94 1. Statistics

I.5. MULTIVARIATE STATISTICS

Multivariate analysis is the analysis of observations on several
(possibly) correlated random variables. There are two important aspects in
multivariate statistics. The first is the description of a variable as a
function of several other variables. In this context the term 'regression’
is used when fitting observational data to a model. An obvious example is the
number of library requests as a function of library size, price, response time,
copying quality, etc. In general, we wish to describe a function Y, depending
on k variables X1""’Xk :

Y = Y(X1,...,Xk) .

The second aspect of multivariate statistics may be called 'dimensionality
reducing techniques'. In this case we consider principal component analysis,
multi-dimensional scaling and cluster analysis (to be explained further on).
These methods are referred to as dimensionality-reduction methods because
their aim is to simplify what is first a complex pattern of associations in
many variables.

Geometrically, this process of simplification is done by projecting or
representing an object in a higher-dimensional space in a space of a smaller
number of dimensions (usually two). This is somewhat similar to projecting
a three-dimensional globe onto a two-dimensional map (Kinnucan et al., (1987)).
Orthogonal projection is illustrated by Fig.I.5.1.

Fig.I.5.1 Orthogonal projection of a point in 3-space onto a
two-dimensional plane



L.5. Multivariate statistics 95

These methods operate on matrices of relations. A classical case is
offered by citation analysis (to be discussed in more detail in Part III).
For example, if one selects a group of journals {J1,...,Jn} in a fixed subject
area and studies the number of citations, Ciis given in journal Ji to journal

J

Jj’ this yields a (square) matrix of raw data :

nl %n2 nn

This is an example of a network study : an investigation of certain
relations within one group. In general, one also studies n objects and k
variables, giving rise to rectangular matrices.

I.5.1. Multiple regression and correlation

In multiple regression, we consider the relationship between a string
of values of the dependent variable Y, and several strings of corresponding
values of the so-called predictor variables X1,...,Xk. The simplest relation
between these variables is the linear equation :

Y=a+ b1X1 * boXy + Les + kak . [I.5.1]

In mathematics, vectors (X1,X2,...,Xk,Y) that satisfy this equation are said
to form a hyperplane in the (k+1)-dimensional space. A hyperplane in RS is
what we usually call a plane. As in Subsection I1.3.8.4, we require that
hyperplane to fit the raw data (the vectors of values for the variables) best
in the sense of least squares. Although this makes the equations for k 2 2
intricate, this is not a serious drawback. There are numerous computer programs
that quickly find the best fitting values for a,b1,b2,...,bk.

For k = 2, the best fitting plane

Y=a+b1X1 +b2X2

is obtained when applying the following equations given below, in which I
represents the sum over all observed values (denoted by minuscules); the
summation index is not written :
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The best fitting plane is sketched schematically in Fig.I.5.2,

X1
Fig.I.5.2 Best fitting plane of a three-dimensional scatterplot

The strength of this linear relationship is measured by the two-
dimensional correlation coefficient :
by £ (X=X, ){y-y) + b, £ (x,-X,)(y-y) 1/2
poa (1 _Z_ e ) . [1.5.5]
z (y-y)
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An example :

Y : the number of interlibrary lending requests for books in a library
(in hundreds)

X1 : number of books in the library (in thousands)

X, ¢ price (in $).

Data are given in Table [.5.1.

Table I.5.1. Interlibrary lending data

Library Y

X1 X

A 23 10 7
B 7 2 3
" 15 4 2
D 17 6 4
E 23 8 6
F 22 7 5
G 10 4 3
H 14 6 3
1 20 7 4
J 19 6 3
SUM 170 60 40
MEAN y=17 X, =6 >‘<2=

Further calculations can be done as illustrated in Table I.5.2.

Table I.5.2. Calculations for a two-dimensional regression analysis
on Table I.5.1

. B I o \rv o S \rv o I

Libr. [Y-¥[X, =Ky 1X,=% | (X=X ) (Y1) (Xp=Rp) (Y1) | (X, =R, ) (Xp=Fp) | (¥=1)% | (%) (X
A e 4| 3 24 18 12 36 16 9
B {-10] -4 | -1 a0 10 4 100 16 1
C | -2y -2| -2 4 4 4 4 4 4
D | o of o 0 0 0 0 0 0
E | 6] 2| 2 12 12 4 36 4 4
F | s| 1 1 5 5 1 25 1 1
6 | -7{ -2 | -1 14 7 2 49 4 1
Ho|-3] o] -1 0 3 0 9 0 1
1| 3 1] o 3 0 0 9 1 0
3 | 2f of - 0 -2 0 3 0 1
102 57 27 272 46 22
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(102x 22 - 87X 27 g 4
46 x 22 - (27)

_ 57 x 46 - 102 x 27
46 x 22 - (27)°

= -0.47

a=17 - 2.49 x 6 - (-0.47) x 4 = 3.92
This yields the following 'best' linear relation :

Y =3.93 +2.49 X, - 0.47 X,

1

We observe a positive correlation between Y and X1 and a negative
correlation between Y and X2. This agrees with intuitive expectation.

