125

I1. OPERATIONS RESEARCH AND LIBRARY MANAGEMENT

I1.0. INTRODUCTION

Library managers or library network planners must know in some detail
how the user of a library behaves : how often he or she uses some particular
reference manual, how much of the library's collection is on loan, how books
should be placed with respect to accessibility, and how much of the yearly
budget should be allocated to the purchase of periodicals. Generally speaking,
the library manager or planner should be able to predict what will probably
occur in the near future and base his/her decisions on this knowledge. For
this reason it is necessary to apply statistical inference, probability
theory and the techniques of operations research as well.

The purpese of library operations research activities can be summarised
as follows :

(i) to help library managers and operators make better plans and take
decisions which will enhance the maximum exploitation of the library's
resources by its user community;

(i1) to provide a basis for examining and evaluating library operations
and a logical basis for providing guidelines for effecting change.

General references for this part are Swanson and Bookstein (1972),
Daiute and Gorman (1974)and Brophy et al. (1976).

126 I1. Operations research and library management

I1.1. PROGRAMMING PROBLEMS

Programming problems are generally concerned with the optimum allocation
of scarce resources among a number of products or activities. These scarce
resources may be materials, staff, investment capital or processing time on
large, expensive machines. An optimum allocation may be one that maximises some
measure of benefit or utility, such as profit, or minimises some measure of
cost. The term 'linear programming'defines a particular class of programming
problems, where the criterion for selecting the 'best' values of the decision
variables can be described by a linear function of these variables and where
the operating rules governing the process can be expressed as a set of linear
equations or linear inequalities (Dantzig (1962)).

II.1.1. Graphical solution of Tinear programming problems in two variables

We will begin with an elementary example. A printing-binding firm plans
its production a day in advance. They basically have two kinds of products to
consider : hard covers (product A) and paperbacks (product B). During the
production process three basic operations are performed (which we do not
specify, but call them operations I, II and III),

The processing time for products A and B are given in Table 11.1.1; this
table also shows the maximum capacity and the profits. How much of each
product should this firm produce in order to maximise its profit? Note that
to keep things simple we consider only the question of supply and not that of

demand.

Table II.1.1. Process times {in minutes), capacities and profits

maximum capacity
A B (a dayg
Operation I 1 - 440
Operation II 1 1 1000
Operation III 1.2 0.5 620
Profits ($/unit) 5 4

To solve this problem we set :
x = the total number of hard covers (product A) produced during one day
y = the total number of paperbacks (product B) produced during one day.
Then the following inequalities must be satisfied :

11.1. Programming problems 127

X

IA

440
X + y < 1000 ,
1.2x + 0.5y £ 620 .

Moreover, x 2 0 and y 2 0. Finally, we wish to maximise z = 5x + 4y.

A solution such as x = 200, y = 100, satisfies all the constraints. It is
called a 'feasible solution'. The set of all feasible solutions is called the
'feasible region'. Solving a linear problem means finding the best feasible
solution in the feasible region, i.e. a point in the feasible region that
maximises z.

To represent the feasible region in two dimensions, every constraint is
plotted and all values of x and y that satisfy these constraints are identified
(Fig.II.1.1). The non-negativity constraints imply that all feasible values of
the two variables will lie in the first quadrant.

Fig.II.1.1 Constraints and feasible region for the example in
Table II.1.1

The feasible region is given by the convex set D. Clearly, there is an
infinite number of feasible points in the region. Qur aim is to identify the

128 11, Operations research and library management

feasible point that maximises the objective function z = f(x,y) = 5x + 4y.
Observe that if ¢ is a constant, the function 5x. + 4y = ¢ represents a
straight line. Changing the value of ¢ translates the entire line to another
straight line parallel to it. In order to find an optimal solution, the
objective function Tline is drawn for a convenient value of ¢ such that it
passes through one or more points in the feasible region. In this example we
choose ¢ = 0. The value of ¢ increases when this line is moved further away
from the origin. The only limitation on this increase is that the straight

Z |
(171,828, 4167)

Vi

(171,828 ,0)

’
2

o

0 X

Fig.1I.1.2 Feasible region D and values of the objective function
(z) for the problem in Table II.1.1

I1.1. Programming problems 129

line 5x + 4y = c has to contain at least one point of D. Proceeding in this
way, we find as the best feasible point the corner point with coordinates
(171.43, 828.57), resulting in the largest value for c equal to 4171.43. So,
we have found that the best production schedule is to make (we need to round
off of course) 171 units of product A (hard covers) and 828 units of product B
(paperbacks), yielding a net profit of $ 4167. This example also illustrates
the fact that the optimal value is always attained at a corner.

Fig.I1.1.2 illustrates the same example in three dimensions : the
objective function has been represented along the z-axis.

Similar to the example shown above, minimum problems can also be solved
in two dimensions (two variables). A minimum problem can also be reduced to a
maximum problem by studying -z instead of z. In the case in which there are
not too many constraints, a similar method using three variables can be
applied. In real life problems, however, there are many more variables and
other techniques are necessary. These will be discussed in the next Section.

I1.1.2. Formal statement of the linear programming problem and the simplex
method
A problem in linear programming looks like the following :
1) We have a linear system of m+n equalities or inequalities, in which
the last n are constraints on the sign of the n variables.
2) A linear functional, called the 'objective function', has to be
optimised (i.e. maximised or minimised).

Bear in mind the fact that a function f from a real vector space X to
a real vector space Y is Iinear if for every A, y € R, for every

X,¥ € X ¢ f(Ax + py) = Af(x) + pf(y) . [11.1.11

This linear function (function of the first degree) is said to be a Tinear
functional if the vector space Y is R. A function such as
fy - R -R: (x1,x2,x3) + axy + bxy + Cxg (a,b,c €R) is a linear functional,

while a function such as fy R3 +R : (x1,x2,x3) >axy + bx2 +cxy +d (d €R)

is not. However, it is easy to see that an extremal value of f2 is merely an
extremal value of f1 plus d.

A vector X € R3 in which the components satisfy all conditions is called
a 'feasible solution'. An optimal solution is a feasible solution that optimises
the objective function. Optimal solutions do not have to exist, and if they do,
they do not have to be unique. In Fig.II.1.3a we show an example of an unbounded

130 Il. Operations research and library management

convex region D where no maximum value for the objective function can be found
(there is of course a minimal solution); Fig.II.1.3b.gives an example where
there are an infinite number of optimum values, namely every point on the line
segment KL.

Fig.II.1.3a : Feasible region with no maximum value for the
objective function (dotted lines)

Fig.I1.1.3b : feasible region with an infinity of maximum values
for the objective function

Formally speaking, the standard primal maximum problem looks Tike the
following : find the maximum of w = CyXg + CoXp + wee + C X given the
following constraints :

(

Il
(=2

BpqXg ¥ AgpXy e ¥ AYXy S

321X1 + 622X2 + 0. t aann <
y ‘ [11.1.2]

+ A <
am1Xy * 8% * 3n*n S By

\

where

[}
o
.

x1,x2,...,xn 2
In matrix notation this becomes :

find the maximum of w = CtX

with AX< B and X 20 . [11.1.3]

I1.1. Programming problems 131

Here :
81 22 -0 Py
A= : : :
w2t 4nn
¢4 b1 X4 0
c=f s B=|)5 x=[)5 0=]: e R"
n bm X, 0

and t denotes transposition. Moreover, a vector X € Rk is said to be greater
than or equal to a vector Y € Rk if for every i = 1,...,k TXy 2 i+ The vector
X is often called the 'decision vector', B the 'requirement vector' and C the
'profit (or cost) vector'.

