one particular case. We trust that the
reader will be able to apply the above reasoning to other cases, based on the
other formulae in Subsection I.3.4.1.

1.4.4.2. Tests on fractions
A 95 % confidence interval for fractions (X) is given by

K - 1.06 XU=X) 5, 4 g X(1-X) 4

(cf [1.4.17]).
Hence a confidence interval of length 8X requires a sample size N at least

equal to :
2 -, = 2 ,, -
(3.92)° x(1-x) , 4 . (3.92)" (1-x) , 4 (1.4.19]
Y 2= ot

B“X B°X
Again, two-stage sampling is necessary.

An example. Suppose we wish to have a 95 % confidence interval of length
X/10 for the fraction X of overlap between two libraries. A provisional sample
of size 100 yields an overlap of 60 % (X = 0.6). We then need a sample of size
oo (3.92)2(0.8) 4 _ 4006,

(0.1)%(0.6)

This formula has also been applied to estimate the number of lost books
in a large library (Miller and Sorum (1977)); see also Goldstein and Sedransk
(1977). For more general information on sampling the reader is advised to
consult, for example Cochran (1963).