Most uses of multiple regression can be classified into three categories :
1) for prediction, 2) for model specification and 3) for parameter estimation
(Gunst and Mason (1980)). In prediction the emphasis is on estimating
accurate values of the dependent variable (Y) for any combination of the
independent variables (the Xi's). In model specification the emphasis shifts
to finding the best combination of predictor variables and assessing their
relative importance for prediction. Finally, in parameter estimation,
regression analysis is used to provide accurate estimates of the parameters
associated with the predictor variables (Kinnucan et al. (1987)).

Nevertheless such preditions are only reliable in the immediate
neighbourhood of the actual situation; false predictions can result when
predictor variables change too much. Let us take X =Xy = 0 in the
preceding example. Then y = 3,93, meaning that an empty library would receive
393 requests. This is a clear example of undue extrapolation.

Numerous examples of applications of this technique are found in the
Titerature on informetrics. See, for example, Virgo (1977), McDonough (1982),
Bennion and Karschamroon (1984), Cooper (1984).

1.5.2. Principal components analysis (PCA)

1.5.2.1. Introduction
We consider an (n,k)-matrix of raw data :

S 2 Sk
C = : [1.5.6]

n1 e an
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where n is not necessarily equal to k. This matrix will often be abbreviated
to the notation (Ci')' Such matrices occur, for example, when studying n
‘eiting' journals (A1,...,An) and k 'eited' journals (B1,...,Bk). The matrix
entry Cij denotes the number of times journal Ai cites journal B, in a fixed
period. The functional relation studied in this example is 'to cite'. One can
also study the relation 'to be cited', yielding a different matrix and maybe
even different results, but from our technical point of view this is the same
problem.

In every case we will view the matrix C as a representation of n points
Ci = (Ci1’c12”"’cik)’ i =1,...,n in k-dimensional space Rk. We wish to
obtain more information about the configuration of the scatter diagram of the
Ci's. The study of these kinds of interrelations helps Tibrary managers to
make acquisition decisions : they can decide, for instance, to subscribe to
Jjournals often cited by the most popular journals of the library. In connection
with scientometric studies such analyses may determine important groups of
researchers (invisible colleges or 'schools', see further Part IV) or the
scatter of different scientific fields in a country.

I.5.2.2. An intuitive approach to principal components analysis
The problem we face here is finding an adequate visualisation of n
points in Rk. Since humans are only capable of perceiving objects in at most

three dimensions, this means we will have to find a method to reduce the
dimension of the set of points under study. For practical reasons usually only
two dimensional images are allowed. Projecting on a plane will, however,
seriously deform the original scatter diagram. For example, consider two points
A and B in 3-space and project them onto a plane perpendicular to the line
joining A and B (cf. Fig.I.5.3).

This projection maps A and B onto the same point C, showing that this is
the worst possible 2-dimensional representation of this set of points. In fact,
any plane parallel to the line AB would represent this situation perfectly.

See Fig.I.5.3 : the projection of A and B onto A' and B'. General scatter
diagrams are much more complicated than the simple example above so that, no
matter which plane we take, some information will be lost in the operation.
Indeed, a projection reduces the distance between points (except in the case
where the plane of projection is parallel to all points under consideration).

We will Took for whichever plane that avoids this reduction as much as possible.
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Fig.1.5.3 Projection

The internal variance of a scatter diagram is defined as the sum of the
squares of all distances between any two (different) points. Since there are
n points, there are (2) = n(n-1)/2 distances to consider. We will try to
determine that plane which maximises the internal variance of the projected
scatter diagram. ’

For easily recognisable objects it is immediately clear which plane is
a maximising plane. For a perfect ball any plane is maximising, but for a pair
of scissors we have less choice, as shown in Fig.1.5.4,

Note that any plane parallel to a maximising plane is also a maximising
plane. Therefore, we can choose a plane passing through the origin
0 =(0,0,...,0) in Rk. This plane will be entirely determined by two
perpendicular axes.

In practice, we will need a computer program to solve the problem
satisfactorily. This program will work as follows. First, it finds an axis,
call it Xqs such that the internal variance of the projected scatter diagram
is maximal with respect to all other axes.

It then finds a second axis, Xos orthogonal to Xqs maximising the
internal variance among all axes orthogonal to Xq. The plane determined by X4
and Xy is then a maximising plane. The program continues in the same way,
finding a third, a fourth, a fifth, ..., a k-th axis, all mutually orthogonal.

These k axes are said to be the principal components of the scatter
diagram. Mathematically, the whole procedure is essentially a problem of finding
eigenvalues and eigenvectors of the so-called variance-covariance matrix of C
(see e.g. Kshirsagan (1972), Chapter 11). The first axis is then an eigenspace
associated with the largest eigenvalue; the second axis is associated with the
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Fig.1.5.4 Projections of the same pair of scissors onto three
different planes

second largest eigenvalue and so on. Intuitively speaking, the eigenvalue
corresponding to an eigenvector contains the amount of variation that is
retained after the k-dimensional scatter plot of observed data is projected
onto the eigenspace associated with this eigenvector. The method of principal
components analysis originated with Hotelling (1933), who developed the
technique for his work in educational psychology.