A standard dual minimum problem is associated with every standard primal
maximum problem

find the minimum of v = BtY

with A'Y 2 Cand Y2 0 . [11.1.4]

Here Y = (y1,y2,...,ym)t.

One can show (see e.g. Franklin (1980; p.63)) that if the standard
maximum problem has an optimal solution, then its dual minimum problem also
has an optimal solution and vice versa. Moreover, the maximum value of the
objective function of the maximum problem equals the minimum value of the

dual problem.
There is said to be a canonical primal problem when the following

problem occurs :
. t
maximise w = C°X
subject to AX =Band X2 0 . [I1.1.5]

Every standard problem can be converted into a canonical one by using so-called
slack variables z;. This is done as follows :

? aijxj < bi becomes (§ aijxj) tz, = bi; z; 2 0 . [II.1.6]

132 11. Operations research and library management

So, for practical purposes, we only have to consider canonical problems. Note
again that any minimisation problem can be reduced-to a maximisation problem
by using -w instead of w.

An iterative procedure, known as the simplex method, is used as a
practical solution technique. This algorithm's efficiency and versatility is
largely responsible for the importance of linear programming. The simplex method
was introduced in 1947 by George. B. Dantzig. Its substantial value lies in the
fact that it is fast, has a variety of applications and can answer important
questions about the sensitivity of solutions to variations in the input data.
With the simplex method one can also impose additional constraints and solve
the problem again to examine their effect. For example, the method can quickly
figure out the cost of providing an unprofitable service in order to maintain
a customer's goodwill.

The simplex method is a step-by-step procedure consisting of two phases :
phase I : find a feasible solution X0 of AX = B, X 2 0 or prove that such a

solution does not exist;
phase II : find an optimal solution.

Phase II is done iteratively, by constructing a finite sequence
XO’X1’X2""’Xs of corner points of the feasible region D, such that Xi and

Xi+1 are adjacent and such that w = ctx increases (maximum problem). The

algorithm stops at the optimal solution or when it has been proved that such
a solution does not exist.

We note that the fact that an optimal solution always lies at a corner
point in the feasible region reduces an originally infinite problem (any point
in the feasible region could be an optimum) to a large but finite problem (a
finite number of linear restrictions leads to a region in space with only a
finite number of corners).

11.1.3. Integer programming ‘

In practice, many linear programming problems do require integer
solutions for some or all of the variables. For instance, it is not possible
to lend a fractional number of books. Our graphical problem in II.1.1 only

produced useful results for an integer number of books. The term 'integer
programming' refers to that class of linear programming problems in which
some or all decision variables are restricted to being integers. However,
solutions of integer programming problems are generally difficult, time
consuming and expensive. Hence a practical approach is to treat all the
variables as continuous and to solve the associated linear program by the

I1.1. Programming problems 133

simplex method. Solutions are then rounded off to the nearest integer such that
constraints are not violated. This generally provides a good approximation of
the optimal integer solution, especially when the values of the integer
variables are large (cf. Section II.1.1).

There are situations in which rounding off produces poor integer
solutions, especially when the decision variables can only take the values
0 and 1. Special techniques are then needed to determine the optimal integer
solution directly. The so-called 'branch-and-bound' algorithm is the most
widely used method for solving integer programming problems in practice. Most
commercial computer codes for solving integer programs are based on this
approach (Lawler and Wood (1966)). These problems cannot always be solved
exactly in a reasonable amount of time. In these cases heuristic methods
yielding approximate best solutions are used. We will discuss some special
integer programs in subsequent sections,

II.1.4. Transportation and assignment problems

II.1.4.1. Transportation problems

Transportation problems are generally concerned with the distribution
of a certain product from several sources to numerous localities at minimum
cost or in a minimum amount of time.

Suppose there are m stores where books are stocked and n local libraries
where they are needed. Let the supply of books available at the stores be
3585500058, and the demands at the local libraries be b1,b2,...,bn. The unit
cost of shipping books from store i to library j is Cij' If a particular store
cannot supply a certain library, we set the appropriate cij at +=. We wish to
find an optimal shipping schedule which minimises the total cost of
transportation.

This type of transportation problem can be formulated as a linear program :
we define xij as the quantity shipped from store i to library j. Since i can
assume values from 1 tom and j from 1 to n, the number of decision variables
equals mn. This transportation problem is then described by :

m n

minimise w= I I ¢,.X

. (total cost of transportation) ,
i=t g=t N

subject to X.. S ay, i=1,...,m (supply restrictions at the stores)

ij

WM
LR

J

134 1. Operations research and library management

m
b Xij 2 bj s J =100 (demand requirements at the libraries)
i=1 e :

v
o

vi,j @ X, (non-negativity restrictions) [II.1.7]

ij

The library demands can clearly be met if and only if the total store
supply is at least equal to the total library demand. This means that

m n
I a;2 ¥ by o, [11.1.8]
i=1 j=1 9
m n
When the total supply equals the total demand, i.e. X a; = bt bj, we have
i=t J=1
a standard transportation problem. This has the form :
m n
minimise W= X I C..X
i=p =1 WU
n
subject to j§1 Xij =, i = 1,0..,M
m
T Xes =b. s J=T1seees
Z x1J bJ j=1 n
Vi,j xij 20 ., fI1.1.9]

Any non-standard transportation problem, where the supplies and demands
are not balanced, can be converted into a standard transportatiqn problem by
using a dummy store or a dummy library. Consider, for instance, a problem in
which the total supply exceeds the total demand. To convert this into a
standard problem, a dummy Tibrary is created to absorb the excess supply
available at the stores. The unit cost of shipping books from any store to the
dummy library is assumed to be zero since in reality the dummy library does not
exist and no physical transfer of goods takes place. This leads to the
following standard transportation problem :

m n+l
minimise W= X I C,.X:.
i=t j=1 WY
n+1
subject to E xij =a;, i=1,...,m

I1.1. Programming problems 135

m
T X =bo, Jo=1,...,n¢1
=1 13 J
vi,j X4 20. [II.1.10]
m n
Here j = n+1 is the dummy library with demand b = ¥ a, - ¥ b,, and
n+1 jog 1 j=1 J
ci,n+1 =0 for every i = 1,...,m,
In the situation in which the total demand exceeds the total supply, we
n m
create a dummy store with supply e = j§1 bj - 151 a;. Here Xm+1,j will

denote the amount of the book shortage at library j.

In principle, transportation problems can be solved by using the simplex
method of linear programming. But the special structure of the transportation
problem has given rise to special procedures of which the solutions need less
computer time; see Eiselt and von Frajer (1977, Section I.1.2).

