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I1.4, BOOK CIRCULATION INTERFERENCE

In this chapter we will study the book circulation process in a library.
Our approach is based on Morse (1968; Chapter 4). Two special cases will be
studied : the first one is the case in which a person gives up immediately
when the desired book is not present. The second case is the one in which a
library patron, finding that a book is on loan, always places a reservation.
This second situation obviously gives rise to an application of queueing
theory. Every book then stands for a separate queue. Service is a Toan and
the service time is the time between the moment the book is taken from the
shelf and the moment it is put back in place by the library assistant. The
queue itself consists of those persons who have placed a reservation because

the book is on loan.

Somewhat surprisingly, the first situation can also be dealt with by
using queueing theory. Indeed, it can be considered as a queueing system where
there is no waiting room : when servers are busy (i.e. when the book or books
are on loan) customers have to leave the system.

I1.4.1. The general situation : some notation
When a library owns a particular item and this item is allowed to
circulate, several situations may occur. The most important ones - amongst
which are those we will study - are indicated in the flow chart of Fig.II.4.1.
The two cases we will study in detail can be considered as extreme cases.
In this way we hope to obtain enough information about intermediate, more

realistic situations.

A note on notation. We assume that ) persons a year wish to lend a
particular item and that these A arrivals are randomly distributed over the
year. The number of circulations a year if a book were withdrawn by someone
else immediately after its return is denoted as uy. Hence 1/u equals the
average time the item is not on the shelf, so that 1/u is the mean loan period,
including handling time.

The average number of times an item is effectively loaned out during a
year is denoted by R. Then R < A and R < y. We note that in reality the mean
loan period (service time) 1/u is not completely arbitrary because there is a
maximum period an item is allowed to be withdrawn.
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Fig.II1.4.1 Flow chart describing demands for a particular item

11.4.2. First special case : complete balking
This case (cf. Fig.I1.4.1) yields a queueing situation with no waiting
facilities. The average fraction of the year an item is not on the shelf is

given by the expression

R (1/u) ,

this is : the average number of loans times the average loan period. We note
that R < p implies that R/u < 1 (as it must be).
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As there are on the average ) persons a year who want to lend the item,
there are A(R/u) who do not find the item on the shelf and give up.
Consequently, there are A - AR/u who can and will lend it. This number is by
definition equal to R. This reasoning yields :

R = A - A(R/u)
or
.M
R = T+ {11.4.1)]
or
. _Ru
A=ty [11.4.2]

We use P0 to denote the probability that an item will not be available
and P1 to denote that it is. Then

Po = R/p = A/(A+y) [11.4.3]

]

and

Py=1-Py=1-20n) = w/(s) . (11.4.4]

The average number of persons who do not find the item, denoted by U, is
then :

- qu

U=xr-R=2R_ =*2 [11.4.5]
TRETT @ X37) B N o

We say that U is the degree of dissatisfaction; it is also the average non-
satisfied demand. As a function of y and R, U is given by :

R2
U = TR [II.4.6]
Some examples.
Example 1 : u = 15 (i.e. an average loan period of 24 days).
Table II.4.1

A 0 1 2 3 5 10 20 100

R 0 0.94 1.76 2.5 3.75 6 8.6 13

U 0 0.06 0.24 0.5 1.25 4 11.4 87
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Example 2 : u = 20 (i.e. an average loan period of 18 days)

Table 11.4.2

A 0 1 2 3 5 10 20 100
R 0 0.95 1.82 2.61 4.0 6.67 10 16.67
U 0 0.05 0.18 0.39 1.0 3.33 10 83.33

Example 3 : u = 24 3 (i.e. an average loan period of 15 days)

Table II1.4.3

A 0 1 2 3 5 10 20 100
R 0 0.96 1.85 2.67 4.15 7.09 10.98 19.57
U 0 0.04 0.15 0.33 0.85 2.81 9.02 80.43

Comparing Tables I1.4.1, 11.4.2 and 11.4.3 shows the influence of
shortening the loan period on the degree of dissatisfaction. For u fixed,
U =R when y = X.

1I.4.3. Second case : every potentijal lender places a reservation when the
item is not immediately available
This case leads to a queueing situation as studied in the preceding
chapter. We assume an (M|M|1) queue for every item in the library. To imitate
a realistic situation, the utilisation factor p = A/u must be smaller than one.
We take » = R, since we may assume {p < 1!) that all arrivals are
eventually able to lend the desired item. According to equation [II.3.5]1, the
average number of persons on the reservation list is given by :

2 2, 2 2
N =P Aw R [11.4.7]

The average time these persons have to wait for the reserved item is

N R
T' = __q. =
qQ X " ulwR)

(by means of [II.3.8]1).
The probability that the desired item will not be available (i.e. the average
fraction of the time that the item is in service) is then
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As a measure of dissatisfaction (U) we use here the average total number of
people in the queue during one year; this is the average number of persons
on the reservation list, multiplied by the number of loans (u) :

- R2

U = Nqu = m [11.4.8]

We get the same result as for the first special case [11.4.6], although
the meaning of U is not the same. In either case, the degree of dissatisfaction
in any situation is given by

2

. _R
U—u—_—R— s (11.4.9]

which could then be used in all intermediate cases.
Examples.