In many cases the first plane (x1,x2) is the most important one.
However, it is always a good practice to use several planes (e.g. (x1,x3) or
(xz,x3) as well) to get a better idea of the scatter diagram. This may also
help to detect anomalies in the data.

In practice we will retain as many axes as necessary - beginning, of
course, with the most important ones - in order to recover a fixed percentage
(say 75 %) of the total variance of the k-dimensional scatter diagram. Principal
components are artificial variables and do not necessarily have any physical
meaning or significance. While they are linear combinations of variables that
can be measured, they themselves cannot generally be measured directly. Some-
times, however, they can be interpreted, as will be shown in the next examp1e.
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Table I.5.3. Citation matrix C of botanical journals (1983)
Citing
Cited 1 2 3 4 5 6
1. PLANT PHYSIOL 2906 382 97 682 204 1007
2. PHYTOCHEMISTRY 270 2115 9 119 38 134
3. PHYTOPATHOLOGY 42 36 1771 - 158 17
4. PLANTA 672 143 - 685 97 442
5. CAN J BOT 139 40 130 33 630 89
6. PHYSIOL PLANT 290 79 11 99 93 665
7. AM J BOT 64 26 27 40 254 60
8. NEW PHYTOL 118 24 18 54 312 75
9. ANNU REV PLANT PHYS 312 45 19 116 53 148
10. J EXP BOT 248 44 - 129 58 173
11. ANN BOT-LONDON 83 16 14 28 118 98
12. PLANT CELL PHYSIOL 174 62 - 65 28 141
13. Z PFLANZENPHYSIOL 129 63 - 60 33 183
14. PLANT SOIL 39 - 19 - 65 16
15. PLANT SCI LETT 168 44 - 80 26 102
16. J PHYCOL 21 13 - 9 40 -
17. WEED SCI 21 - - - 10 -
18. BOT GAZ 50 9 6 18 86 35
19. CAN J PLANT SCI 20 - 27 - 14 8
20. AUST J PLANT PHYSIOL 127 12 - 50 20 41
21. PHYSIOL PLANT PATHOL 58 24 83 8 23 8

1.5.2.3. An example :

a network study of botanical journals (Keteleer (1986))
We report here on work involving a citation network of botanical
journals, done by Ann Keteleer as an M.Sc. student of ours. One of the aims of

this study was to find out whether this citation configuration was tight,
indicating that botany exists as a strong field in itself, or whether it was
loose, showing that other disciplines interfere in the field. Furthermore,

principal components analysis was used to reveal possible subfields of botany.

Based on a citation criterion (for more details we refer to the study

itself), 21 journals were selected. Although both the relations ‘cite' and

'cited' were investigated, we report here only on the relation 'cited'. Hence

citing journals are the variables and cited journals are the objects (points
in R21). Data were collected from the 1983 Journal Citation Reports (JCR).
(For more details concerning the JCR see Part III). The citation matrix is
given in Table I.5.3.
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7 8 9 10 11 12 13 14 15 16 17 18 19 20 2t
76 166 288 481 165 524 418 148 383 35 125 39 35 97 79
20 23 50 48 15 8 117 20 60 8 12 13 9 18 39
- 47 - 6 - - - 40 8 - 11 16 3 - 236
84 91 115 212 117 178 334 32 200 22 19 39 7 36 9
130 105 19 82 57 34 63 54 34 27 19 49 42 8 81
36 77 40 113 104 133 215 94 114 - 19 10 9 15 21
450 73 35 47 116 37 44 21 21 25 16 105 14 - !
63 467 13 84 79 26 54 200 20 25 - 16 12 10 14
28 49 63 77 56 81 86 42 58 6 19 1 7 22 N
33 79 48 339 111 52 98 60 50 7 14 9 7 36 -
.. 8 89 21 94 326 14 47 34 19 12 6 32 13 24 1N
9 6 28 28 34 466 68 - 56 6 6 14 - 13 -
21 16 30 64 51 60 302 16 74 7 6 9 - - -
- 53 - 16 21 - 24 319 10 - 7 - 12 - -

7 18 38 32 25 44 128 10 177 - 7 - - 10 -
23 36 - - 6 - 13 - - 132 - - - - -
- - - - - - - - - - 662 - 80 - -
114 23 10 16 48 11 20 9 12 - 13 ot 7 - -
- - - - 13 - - 13 - - 38 - 22 - -

- 1" 21 49 33 29 22 20 22 - - - - 8 -

- 13 - - 7 - 6 - - - - - - - 22

are first standardised, giving every variable a mean equal to zero and a
variance equal to one. We will not go into detail here, but merely note that

programs usually either do this automatically or have this option.

1.5.4). This table also indicates the percentage of variation they represent.
Furthermore, the system draws the following projection on the plane formed by

the first principal components (Fig.I.5.5).