IT1.1.4.2. A related problem

We mention a related transportation problem, which is not a Tinear
programming problem. Again we have m distribution centres (the wholesale
dealers in the previous problem) and n destinations (say, local libraries).
Let t;; be the shipping time from the ith distribution centre to the jth
library. The problem is to minimise

T = max tij [I1.1.11]

where the maximum is taken over those (i,j) where X4 (the quantity shipped
from centre i to library j) is strictly positive.

Such probliems can occur in situations in which time is important, e.g.
in organising an interlibrary loan (IL) circuit.

II.1.4.3. Assignment problems

Finally, we consider the following aseignment problem. The head librarian
of a big university has to assign n librarians to n branch libraries. Let cij
denote the efficiency factor of assigning librarian j to library i. For example,
a person holding a degree in mathematics and in library and information science
might be doing well in the library of the Department of Mathematics (high
efficiency factor), reasonably well in the Engineering or Physics Department
(intermediate efficiency factor) and probably very badly in the library for
Oriental Studies (if he or she cannot read Chinese or Japanese). Each person

136 Il. Operations research and library management

can be assigned to exactly one library. The problem is to assign the librarians
in such a way that the total efficiency is maximised.
We define xij =1 if librarian j is assigned to library i;
0 otherwise.
Since each library is assigned to exactly one librarian, we have

X.. =1 for i=1,...,0n. [11.1.12]

tM=

Similarly, each librarian is assigned to exactly one library :

n

Z ox.=1 for j=1,...,n. [1I.1.13]
The objective is to maximise

Z c, . (II.1.14]

1 j=1 15745

=
n
nmMm>s

i
From this formulation we see that the assignment problem is equivalent to a
standard transportation problem with n distribution centres and n local
libraries, where the supply ay is 1 for i = 1,...,n and the demand bj is 1
for j = 1,...,n.

II1.1.5, Examples

IT.1.5.1. A binding problem

A librarian is faced with the following problem : she has at least 500
sets of periodicals that need binding annually. The maximum budget for this
is $ 7000/year. She has a choice between two methods of binding :
1) a cheap one, costing $ 10 a piece, which will last on the average 5 years;
2) a more expensive one, costing $ 20 a piece, which will last on the average

15 years.
She has, however, a contract that forces her to take at least 200 cheap ones
and 100 expensive ones a year. How many cheap and how many more expensive
bindings does this librarian have to order to have periodicals protected for
as long as possible?

We put this problem in the following mathematical form. Let x be the
number of cheap bindings and let y be the number of expensive ones. As the
expensive binding method protects the periodicals three times longer than the
cheap ones we want to maximise

II.1. Programming problems

W = 5x + 15y
with the following constraints :

X +y 2500,

10x + 20y s 7000 ,
x 2 200 ,

y 2 100 .

Note that we automatically have x 2 0 and y 2 0. The best solution (see

Fig.I1.1.4) is to order 300 cheap but less effective bindings and 200 more

137

expensive ones, This will use up the maximum budget of $ 7000 and will provide

protection for a total of 4500 years.

x =200

4 \ x «2y=700
\\
~ ——t 1) . " 1 " 1 . . N n
S~
0 ">~ \ X
X+y =500

Fig.I1.1.4 Graphical solution to the linear problem in Subsection
I1.1.5.1

I1.1.5.2. Allocation of funds to different university departments for
purchasing books and journals
We consider the problem of the allocation of funds as described in

138 I1. Operations research and library management

Goyal (1973). The main factor in constructing the objective function is the
importance weight of each department. Goyal suggests using the following
formula :

> [II.1.15]

where Ci is the importance of department i, S; a factor measuring the
importance which society attaches to the work of the department (e.g. the
Si—factor for the Department of Economy is larger than that for Anthropology),
Ti a factor measuring the importance which the university attaches to the work
of the department (e.g. a Catholic university may give a high Ti-factor to its
Department of Theology; the university may also want to use a more objective
factor here, based on some citation measure of the scientific output of this
department). The Oi—factor measures the importance due to the size of the
department. This number depends on both the number of staff members and the
number of students.

Formulation of the problem.

Let the number of departments for which the funds are to be allocated
be n and let the total amount of money available for the purchase of books and
journals be M. The funds allocated to department i are denoted by Xi and the
importance of department i is denoted by Ci’ i=1,...,n. Further, suppose that
there is a positive lower limit (Li) and an upper limit (Ui) for the funds to
be allocated to department i. Of course we have Li < Ui'

The problem as formulated up to this point can be stated as :

n
maximise Z = X C.X.

j=1 11
with X;2L20,
X; U ,
n
I X, SM. [11.1.16]
i=t

Furthermore, in actual allocation problems there may be other constraints,
termed 'grouped constraints’', e.g. the total funds allocated to departments i
and j should not exceed Ui" and the total funds allocated to departments k,

2 and m should not be less than Lkzm' These additional constraints will be
described as :

I1.1. Programming problems 139

i Al ij
and

X (I1.1.17]

Kt XQ + Xm 2 Lkzm .

The solution is reached by using a slight variation of the simplex
method described in Section II.1.2. Indeed, in Section II.1.2 we have only
considered the case where all inequalities are of the same type. Here we have
inequalities of the type < and of the type 2, but this is not a real
impediment. It is sufficient to multiply both sides of the inequality by (-1)
to obtain an inequality in the opposite direction.

I1.1.6. Notes and comments

The development of linear programming ranks among the most important
scientific advances of the mid-twentieth century. It has been estimated that
25 percent of all scientific computation on computers is devoted to the use of
linear programming and closely related techniques. Not surprisingly, the
development of LP software is an ongoing process. Every large computer
manufacturer has provided routines. Current versions can handle more than
16000 equations in an even greater number of variables.

In the field of library and information science LP techniques have been
used by Kraft and Hill (1973) and Glover and Klingman (1972) to describe a
journal selection model and by Rothenberg and Ho (1977) for the location on
campus of information centres, to name a few. Larry Stanfel (1979) used simple
Tinear programming techniques to solve the problem of how to design the best
three level hierarchy of libraries. Rush, Steinberg and Kraft (1974) considered
the journal disposion problem, developing an integer programming strategy to
solve the problem of whether to bind, microcopy or discard back issues of
journals in a university library branch system. James and Margareth Bean (1985)
studied the problem of scheduling the reference staff of a large academic
library where available reference staffing and time flexibility are highly
constrained. They modelled this as a special integer program (a so-called
multiple choice integer program) and reported that their computer model
constructed a schedule which was superior to the one obtained by the manual
method and took only 1.2 seconds of CPU time on a large computer.

Egghe (1988a) showed how the solution of a quadratic integer 0-1 program
describes the evolution of concentration places in a classification.
'Quadratic' refers here to the objective function which is no longer linear
but has become a quadrati;ffunqtion.,Zhang (1989) used multi-objective

140 11. Operations research and library management

programming to model resource sharing in a network of libraries and
information centres.

Years of experience in the use of the simplex method have revealed that
although the number of corner points in the feasible region grows exponentially
with respect to the number of variables and the number of constraints, the time
needed to reach the optimum only grows linearly with respect to the number of
constraints. This is very remarkable in the light of the results of Klee and
Minty (1972), who constructed examples in which the time needed by the simplex
method actually does grow exponentially. However, this poor behaviour never
seems to occur in practice.

Some years ago the Soviet mathematician L.G. Khachian (1979) published
his ellipsoidal algorithm for linear programming. Its most important
theoretical property is that the time it needs to solve the problem grows as
a polynomial with respect to the variables and constraints. Although the
ellipsoidal algorithm is consequently theoretically better than the simplex
method, due to computational problems it did not constitute a serious
challenge to it.

Meanwhile, thanks to work by Borgwardt (1982), Smale (1983) and Adler
and Megiddo (1985) among others, mathematicians have shown why the average
behaviour of the simplex method is so good.

One of the most recent approaches to linear programming is Karmarkar's
algorithm (Karmarkar (1984)). Like Khachian's method, it runs in polynomial
time. It has been claimed that numerical results proved this new method to be
much faster than the simplex method (Gay et al. (1986)). Experiments by
Tomlin (1987) showed that the number of iterations in Karmarkar's method grows
slowly with model size. However, vast improvements in speed over the simplex
method were not achieved. Another recent approach to linear programming has
been developed by Renegar (1988).

11.2. Shortest path algorithms 141

I1.2. SHORTEST PATH ALGORITHMS

In this section we will discuss some graph-theory methods in operations
research. Indeed, many transportation problems, whether one wants to minimise
time or distance, can be formulated in a graph-theory framework. We will begin
with some preliminaries on graph theory.

I1.2.1. Preliminaries on graph theory

A graph (or undirected graph) G consists of a set V of vertices (or
nodes) and a set E of edges (or arcs) such that each edge e € E is associated
with an unordered pair of vertices. If an edge e is associated with a unique
pair of vertices i and j, we write e = (i,j) or e = (j,i). In this context
(i,J) denotes an edge rather than an ordered pair.

A directed graph (or digraph) G consists of a set V of vertices and a
set E of edges such that each edge e € E is associated with an ordered pair
of vertices.

An edge e = (i,j) in a graph {undirected or directed) is said to be
incident on i and j. The vertices i and j are said to be incident on e and
to be adjacent vertices. If G is a graph with vertices V and edges E, we write
G = (V,E). In this book the sets E and V are always assumed to be finite.

A path from the vertex i to the vertex j is an edge sequence from i to j.
The length of this path is the number of distinct edges minus one. So if i and
Jj are adjacent, there is a path of length 2-1 = 1 that joins them. A circuit
(or cycle) is a path from i to i. We say that a graph G is connected if, given
any distinct pair of vertices i and j, there is a path from i to j.

A weighted graph is a graph in which numbers are associated with the
edges. The value w(i,j) associated with the edge (i,j) is referred to as the
'‘weight' of (i,j). For example, if we interpret libraries as vertices and the
roads between them as edges and if we assign to each road its length, we obtain
a weighted graph (see Fig.II1.2.1). Weights are often used to represent
distances, time or costs.

An important class of graphs are trees. A tree is a connected graph not
containing any circuits. Typically, a special vertex, called the 'root’' of the
tree is distinguished. There is precisely one path between any two vertices of
a tree, Dendrograms (see Section 1.5.4) are examples of rooted trees, where
each of the terminal nodes represents an object, non-terminal nodes represent
a non-singleton cluster, and the root represents the entire object set.

142 1. Operations research and library management

12

Fig.11.2.1 MWeighted {undirected) graph

Graphs are a useful tool for studying spatial relationships within a
library. Consider, as an example, the ground plan of a fictitious, though
based on an existing, public library, given by Fig.II.2.2a and b. The
- undirected - graph of spatial relationships is given by Fig.II.2.3. Nodes
are locations and two locations are connected if it is possible to go directly
from the first to the second.

E : Main entrance of the building

L : Entrance lobby

W : Women's toilet

M : Men's toilet

LE : Library entrance

CI : Community information

CA : Circulation desk for adults & circulation control

EC : Easy chairs and table where people can wait and sit down to rest
DC : Catalogue for the disc library

CATA : Catalogue for all adult books

DL : Disc library and circulation desk

AF : Stacks : adult fiction

EM : Emergency exit

S ¢ Stairs

PM : Photocopying machine

CATJ : Catalogue for juvenile books

DJ : Documentation for juvenile readers
CDJ : Circulation desk for juvenile readers
Jd : Stacks : juvenile readers

ANFa,b : Stacks : adult non-fiction

P : Current periodicals

R : Reading room

REG : Registration desk

WO : Working area for library staff

D : Library director's office

11.2. Shortest path algorithms 143

What can we learn from this graph? First, we notice that the general
design is rather linear (one node after the other) instead of starlike (one
central place) or a combination of stars. The circulation desk for juvenile
readers occupies a central position, as do the easy chairs in the waiting room
in front of the adult circulation desk.

Further on, the Tibrary director is not within easy reach for library
patrons, and people who visit the library for the first time and want to
register have to traverse all sections. More importantly, catalographers and
other staff occupied in the working area are at least eight nodes (a path
length of seven) away from the nearest exit and eleven nodes (a path length
of ten) from the toilets (for which they have to leave the library). Further
inconveniences are : the great distance between the adult catalogue and the
non-fiction section and the gratuitous division of this non-fiction section.

A totally new design would be required to improve this situation,

A partial solution for the Tibrary staff would be to construct a second
staircase from the community information section (which could easily be
removed) to the reading room. This is indicated in dotted lines on Figs.
I1.2.2 and I1.2.3. The reading room and the registration desk would also be
made much more accessible this way.

e, | LIS

IO 1Nl
3 bay 7 N\ Wd
WW ~ _IZV/// “ m

|
L

W

|

L

o

11.2. Shortest path algorithms 145

E q
W

L <
M
LE \\\\\\\\h
cA £ SO

&M
AF £C oc

CAT A DL

)y J ot s P

0000900000 90 ¢

{
L

Fig.I1.2.3 Graph derived from Fig.Il.2.2

I1.2.2. Dijkstra's shortest path algorithm

In this section we will study the problem of finding a minimum weight
path between two given vertices in a weighted graph. Such a path is referred
to as a shortest path. Dijkstra's shortest path algorithm solves this problem
efficiently. This also means that we will be able to solve a 'least-time
transportation problem' or a 'least-cost transportation probiem' or many
similar problems with the same algorithm. Throughout this section G denotes
a connected, weighted graph.‘w§ further assume that the weights are positive

146 1. Operations research and library management

numbers and that we wish to find a shortest path from a fixed vertex a to a
fixed vertex z. Later we will indicate how to find-a shortest path from a
fixed vertex a to any other vertex in the graph.

Dijkstra's algorithm (Dijkstra (1959)) involves assigning two labels to
vertices, which will be denoted L(x) and P(x) (where x denotes a vertex). At
any given time, some vertices have temporary labels and others have permanent
labels. We will show later that if L(x) is a permanent label of vertex x, then
L{x) is the length of a shortest path from a to x. Initially, only the vertex a
has a permanent L-label. Each iteration of the algorithm changes the status of
one pair of labels from temporary to permanent. The algorithm stops when z
receives permanent labels. At this point L(z) gives the length of a shortest
path from a to z. The P-labels are used to find the path itself.