(Table I1.5.3)

gg;gﬁ;gﬁls eigenvalue % variation cum % variation
1 7.71 36.69 36.69
2 2.70 12.86 49,55
3 1.87 8.91 58.46
4 1.58 7.50 65.96
5 1.33 6.36 72.32
6 1.03 4,91 77.23
7 0.95 4.52 81.75
8 0.69 3.27 85.01
9 0.67 3.17 88.18
10 0,90 2.38 90.56
21 -9.11 E-08 0.00 100.00

Before the system begins the actual principal components analysis, data

The following eigenvalues were found for the botanical journals (Table

Table 1.5.4. Eigenvalues of the citation matrix of botanical journals
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Fig.I.5.5 Projection of the scatterplot of citations to botanical
journals onto the plane of the first two eigenvectors.
The numbers have the following meaning :
1. PLANT PHYSIOL 8. NEW PHYTOL 15. PLANT SCI LETT
2. PHYTOCHEMISTRY 9. ANNU REV PLANT PHYS 16. J PHYCOL
3. PHYTOPATHOLOGY 10. J EXP BOT 17. WEED SCI
4, PLANTA 11. ANN BOT - LONDON 18. BOT GAZ
5. CAN J BOT 12. PLANT CELL PHYSIOL 19. CAN J PLANT SCI
6. PHYSIOL PLANT 13. Z PFLANZENPHYSIOL 20. AUST J PLANT PHYSIOL

7. AM J BOT 14. PLANT SOIL 21. PHYSIOL PLANT PATHOL
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As can immediately be seen, this projection explains only 49,55 % of the
variation. Still, we can draw some useful conclusions. The encircled areas in
Fig.1.5.5 stand for recognisable groups of botanical journals : A = plant
physiology, B = general journals, C = phytopathology, D = applied botany. As
these areas are only partially separated, we are led to the tentative conclusion
that no strong subdisciplines exist in botany. From other results of this work
(Keteleer (1986)) we may conclude that botany uses quite a lot of results from
other scientific fields (much more than vice versa). The same group of journals
will be considered again when describing cluster analysis in Section I.5.4.

Further applications of PCA and related techniques such as factor
analysis, correspondence analysis and quasi-correspondence analysis can be
found, for example, in Bookstein and Podet (1986), Simeon et al. (1986), Cheney
and Nelson (1988), Tijssen et al. (1987, 1988},

I.5.3. Multidimensional scaling

In the above section on PCA we considered n points in k-space Rk, in
which the problem was to find a 'best' low-dimensional representation. In
informetric studies we also encounter more complex situations such as the

following :

(1) We do not know the coordinates of the n points, but only their
distance matrix, i.e. all n(n-1)/2 distances between any two different points.
The objective is now the same as for PCA : to try to find a best two-
dimensional representation.

(2) This distance matrix sometimes consists of distances measured in a
different way (so-called non-Euclidian distances, see below). It also often
happens that one considers similarity measures and, correspondingly, similarity
matrices. The problem is still the same, but the greater the similarity between
objects is, the closer to each other they have to be represented.

Techniques to deal with these situations are called 'multidimensional
scaling techniques (MDS)'.

I.5.3.1. Distances

Let C = (Ci’) be an (n,k)-matrix of raw data, where the n rows denote
n points Ci = (ci1,c12,...,cik) in k-space, i = 1,...,n. Let X be the set
{C45Cp,...,C 3 of these n points,

A metric (or distance function) is a mapping d :Xx X ~R' satisfying
the following three requirements (axioms) :
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(1) For every x,y € X : d{x,y) = 0 if and only if x = y.
This axiom states that the distance between two points is zero only in the
case in which these two points coincide.

(2) For every x,y € X : d(x,y) = d(y,x).
This equality expresses the requirement that the distance between point x and
point y must be the same as the distance between point y and point x. This
means that a distance function must be symmetric.

(3) For every x,y,z € X : d{x,y) s d(x,z) + d(z,y).
This inequality is referred to as the 'triangular inequality' and is
illustrated in Fig.I.5.6.

Fig.I.5.6 The distance between x and y is smaller than the sum
of the distances between x and z, and y and z

A set X equiped with a metric d is denoted by (X,d) and is termed a ‘metric
space’ .

Examples.

a. The trivial distance function D0 defined as Do(x,y) =1 if x # y and
Do(x,y) = 0 if x = y. Although extremely simple, this is the underlying distance
when perfectly matching pairs of vectors are sought (e.g. when searching for
documents indexed by a fixed set of terms).

b. The Minkowski metric dp, p > 0. This distance function is defined
as :

k
= - py1/p
dp(Ci,CJ.) (r; lesy cjrl ) . [1.5.71

For p = 2 this produces the usual Euclidéan metric. For p = 1, we obtain the
so-called city-block metric :
[1.5.8]

k
d1(C'i’Cj) = r§1 lcir‘ = cjl"' s
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illustrated by Fig.I.5.7.

S

JCJC__ JC 1]

Fig.I.5.7 City-block metric
¢. Chebycheff's distance, denoted by d_ :
dm(Ci,Cj) = max{[ci1 - c‘].1|,|c1.2 - cjzl""’lcik - cjkl} . [1.5.9]

One can actually show that 1im dp(Ci,Cj) = dm(Ci,Cj). This explains the
notation d_. e

These generalised distances dp and d_ are used by Salton, Fox and Wu
(1983) in connection with a generalisation of the classical Boolean operators
and by Egghe and Rousseau (1989, 1990) in studies on concentration and
dispersion measures in informetrics and econometrics.