We will now present the algorithm,

Dijkstra's shortest path algorithm (Dijkstra (1959)).

Step 1. Initialisation.
Set L(a) := 0; for those vertices adjacent to a set L{x) := w(a,x)
and P(x) := a. For all other vertices set L(x) := =, Let T be the set
of all vertices except a.

Step 2. Check whether the algorithm has found a shortest path. If z ¢ T :
stop. L(z) is then the length of a shortest path from a to z.

Step 3. Get the ;éxt vertex.
Choose v € T with the smallest L-value. If there are ties choose any,
but just one. Set T := T~ {v}.

Step 4. Revise labels.
For each vertex x € T adjacent to v
set L{x) :=min {L(x),L(v) + w(v,x)}

P(x) := v, if L(x) has been changed.

Go to step 2.

If you want to have a shortest path from a to every vertex of G,

replace Step 2 by :

Step 2'. Check whether all shortest distances have been found.
If T =@ : stop. For every x € G, L(x) is the length of a shortest
path from a to x.

Fig.II1.2.4 presents a flow chart of this algorithm.

As an example, we will apply this algorithm to the graph of Fig.II.2.1,
to find a shortest path from a to g. Every iteration is shown by a state
diagram.

112, Shortest path algorithms 147

INITIALISATION

NEXT VERTEX
A vi T=T\{v}

adapt
labels

Fig.11.2.4 Flow chart of Dijkstra's algorithm

—

Initial state

Q-dDOaonoo

* F F % o 1
—

8§ 888 oMmO |
[«

* denotes elements that belong to T;
- denotes elements that do not belong to T.
Elements that do not belong to T have permanent labels

Second state a - 0
b - 2 a
c * 10 a
d * 5 b
e * " b
f * o
g * i

Third state a - 0
b - 2 a
c * 8 d
d - 5 b
e * " b
f * o
g * 17 d

Fourth state a - 0
b - 2 a
c - 8 d
d - 5 b
e * " b
f * 10 c
g * 17 d

148 Il. Operations research and library management

Fifth state a - 0
b - 2 a
c - 8 d
d - 5 b
e * 1" b
f - 10 c
g * 16 f

Sixth state a - 0
b ~ 2 a
c - 8 d
d - 5 b
e - " b
f - 10 c
g * 16 f

Seventh state a - 0
b - 2 a
c - 8 d
d - 5 b
e - 1" b
f - 10 c
g - 16 f

As g has got permanent labels, this is the final state.

The shortest path from a to g has a length of 16,
This shortest path is, in reversed order : g - P(g) = f - P(f) =¢c - P(c) =d -
P(d) = b - P(b) = a, or in the right order : a -b~-d-c - f-g.

In this particular case we have found all the shortest paths beginning
in a (since, in the last state T = §). For instance, the shortest path from a
to e has length 11 and is given by the sequence a - b - e,

For a mathematical proof that Dijkstra's algorithm finds a shortest path
from a vertex a to any other vertex, the reader may consult Dijkstra (1959) or
Gibbons (1985).

I1.2.3. Applications of Dijkstra's algorithm

As previously noted, obvious applications of Dijkstra's algorithm include
all kinds of transportation problems. In this section we will give two less
obvious applications.

A. An equipment replacement problem (based on Phillips et al. (1976; p.98))
Most audiovisual equipment requires more maintenance as it ages. By
replacing the equipment at frequent intervals, the associated costs could be

reduced. But this reduction is achieved at the expense of the increased
initial costs incurred every time the equipment is replaced. One of the most
important problems faced by management is to decide how often to replace the

11.2. Shortest path algorithms 149

equipment so as to minimise the total costs, including the initial cost, the
costs of maintenance and running costs. As this can be formulated as a
shortest path problem in a directed graph, Dijkstra's algorithm can be used
to solve it.

Consider a multimedia centre planning to buy its equipment at the
present time. This equipment will certainly be replaced after 4 years, but
is it advisable to make replacements in between? Let Kj represent the purchase
price of equipment in year j and Sk the salvage value after k y:zrs of use.
The maintenance and running costs of the equipment during its k™ year of
operation is Cp+ Since costs increase with the age of the equipment, we
assume that Cha > c for all k = 1,2,3,4. To formulate the problem of
determining the optimal replacement policy as a shortest path problem we
construct a directed graph, as shown in Fig.I1.2.5.

w4
w03
W.
‘WK
0 - 7 - 2 - 3 - 4
wo1 w12 w23 w34
"3
w14

Fig.I1.2.5 Directed graph representing an equipment replacement
problem

Nodes 0 and 4 represent the beginning and the end of the planning period.
Each intermediate node j (j = 1,2,3) represents the end of year j-1 (or the
beginning of year j) where an equipment replacement is possible. From every
node i there exists a connecting, directed arc to node jonly if j > i. This
corresponds to the situation in which, having replaced the equipment in year i,
the next replacement is only possible in later years.

The distance (weight) between node i and node j is of the form :

150 H. Operations research and library management

Jj-i
w1.j = Ki - sj-i + k§1 ck for j > i

s w for 5. [11.2.1]

The weight function w represents the purchase cost minus any salvage
value plus the maintenance and running costs of the equipment. A value of «
indicates that there is no arc from i to j.

Every path from node 0 to node 4 in the graph represents a possible
replacement policy. For example, the path 0-1-2-3-4 corresponds to replacing
the equipment every year, so that the total cost is

3
r K)-45 4 . 11.2.2
(k=0 k) 1 + C"I {]

Another policy is to use the same equipment all four years, which corresponds
to the path 0 - 4. The cost of this policy is given by
4

Wog = Ky = Sg * k§1 - {I1I.2.3}]
Thus, determining the shortest path from 0 to 4 is equivalent to finding
the minimal cost policy for the equipment replacement problem.
What does this problem look 1ike formulated as a linear programming
problem? Let us take X5 = 1 if equipment bought in year i is replaced in
year j and xij = 0 in all other cases (i,j = 0,...,n). The constraints are :

n-1 n

T X:. 51 T X.s 1,

i=0 W j=1

n n-1
j§1 XOj =13 iEO Xip = 1. [11.2.4]

Finally, the objective function to be minimised is izj wijxij .
B. Compact book storage in libraries (Gupta and Ravindran (1974))

Consider the problem of storing books by size. Suppose the heights and
the thicknesses of all books in a collection are given. Let the book heights
be arranged in ascending order of their n known heights H1,H2,...,Hn
(H1 CHy <een X Hn). Bear in mind that any book of height H; can be shelved
in a shelf of heigth 2 Hi' Since the thickness of each book is known, the
required length of each height class i can be computed and is denoted by Li'

11.2. Shortest path algorithms 151

If the books are stored upright using only one shelf height
(corresponding to the tallest book) for the whole collection, then the tetal
shelf area needed is the product of the total Tength and the height of the
tallest book. Instead, if the collection is divided by height into two or more
groups, it can easily be seen that the total shelf area needed will be less
than that of the undivided collection.

The cost of constructing shelves of different heights and lengths is
given as follows. For each shelf height Hi we set :

Ki = fixed cost independent of the shelf area,
Ci = variable cost per unit area.

For example, let the collection be placed in two different shelves of
heights H_ and H, (Hm < Hn)’ i.e. books of height H_or less are placed on
shelves of height Hm. Then the total cost of shelving the collection will be :

n
L.) + (Kn + CH r L.) . [II.2.5]

(K +CH
m i g i

mm

||'M3

1

The problem is to determine the optimal set of shelf heights, and their
respective lengths, which will minimise the total shelving cost.

We will show that the compact book storage problem can be formulated as
a shortest path problem. Consider a directed graph of (n+1) nodes {0,1,2,...,n},
where the nodes correspond to the various book heights : HD"“’Hn‘ A weight
(distance) function on the set of paths connecting node 0 to node n will be
proposed in terms of the shelving cost, where each path is a possible
partition of the set of all shelf heights. To make the graph model compatible
with the storage problem, the following assumptions are made :

1) 0 = Hy <Hy <uu CCHe

2) From every node i there exists a directed arc to node j, only if Jj > i.
This corresponds to the situation in the book storage problem in which,
having chosen a shelf of height Hi’ the height of the next shelf must be
greater than H.. So, this graph has n{n+1)/2 arcs.

3) The weight function between node i and node j is given by :

J
=K. +C;H, £ L for j > i,
370 i

= 4o for j <1 . [II.2.6]

w'IJ

We see that, as a consequence of assumptions 1), 2) and 3), finding the
shortest path between source node 0 and node n in the above graph is equivalent

152 II. Operations research and library management

to determining the number of different shelves and their respective heights,
which minimises the shelving cost for the collection, For example, a minimum
path solution of the form 0-3-4-5-n means : to go from node 0 to node n, the
shortest route is to use the intermediate nodes 3, 4 and 5. This then says :
store all books of height less than H3 on shelves of height H3, books of heights
between H3 and H4 on shelves of height H4, books of heights between H4 and H5
on shelves of height H5 and the rest on the shelf of height Hn' The heights Hi
are not necessarily the exact heights of all the books in the library, but may
represent workable selections of them, in which the books are grouped.

A different approach to compact book storage using dynamic programming
is given in Leimkuhler and Cox (1964); see also Leimkuhler (1988).

11.2.4. A matricial method of finding the length of the shortest path between
each pair of vertices in a weighted graph

11.2.4.1. The method

This method contrasts with Dijkstra's algorithm which we described in
Section II.2.2 and which finds the shortest path from a specified vertex to
all the others (or to another specified one). Now we study the problem : find
the shortest path between each pair of vertices in a weighted graph. It stems
from Floyd (1962), based on work by Warshall (1962). As this algorithm does
more than Dijkstra's, it takes more computer time. Consequently, it should
only be used when one is interested in finding all the shortest paths in a
weighted graph. On the other hand, this algorithm is more efficient than
applying Dijkstra's a number of times.

Let G be a graph with n vertices and let W be the matrix for which
W(i,j) is the weight of the edge (Vi’vj)' If vy and Vj are not adjacent, then
W(i,j) = = and finally W(i,i) = 0. Then a series of matrices wo,w1,...,wn are
constructed inductively :

W (i,3) = min (W (5,3) My (5,K) + W (k,3)) [11.2.7]

The matrix wn provides the desired result.

11.2.4.2. An example
As an example we again consider Fig.Il.2.1. We then find the following

153

112, Shortest path algorithms

series of matrices :

7

8 g 8Nr~wvwo
8 8N 8 8OwW
g g 8o 8~
w330w.mm
‘n.ww03m2w

N § oy 8 8

N

8 8 8au~NwO
8 808 gow

§O 8 g 8™~

WMOHONLWUAN
- -—

VWO MULNLW
NOWMmADOW
-—

ONRO—OMN

Q

154 Il. Operations research and library management

1" 1

0

8

15 2
12 5
7

0

6

-
XMNDCTwWwo oY

—
—_ 01T O WWo

17

=
o
[&4]
SOoOLWOON

1 1

0

8

15 2
12 5 "

3

0

6

—_
N WoO

—_

13

POOOWOHON
NN OoOWWL

—

Note that all W-matrices are symmetric and have diagonal entries equal
to zero. Therefore, it suffices to store the upper triangular part.

11.2.5. The travelling salesperson problem (TSP)

In the TsP, the problem is to find the shortest path joining all of a
finite set of points of which the distances from each other are given. Note
the difference between this and the problem solved by Dijkstra's algorithm :
in the TSP one has to visit every point of the set, just as a salesperson

visits every town on his/her route, The problem is usually formulated in such
a way that one requires the salesperson to return to the point of origin, so
that one actually seeks a closed path. It is important to remark here that
even in case the salesperson does not return to the point of departure, the
simple rule of proceeding from the origin to the nearest point, then to the
point nearest to this and so on, (the so-called greedy algorithm) does not
generally give the shortest path.

As an example, we consider the following table of distances
(representing actual distances in km between ten Flemish university Tibraries,
including the National Science Foundation).

11.2. Shortest path algorithms 155

Table II.2.1. Distance table between ten places (in km)

A AY

B 32 +B¢

C 53 51 <Cv

D 49 47 4 «D¢

E 47 44 6 2 <E+

F 10 33 48 44 42 <F4

G 87 54 82 83 88 86 «G¢

H 8 30 58 54 52 13 84 <H¥

I 59 83 63 69 72 58 140 71 <Iy

J 97 122 103 106 109 95 179 107 48 <

Using the greedy algorithm, applied 10 times using a different starting
point , results in :

start in A : 493 km
: 418 km
: 441 km
: 452 km
: 453 km
: 474 km
: 440 km
: 475 km
: 463 km
: 465 km

This illustrates the fact that this method does not find the shortest circuit :
A-F-J-1-C-D-E-G-B-H-A of a length of 402 km.

The TSP can be mathematically formulated as follows : given n points and
distances cij between every two points i and j, determine an ordering

IO TMOOm

i1,12,...,in of the n points such that c,i11.2 + Ci213 + .. * cin]-1 is minimal.

The TSP is a member of the class of so-called NP-complete problems. These
are problems for which there is no known algorithm which is polynomially
bounded. The term 'polynomially bounded' roughly means that the running time
needed to solve this problem is bounded by a polynomial in the length of the
input data. Further, if such a polynomially bounded algorithm existed for the
TSP, there would be one for each of these NP-complete problems. The question
of finding such an algorithm is still unresolved, and most experts believe it
will never be found. This belief has led to a variety of computationally
affordable approximation techniques.

In 1963 Little et al. (1963) published a landmark paper which first used
the term 'branch and bound'. A very simple method was proposed and tested for
the TSP. Problems of 40 cities could be solved (exactly) in a few minutes of
computer time. For an excellent review of the TSP, see Held et al. (1984).

156 Il. Operations research and library management

I1.2.6. Notes and comments

Bovet (1986) has shown that Dijkstra's algorithm-can be improved if
there is a lower bound on the length of the shortest path between every two
nodes of a network. When the nodes are places on the map and the weights are
actual distances along the road, one can use the length of a straight line
between these places for this lower bound.