1.5.3.2. Similarities and dissimilarities

Distance measures can be considered as dissimilarity measures, in the
sense that, intuitively speaking, the greater the distance between objects is
the greater their dissimilarity will be. Stated formally, a function
d: XxX ->R+ is said to be a dissimilarity function if :

(1) for every x in X : d(x,x) = 0;
(2) for every x and y in X : d(x,y) = d(y,x) .
This clearly generalises the notion of distance since we have dropped

the triangular inequality from the set of axioms. Moreover, two items can have
a dissimilarity equal to zero without actually being the same.
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A similarity function s : X x X - [0,1] satisfies (2) above and
s(x,x) = 1 (for every x in X). If s is a similarity function, 1-s is a
dissimilarity function. If d is a dissimilarity function, % Arctg (%) is
a similarity function.

Examples. Consider the following answers to a questionnaire of persons A and B
(Table I.5.5; Y : yes, N : no).

Table I.5.5. Answers to a questionnaire

Questions
Person 1 2 3 45 6 7 8
A NY Y NNY YN
B Y NY NY Y NY

Table I.5.5 is then converted into the following contingency table (Table
1.5.6).

Table I.5.6. Contingency table of data from Table I.5.5

Examples of measures describing the similarity between A and B are :

_ a+d
51(A,B) —a—+m [1.5-10]

or

_ a
Sz(AaB) = 37b+c [1.5.11]

Other similarity measures such as Salton's cosine measure and the Jaccard
index will be studied in connection with citation and cocitation analysis
(Part III).
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Different scalings of data may yield different results. Consider, for
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example, the following table (Table 1.5.7).

Table I.5.7. Library data

. Number of loans Number of books
Library (x 100) (x 1000)
A 80 169
B 82 183
C 84 175

109

Using the Euclidean distance [I.5.7], p = 2) yields : dAB = 14.14,
dAC = 7.21 and dBC = 8.25 and hence dAB > dAC' This shows that libraries A and
B are less similar than libraries A and C. However, using a different scaling
results in Table I.5.8. Denoting the Euclidean distance for this situation by
] : . \ - 1 - ] = 3 -
d' gives : dAB = 2.005, dAC = 4,000, dBC = 2.002. This leads to the contra
dictory result that dAB < dAC'

Table 1.5.8. Library data - different scaling

s Number of loans Number of books
Library (x 100) (x 100000)
A 80 1.69
B 82 1.83
C 84 1.75

This contradiction (giving rise to useless results) is solved by standardising
the data : every value in a column is divided by the standard deviation of
this column. In the case of our example on library data we have :

5{80,82,84} = 1.633 and 5{169,183,175} = 5,735, resulting in Table I.5.9.

The same table would have been obtained when starting with the data in
Table 1.5.8. Now dAB = 2.73 and dAc = 2.67, showing that A and C are more
similar than A and B. We wish to emphasise the fact that similarity is a
relative notion. Similarity is determined with respect to the set of points
(libraries, documents, persons) under study.
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Table I.5.9. Library data : standardised values

: Number of loans Number of books
Library (x 1.633) (x 5735)
A 48.99 29.47
B 50.21 31.91
c 51.44 30.52

1.5.3.3. Principal coordinate analysis

This technique is also called classical MDS or metric MDS. It deals with
problem (1) stated in the introduction to Section I.5.3. Basically, we can
state the problem as follows : distances between cities (libraries, journals,
scientists) are known and the problem is to reconstruct the map. More generally,
this problem is posed in a space where the dimension k is also unknown. Part of
the solution consists of finding a minimal k, such that the problem has a

solution in Rk.

We will not go into the mathematical details of the solution (requiring
rather complex matrix techniques). In principle, one expects the solution to be
a configuration of points in k-space, on which one can apply PCA. Most computer
programs solve this in one step, immediately producing a two-dimensional
representation. For more details on this method see Gower (1966) and Seber
(1984).

1.5.3.4. Non-metric multidimensional scaling

This method tackles the second problem mentioned in the introduction
to this section. In this case we have a dissimilarity matrix
D= (s,.) Some trial and error quickly shows that finding a

ij71,J=14.0.,5n°

dimension k such that n points in Rk are situated exactly at distances 61j is

asking too much, So we settle for the following : try to find n points in some
k
R

such that for every i,j,k,% :

d.. sd, =8 [1.5.12]

i S g ? %55 5 %y o

h point in Rk. The

where dij is the distance between the ith and the jt
requirement in [1.5.12} is called a 'monotonieity constraint'. Even this
requirement may turn out to be too strong. In that case, try to satisfy [1.5,12)
as well as possible. If [I.5.12] can be satisfied, we obtain an increasing

graph in the (Gij,dij)-plane (see Fig.I.5.8).
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Fig.I.5.8 Scatter plot of distance versus dissimilarity where
the monotonicity constraint is satisfied

How can this situation be obtained? We begin with n points
(Yi)i-1,...,n in R (k also varies in reality, but for the sake of simplicity
we will keep k fixed). A1l distances dij = "Yi -YjH are calculated and plotted
against Gij‘ In general, this will not yield an increasing function, The
intermediate values are taken, with same abscissae 6ij’ until an increasing
function has been obtained. (In fact, this step is an application of some
operations research techniques, cf. Part II). Several iterative steps are
usually necessary. For more information we refer the reader to Shepard (1962a,b)

or Kruskal (1964).

1.5.3.5. Examples

1. McGrath (1986) applied MDS to a problem in library design and library
departmentalisation.

2. Small (1986) and Small and Garfield (1985) constructed maps of
documents, scientific fields and researchers using MDS. The data were based on
co-citation frequencies (cf. Part IIl). Co-citation data as a measure of
similarity are also used by McCain (1986a,b) to plot {via MDS) authors,
showing disciplines.

3. Engineering journals have been studied (also using citation data and
MDS) by Miyamoto and Nakayama (1983).

MDS is frequently combined with cluster analysis, which is the topic of
the next section.
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1.5.4. Cluster analysis

Cluster analysis is one of the most popular multivariate techniques.
Here as well, the starting point is the matrix C of raw data. The aim is again
to obtain a two-dimensional representation of the k-dimensional scatterplot of
n points. Hence cluster analysis falls into the category of dimensionality-
reduction techniques (Kinnucan et al., 1987). Nevertheless, cluster analysis
is mainly concerned with the recognition of natural groups (clusterings),
rather than with the k-dimensional configuration itself.

The result of cluster analysis is a tree-like structure called a
‘dendrogram'. One is frequently interested in both configuration and clustering.
Fortunately, many examples abound in the literature in which cluster analysis
is combined with PCA, MDS or factor analysis (e.g. Small (1986), Small and
Garfield (1985), Leydesdorff (1986), Leydesdorff and Zaal (1988)). An
introduction to cluster analysis can be found in Hartigan (1975).

1.5.4.1. General principles
Although scientists have developed several different clustering
techniques, many of these methods also have features in common. These general

principles will be described in this subsection,
Let C be a matrix of raw data :

11 %2 e Sk

€= . . [1.5.13]

nk

This matrix is then transformed into a standardised distance or
dissimilarity matrix q = (dij)' For this matrix dii =0 fori=1,...,n and
dij = dji (D1 is symmetric). At this point we consider every point as a
separate cluster. In that case, larger clusters are formed, one by one, until
we have obtained one cluster, containing all points.

Points i and j such that di' is the smallest non-zero entry in D1 are
combined into one cluster, denoted by (i,j). This is represented in Fig.1.5.9,
where i =1 and j = 2.
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Fig.I.5.9 Dendrogram after the first clustering

A new matrix D, = (dgi)) is calculated : for points k,& different from i
and j, dﬁg) = dkl’ New d-values are computed for the distances from a point to
the new cluster (i,i). Several different ways of doing this will be explained
in the next subsection. Assume that D2 Tooks 1ike the following :

(12) (3) . (n)

(12) 0
(3) 43,(12) 0

D2 = . [1.5.14]
(n) dn,(12) dn3 e 0

In D2 we take the smallest non-zero value, giving rise to the next
cluster. There are two types of alternatives here : either a new cluster, say
(45), is formed next to (12) or a new point, say 4, joins the cluster which
has already been formed, producing cluster (124). Both alternatives are
illustrated in Figs.I.5.10 and I.5.11.

_oWw s

NIRRa

dl? d45

Fig.I.5.10 Dendrogram
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Fig.I.5.11 Dendrogram

This procedure continues until only one cluster remains, as illustrated
in Fig.1.5.12 (based on Fig.I1.5.10).

Fig.I.5.12 Dendrogram of a totally clustered set

Finally, the dendrogram is analysed to find natural clusters, preferably
those that can be interpreted : this means trying to find a relatively long
interval in which no clusters are formed. The dendrogram is cut at that point
and natural clusters appear. For Fig.I.5.12 one can say that (12), (3) and
(45) are three natural clusters. A procedure for cutting a dendrogram is

called a 'stopping rule'.

1.5.4.2, Cluster techniques that follow the general outline
The cluster techniques discusses in this section differ only in the way

they define the distance between clusters.

1.5.4.2.1. Single link method (nearest neighbour method)
We will explain this method by means of a simple (unstandardised) example.
Ltet D = D1 be a dissimilarity (often a distance) matrix derived from a data
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matrix C :
(1) (2) (3) (4) (5)
(1) 0
(2) 2 0
Dy = (3) 5 0 .
(4) 10 9 4 0
(5) 8 5 3 0

Here d;, = 2 is the smallest value different from zero. Hence (1) and (2) are
combined into one cluster. The distance between clusters is then defined as

the smallest of all distances between elements of the first cluster and elements
of the second cluster. (A point that has not yet been joined with another one is
considered as a cluster consisting of one element.) This rule results in this
case in :

d(12)3 = min {dy3.dpgt = dps =5

di12)q = min {dygsdp} = dyy =9
d(12)5 = min {d15,d25} d =8 s

25

leading to the following new matrix :

(12)  (3) (4 (5)

(12)
(4)
(5)

0w oo N
.