Based on these ideas and some work of Nicholson (1966), Mohr and Pasche
(1988) found a new algorithm which expands the search from the origin and the
destination simultaneousiy. Experiments have shown that this algorithm
strictly dominates Bovet's and Dijkstra's and is usually much faster than
Nicholson's. Their algorithm can also be implemented on a parallel computer.

A survey on the shortest path problem can be found, for example, in Gallo and
Pallottino (1986).

In their paper on the optimal storage of books Radhakrishnan and
Venkatesh (1978) pointed out that due to the underlying assumptions, Gupta
and Ravindran's model for compact storage (Gupta and Ravindran (1974)) is not
really optimal. In their paper they present a different model which gives a
better solution.

The first statement of the TSP was formulated by Karl Menger in 1930 in
connection with a new definition of curve length. It is typically a problem
which is easy to state but hard to solve. Indeed, it has become the proto-
typical hard problem in theoretical computer science.

One of the best heuristic approaches is the Lin-Kernighan algorithm
(Lin and Kernighan (1973)). It is reported (Johnson {1987)) that special
implementations of this algorithm find routes that are within 2 % of optimal
for instances with as many as 50,000 cities.

Litke (1984) reports on a very good approximation technique in the
special case of drilling holes in printed circuit boards. Indeed, to drill
holes in such a way that the machine has to make the least possible movements,
one has to find a path on the circuit board so that each point is visited once
and so that the total path length is minimal. This particular algorithm has
been used in cases with up to 17,000 points.

Finally, for relatively small problems (say less than 100 cities) there
are now programs that routinely find verified optimal solutions in reasonable
amounts of time (Padberg and Rinaldi (1987)).

An extension of the TSP is the multiple travelling salespersons problem.
In this case a number of salespersons start from and end at the same city.

The problem is to minimise the total distance covered, subject to the constraint
that each city (apart from the starting place) has to be visited once by one

11.2. Shortest path algorithms 157

and only one salesperson. This is a problem confronting a publisher who has a
fleet of delivery vans and wants to minimise the total distance travelled,
or the total delivery time (in the latter case 'distances' between places A
and B are actually times needed to drive from place A to place B). A good
solution to this problem can be found in Gavish and Srikanth (1986).

158 II. Operations research and library management

I1.3. QUEUEING THEORY

11.3.1. Introduction

The best known queueing situation is that at a ticket window. Here people
arrive and want to be served by the person at the window. Other frequently
encountered queueing situations involve production lines, the theory of
scheduling and transportation and the design of automatic equipment for
information handling and data processing. In traditional library science we
find queues of patrons waiting at the circulation desk, queues of books
waiting to be catalogued and even books on the shelves waiting to be borrowed.
To clarify our terminology, we shall talk in terms of a service station where
customers (or items) arrive and wait to be served by the server(s). A general
queueing situation is depicted in Fig.II.3.1. We will always assume that
customers arrive at random.

A hhk ga ASL

arriving queue items leaving
items the system

Fig.I1.3.1 General queueing situation with one server

Queueing theory provides answers to the following questions :

1) What is the average number of items in the queue (Nq), the average
number of items in service (i.e. being served at the desk),denoted Ns’ and the
average number of items in the whole queueing system N? 0f course : N = Nq + Ns'

2) What is the expected arrival rate () and the expected service rate
{u)? Here we assume a continuous service (no coffee breaks!).

3) What is the average time spent in the queue (T) or at the desk (TS)
or in the queueing system (T), where again : T = Tq + TS?

4) How large is the utilisation factor (p) : the fraction of the total
time during which servers are busy :

11.3. Queueing theory 159

_ A
pom s (I1.3.1]

where m is the number of servers?
5) What is the probability of having a queue, or stated otherwise, what
is the probability that all servers will be busy when another customer arrives?
A queue may always occur, but when A > py we have an unstable system :
the queue grows infinitely long unless the management restricts the number of
customers in the queue. When X < p (i.e. the arrival rate is lower than the
rate of service), queues may arrive here as well, due to the stochastic nature
of the process. Based on the sing]e'server queue, we will show that when
X/u z 0.75, the situation has already become bad, resulting in customers who
are irritated and unsatisfied because of overly long waiting times.

According to Little’s equation (Little (1961)),

N=AT, N = ATS and N =T . [11.3.2]

s q q

Depending on the order in which arriving cusfomers are served, one
distinguishes several queueing disciplines. Waiting customers will usually
be served in order of their arrival at the service station. This situation is
called 'firset come, first served' (FCFS). Two important variants here are
'last come, first served' (LCFS, e.9. in stores) and service in random order
(when we consider the entrance of a library as the beginning of a queue,
customers will leave the library as if service was in random order). Priority
service is also important in applications. In this case customers of a special
type (e.g. elderly people) or services of a special type (e.g. short tasks)
obtain service before others.

In describing the arrival process it will be assumed that customers
always arrive individually. The arrival process is a stochastic process.

Let tn denote the moment of arrival of the nth customer at the service

station. The times T = tn - tn-1’ n=12,..., with t0 =0, will be called

the 'interarrival times'. These interarrival times are assumed to be independent,
identically distributed, positive stochastic variables.

Kendall (1951) introduced a short-hand notation for describing which
queueing situation is meant. The notation (A{B|m) consists of three symbols, the
first referring to the type of interarrival time distribution A, where
A(t) = P(tst); the second symbol denotes the service time distribution B,
where B(x) = P(time for one service < x); and the third symbol m indicates the
number of servers. In this notation, which is now in common use, the symbol

LAV

160 1. Operations research and library management

M stands for the negative exponential distribution, E for the Erlang
distribution (not used further on in this book; the“tiégative exponential
distribution can be considered as a special case of an Erlang distribution),
G for a general distribution of a non-negative stochastic variable which is
not further specified. For instance, (M|M|m) denotes the m server queue with
a negative exponential interarrival and service time distribution; (G|G|1) is
the most general single server queue. We will see that the M-situation
corresponds to arrivals according to a Poisson process.

11.3.2. The (M{M|1) queue

We hypothesise that arrivals are such that the probability that a person
will arrive during the interval [t,t+h], where h is small, is proportional
with h, say equal to Ah, X > 0, and independent of t. This hypothesis, being
in fact a mathematical formulation of the randommess of arrivals, together
with some other technical requirements, leads to the result that the arrival
process is a Poisson process (cf. Subsection 1.2.4.2) (see e.g. Cohen (1969);
Theorem 4.4). Then Pn(t), the probability of having n arrivals in a period of
length t, is equal to

9{])-'1 et [11.3.3]
This is a Poisson distribution with a mean equal to At. We recall (I.2.4.2)
that the observation X m 52 is a strong indication of having a Poisson
distribution. n

When t = 1 (e.g. in minutes), then Py ='%T e " and then the average
of this distribution is equal to A. This shows that the arrival rate (number
of arrivals per unit of time) is given by A. Hence 1/ is the average
interarrival time. For the interarrival distribution we find

=\

A(t) = P(tst)
=1 -P(t>t)
=1 - Py(t)
=1 - [11.3.4]

which is the cumulative negative exponential distribution (justifying the M-

notation). Its density function a(t) is : é%-(1 -e'At) = et

In this situation we also assume that the probability that a service
will end during the interval [t,t+h], where h is small, is proportional to h,

11.3. Queueing theory 161

say equal to ph. This leads to B(t) =1 - e'“t, which indicates that service
times are negatively exponentially distributed. The parameter y is the average
service rate and 1/p is the average time for one service.