In this matrix d45 = 3 is the smallest strictly positive value. This
yields cluster (45). Then d(12)(45) = 8 and d3(45) = 4, The new D-matrix
becomes :

(12)  (3)  (45)

(12) 0 0
Dy = (3) 5 0 .
(45) 8 4 0
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:ere d3(45) = 4 is the smallest, yielding cluster (345), and d(345)(12) = 5.
ext, :

(12) (345)
(12) 0
Dy = .
(345) 5 0

Lastly, (12) and (345) are clustered. This clustering procedure is
illustrated as a dendrogram in Fig.I.5.12.

The main disadvantage of the single link method is that clusterings
sometimes occur too soon, as illustrated in Fig.I.5.13. This tendency to form
loosely bound clusters with little internal cohesion is called 'chaining'.

.o‘ 0\
‘...M:‘ :.

Fig.I.5.13 Chaining

1.5.4.2.2. Complete link method (furthest neighbour method)

This method differs from the preceding one in that distances between
clusters are now defined as the maximum of all distances between elements of
the first cluster and elements of the second cluster. Clusters themselves are
still formed on the basis of the shortest 'distance' between clusters, just as
in the single 1ink method.

The next series of matrices illustrates the complete link method for
matrix D in 1.5.4.2.1. Fig. 1.5.14 shows the corresponding dendrogram.
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(@ ) (1) (5

(12) 0
0 - (3) 6 0 ,
2 (4) 10 4 0

(5) 9 5 3 0

(12)  (3) (45)

(12) 0
Dy = (3) 6 0 s
(45) 10 5 0

(12)  (345)
b - (12) 0
(345) 10 0

Y

t

¢ 1 2 3 4 5 6 7 & 9 10
Fig.1.5.14 Dendrogram illustrating the furthest neighbour method

1.5.4.2.3. Group average clustering (average linking)

This is an intermediate method : the distance between clusterings is
defined as an average. If cluster A is merged with cluster B, then the
distance from cluster C to the new cluster (AB) is defined as the average of
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all distances between all points from C and all points from (AB). Applied to
our example, this growp average cluster method results in the following

matrices :
(12) (3) (4} (5)
(12) 0
(3) { 5.5
D= (4) | 9.5 4 0 ]
(5) \ 8.5 5 3 0
(12) (3) (45)
(12) 0
Dy = (3) | 5.5 0 .
(45) 9 4.5 0
(12) (345)
(12) 0
Dy =
(345) \ 7.83 0

1
Y

Fig.I1.5.15 Dendrogram illustraging group average clustering

1.5.4.3. Ward's error sum of squares method {Ward (1963))

1.5.4.3.1. The method

This method differs slightly from those outlined in the above section.
The general principle of reducing the number of clusters step by step remains,
but distances (or dissimilarities) between points are defined rather than
differences between clusters.
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We will describe how to apply Ward's algorithm to go from K clusters to
K-1 clusters.

Step 1. Take any two clusters and merge them into one cluster, yielding
K-1 clusters, say C1,C2,...,CK_1.

Step 2. For cluster Ci’ consisting of points XiqseneaXipn (where n; = #Ci)’
define 2
n.
(I [1.5.15]
X, = — .. . N
LR PR N

Point Xi is then the barycentre of this cluster (usually not a point of Ci).
Step 3. For i =1 to K-1 take
n.

ESSi = T d(X..,X

2
o ij° j) [I.5.16]

where d is defined the same as for the determination of the distances between
points and ESS stands for 'Error Sum of Squares'.
Step 4. Take
K-1
E= ¢ ESSi . [1.5.17]
i=1
Step 5. Repeat this for every possible clustering of two K-clusters.
Step 6. Retain that clustering which minimises E.
Note that there are K(K-1)/2 possible combinations to consider in this one

step!

1.5.4.3.2. An intuitive explanation : 'the trees and the wood'

In the perfectly unclustered situation one can say that all 'the trees'
are completely visible, but 'the wood' is totally unknown. In this situation
E=0.

Constructing clusters brings 'the wood' in sight but ‘the trees' fade
away. However, Ward's method minimises the fad%ng of the trees (E is minimal),
leaving a maximum of information. Although the method finally clusters
everything (we see only 'the wood'), the real clusters that remain will
certainly have good properties. This explains - intuitively - why Ward's
method is often felt to be the best one.

1.5.4.4. General properties of clustering methods
a. The clustering techniques discussed here all have the property that
the linking distance at level j-1 is smaller than the linking distance at
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level j. This is a good property, enhancing the evaluation possibilities of
dendrograms.

b. The clustering techniques encountered here are all agglomerative in
the sense that for every j, the partition of the n points on level j-1 is
finer than the partition on level j.

c. Furthermore, these techniques are hierarchical, meaning that once
level j has been passed, the partial dendrogram up to this level is no longer
altered anymore by further internal clustering activities. Note that there are
also nonhierarchical clustering methods (see e.g. the 'single-pass' iterative
clustering methods described in Salton and McGill (1984; p.137)), but these
seem to be generally less effective than hierarchical methods.

d. If the distance between points in a dendrogram is defined as the first
level (on the axis) on which these two points appear in the same cluster, this
distance, denoted by d', satisfies all axioms for a metric. Moreover, for
every i,j :

d'(i,j) s max (d'(i,k),d'(k,j)) . [1.5.18]
k

This type of metric is called an 'ultrametric'. In this sense a clustering
technique can be thought of as a transformation from a metric space into an
ultrametric space. For a review on the history and the use of ultrametricity
{and its recent introduction in physics) we refer the reader to Rammal et al.
(1986).

1.5.4.5. Evaluation of cluster techniques
The techniques discussed above always yield clusters. If there is a large
interval in which no clusters are formed, the evaluation is easy : see Fig.

1.5.16. However, one is usually not so lucky!

Main problems in the evaluating of results of cluster techniques concern
the occurrence of artefacts (clusters are mainly the result of the applied
technique), the stability of cluster structures and the interpretation of the
results (Braam et al. (1988)).

Shaw (1985) and Logan and Shaw (1987) have investigated the validity of
clusters in co-citation and co-author graphs. They use as a null hypothesis
the random-graph hypothesis. This hypothesis states that lines of a graph are
selected randomly from the set of all possible lines. If Tines are random,
there is strong evidence that no clustering structure will exist in the data.
Other tests are considered, such as these outlined in Strauss (1975). Dubes
(1987) reported the results of a Monte-Carlo (simulation) study on estimating
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Fig.I.5.16 Dendrogram yielding two obvious clusters

the number of clusters using some specially constructed indexes. Among other
things, he found that the complete 1ink clustering method recognises the true
number of clusters consistently better than the single link method.

An extensive critical review of clustering methods focusing mainly on
their use in document retrieval systems has been written by Peter Willett
(1988).

1.5.4.6. Examples

1. Fig.I.5.17 shows a dendrogram of botanics journals based on Ward's
method (Keteleer (1986)). Botanics is not an isolated field, and subfields
are not always clearly defined. When we cut the dendrogram along the dotted
line, we find the clusters indicated in Fig.I.5.5.

2. Arms and Arms (1978) cluster journals in social science using
citations. They conclude that cluster analysis on the basis of citations is
not a practical method of designing secondary services in the social sciences.
The group average method is used in Todorov and V1ach§ (1986) to find groups
of countries with a similar publication behaviour in physics. Pharmacology
journals are clustered in Rousseau (1989b) on the basis of their 'importance'
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Fig.1.5.17 Dendrogram of botanical journals



1.5. Multivariate statistics 123

(single Tink method).

3. An application concerning the automatic classification of documents
can be found in Griffiths et al. (1984). In this case Ward's method performs
best. In the same field but applied to retrieval we mention Jardine and Van
Rijsbergen (1971), Croft (1977), Willett (1984), Voorhees (1986). These
authors mainly use the single link method, but group average and complete link
techniques are also discussed.

4, ISI's citation and co-citation studies mainly use the single link
method (Small (1986), Small and Garfield (1985)). This approach, particularly
the use of the single link method, is criticised by, for example, Leydesdorff
(1987).

5. An evaluation of clustering methods can also be found in Mojena (1977).

1.5.4.7. Combination of MDS and cluster techniques

When these techniques are combined, multidimensional scaling or principal
components analysis is used to obtain a two-dimensional image of an n-dimensional
configuration. A cluster technique is applied independently, resulting in

HUMANITIE S, Applied Arts
ARTS Z%;Z;fgerman

CLUSTER English
Music
%D Fine Arts
Journalism

Architecture  O— History
Geology

5/:[7;43/'[‘55?/&"5 Cgl;lqt;lz;;eering SOCIAL Political Science
hysi SCIENCES Speech
CLUSTER Physics N Psychology
Pefroleum Engineering CLUSTER o Eucati
Mechanical Engineering g%ifa’fogy cation
0@) Math Education
N
BUSINESS , )
QUANTITATIVE  Caneral Business
Chemical Engineering CLUSTER Marketing

Finance
Electrical Engineering C% Accounting
Chemistry o o Home Economics
%?) Manage ment
Agriculture
LIFE Biology

SCIENCES | Microbiotogy

Medical Reco
CLUSTER | o

Fig.I1.5.18 Library clusters (taken from J Acad Libr)
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natural groupings. Instead of showing dendrograms, some programs draw Venn
diagrams, in the two-dimensional image, around points belonging to the same
cluster. This creates an optimal representation of the data (cf. Fig.I.5.5).

This combined technique is used, for example, in Keteleer (1986), Small
(1986), Miyamoto and Nakayama (1983). An interesting example of this combined
technique can be found in McGrath (1986). He studies the following problem :
allocate libraries on a campus in such a way that every department is
situated as close as possible to that library which contains the most books
devoted to its field of investigation. An important constraint is, of course,
the fact that there have to result the Teast possible number of 1ibraries.
MDS and cluster analysis based on circulation data of 37 academic disciplines
yield five meaningful clusters, shown in Fig.I.5.18.