For the (M|{M|1) queue one sees (see, for example, Phillips et al. (1976))
the following results. The utilisation factor is the probability of having a
queue and is equal to

_ A _ _average service time [11.3.1]
ST average interarrival time ° e

This formula shows that once the average service time is at least equal to the
average interarrival time, there will certainly be a queue. We further suppose
p< 1. The average number of items in the queue is :

i 2
= 45 . [11.3.5]

N = .
q T-»o
The average number of items being serviced is :

N.=0. [11.3.6]

2

N=Nq+ﬂs=1£:—6+p=—1——f—p . [11.3.7]

N 2
T :j.:-—(-r—-)-p =—(———-)-
Tq 3= 1 e [1I1.3.8]
and similarly :
% ﬂs 1
T o=5- % = (average service time) ,
= _ N_ o _ 1
T X TeeT ST [11.3.9]

Finally, the probability that the time spent in the system will be
greater than or equal to t is given by

a(t) = e-(HMt [11.3.10]

Fig.I1.3.2 shows the relation between p and N and Nq, indicating an enormous

162 1. Operations research and library management

increase in inefficiency for p - 1.

0.1 02 03 04 05 06 07 08 09

Fig.II.3.2 Graph of N and Nq as functions of p

Some practical calculations

Consider an (M|{M|1) queue (say a library circulation desk) with A = 30
persons per hour, 1/4 = 1 minute. Find the probability of having a queue, the
average number of persons in the queue and the average time spent in the queue
and at the desk (i.e. the time a customer needs to have books checked out).

With A = 30 and g = 60 (using the same units to measure time!) we find an
utilisation factor p = 1/2. This is the probability of having a queue.

2
Nq = —1—%—5 = -}% = ~12 and T = '6'0_%—3'0' = 31'6 hours or two minutes. So everything

runs smoothly in this library.

Let us next suppose that an inexperienced person works at the
circulation desk. This person has an average service time of 1 minute and
40 seconds. How does this affect the customers? Now p = 0.83, N = 4,17 and
T = 10 minutes. The probability of having a queue is too large and customers
have to wait too long!

As a rule of thumb one can say that for practical situations p = 2/3 is

11.3. Queueing theory 163

an extremum. This means, however, that one third of the time the server is
idle. So, to have an efficient queueing system, part of it (the server) must
work inefficiently! In practical library work this dilemma is solved by
assigning the clerk some additional tasks.

11.3.3. The (M|M|m) queue
Interarrival times and service times stay negatively exponentially
distributed, but we next consider m > 1 servers., Note that there is only one

queue, as illustrated in Fig.II.3.3.

SERVER m

—_'.—’ e, _'.-....:.:.::".
arriving ustomers
cusfomers leaving the system

Fig.I1.3.3 An (M|M|m) queue

In what follows u will denote the average service rate per server. Then
(for the results in this Section, see Bunday (1986)) the utilisation factor is
p = A/mp. The probability of having a queue will be

m
—{mp)” [11.3.11]
Km! (1-p)
with
m-1 k m
- (mp) {mp)
K (k§0 A s =y B
Moreover :
N, =pom ; (I1.3.12]

164 Il. Operations research and library management

m+1

Ro- —(mo) : [11.3.13]
9 Kmm! (1-p)
m+1
fi = ﬂs + 8 = pm+ (mp) . [11.3.14]
q Kmm! (1-p)

Ts, T and T then follow again from Little's equation [II.3.2].
The relation between p, N and Nq is illustrated in Fig.I1.3.4. Note
the use of semi-logarithmic scales.

T] -1 I T l T I T
ol 2
0 |-)
sF 5
2| 2
1 1
05 - I 0.5
= / /
/)
}
0.2 14/, 0.2
ut,
0.1 ks 0.1
11
MK
0.05 1 005
0

=N
mp

Fig.I11.3.4 Graphs of N and N_ as functions of p, for different
values of m

I1.3.4. Pooled versus separate servers

Considering separate systems first, we take two (M|M|1) queues with
A=4and y = 5, Then p = 0.8, Tq = 4/5 = 0.8 with T = 1. Pooling yields an
(M|M]2) queue with x = 8, y = 5 (per server). Then p = 0.8, Tq = Nq/A, equals :

1 (1.6)°) =0.36 3
(1+41.6+ “-5)7) (2)(2)(0.2)2

11.3. Queueing theory 165

T=%+%=056.

This illustrates the fact that pooling is much more efficient than
separate queues. Applied to Tibrary management this means that a central
library is preferable to a decentralised one.

In the same context we can also consider one queue with a lower average
service time (i.e. service is speeded up). Here we consider an (M|M|1) queue

e L AN Thee eielae - - na T . 8 s _
with A = 8 and u = 10, This yields p = 0.8, Tn = aney - 0.4 and T = 0.5.

For this situation the total time spent in the system is the smallest. Service
is speeded up by using a computerised rather than a manual system.

I1.3.5, Notes and comments
Queueing theory can be seen as a branch of applied probability theory.
It was systematically studied at the beginning of the century. At that time the
technology of automatic telephone exchanges led to a class of mathematical
problems that could only be solved by applying probabilistic methods. The
Danish mathematician Erlang may be considered the founder of queueing theory.
It can be shown that for the (M[G|1) queue

2, 22 yar(p) [11.3.15]

20 -p
N 2 (T-p) *

where o = A/p and Var(B) is the variance of the service time. Further :
NS =pand N_ =N - NS.

Equation [II.3.15] is known as the Pollaczek-Khintchine equation. As can
be seen from this formula, the exact service distribution need not be
identified; it suffices to know its mean and variance. As the Pollaczek-
Khintchine equation is also independent of the queueing discipline, it is
not limited to the FCFS case.

When we apply this formula to the special case where the service time
is a constant (Var(B) = 0), we find

we see that the average number of customers in the queue would be reduced by

166 I1. Operations research and library management

exactly 50 % if the variability were eliminated from the service times. In a
sense, half of the queue can be attributed to service-time variability. The
other half can be charged to arrival-time variability. Service time
variability is reduced, for example, by imposing some 'uniform' checking-out
rules on the number of books than can be checked out in one library visit, or
by using a 'uniform' checking-out procedure (e.g. a bar-code system gives
checking-out times independent of the type of book).

Applying queueing theory to book circulation models will be studied in
subsequent chapters, based on Morse (1968). We will also have occasion to
consider queues with a finite waiting capacity. A thorough introduction to
the single server queue can be found in Cohen (1969). Other books on queueing
theory are Morse (1958) and Lee (1966). The optimal Tocation of a server in
a network is studied in Berman et al. (1985). Queueing network models were
applied by Rouse (1975, 1979) and by Smith and Rouse (1979) to optimise
resource allocation within a library. Bookstein (1972) used queueing theory
to compare the relative merits of dictionary catalogues (all cards arranged
in a single alphabetical order) with split catalogues (subject cards segregated
as a separate file).