1) 1/u = 1/15 (average loan period of 24 days)

Table 1I.4.4

R 0 1 2 3 5 10 14

Nq 0 0.005 0.02 0.05 0.17 1.33 13.07

Tq 0 1.7 3.7 6.1 12.2  48.7 341 in days
] 0 0.07 0.3 0.75 2.5  20.0 196

2) 1/u = 1/20 (average loan period of 18 days)

Table 1I.4.5

1 2 3 5 10 19
0.003  0.01 0.03  0.08 0.5 18.1
0.96 2.03 3.2 6.1 18.3 345 in days
0.05 0.2 0.5 1.7 10 361

< =2
o o o o
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3) 1/u = 1/26 (average loan period of 14 days)

Table II.4.6

R 0 1 2 3 5 10 20

Nq 0 0.002 0.006 0.015 0.046 0.24 2.56

Tq 0 0.56 1.2 1.8 3.3 8.8 46.8 in days
U 0 0.04 0.17 0.4 1.2 4.8 66.7

If the degree of dissatisfaction is too high, measures have to be taken :
the Toan period must either be shortened (in which case the above models can
still be used) or additional copies must be bought. However, we will show.in
the next section that, in the case of complete balking, it is better to buy two
copies than to halve the loan period (and have only one copy available).

I1.4.4. Multiple copies

11.4.4.1. Complete balking

The probability that a user wishes to lend a particular book and finds
no copy on the shelves is denoted by PO' When there are m copies of this book,
the situation can be described by an (M|M|m) queue with no waiting capacity,
i.e. a queueing system where it is impossible to wait to be served (we need
this rather special situation, because we assume complete balking). It can be
shown (see Phillips et al. (1976; p.305)), that

1 Aym
LY ST [11.4.10]
r L
jop il m
an equation known in the literature as Erlang’s lost call equation.
In particular for m = 2 we find :
: 2
P, = A (11.4.11]
0 2 X
20" +ux +22)
i
and form = 3 :
3
P, = A [11.4.12]

g 6u3 + GuZA + 3u).2 + As )
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- My A A
Note that for m = {1 we have P0 ol prey il e T which is exactly the same

formula found in Section II.4.2 by a more elementary reasoning. Further we
have U = APO and R = A - U (where R denotes the mean circulation per year of
all m copies).

Examples : u = 24 %

Table II1.4.7

A =10 x =20

R 1 copy 7.09 10.98
2 copies 9.44 16.87

3 copies 9.92 19.18

We will now compare the cases in whichm =2, u, A, and m = 1, u/2, A.

Form=2,R =12 - )\——2————)‘——2——. For m = 1 and u/2 we have by means of
2(pS +ur +1°/2)

[11.4.1] : R' = 2¥/2  This yields R > R'. Indeed :

Yz
R >R
—
A2 /2

A=A >
— > T+ u/?
200 +mr+ay2) A

>
2
Au(4u+3r) >0 ,

which is always satisfied. Hence, if one can spend the money, it is always
better to buy a second copy (and leave the lending period as it is) than to
continue with one copy and halving the lending period.

11.4.4.2. The reservation model
Here we have an {M|M|m) queue with an infinite waiting capacity, i.e.
the queueing system studied in Section II.3.3. Hence

)m+1

A = (mp
p=grs No=pm; R =——""—
mu 9 Kmm (1-p)
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with
k
- {mp) (mp)
K= (2 Zx) *mror—er
= _1 = _1
Tq—qu and Ts-ﬁ
A
Pc_p-ﬁﬁ N

Some examples : u = 24 1/3

Table II.4.8

A =10 A =20

R 1 copy 5.89 3.56
2 copies 7.95 11.78

3 copies 8.63 14,52

I1.4.5. Notes and comments

To be able to apply the equations in the preceding section, we have to
know p, A and R. The parameter 1/u can easily be determined from known data
(and is influenced by rules on the circulation time). The parameter A is more
difficult to assess. In the reservation model A = R, in the case of complete
batking, A = Ru/(u-R) (case of one copy). If R is known, X is also known.
While the average loan period is rather stable, A and R are not. We can only
approximate A by using the values for R of the last year(s). This problem will
be studied in the next chapter.

A more detailed approach to library circulation interference can be
found in Morse (1968; Chapter 4) and in Morse (1972, 1976, 1979). In these
follow-up papers Morse estimates the potential demand for library material
and uses these estimates to study the effects of a change in the allowed length
of a loan period, and what the result on the average per-book circulation
would be if duplicate copies were bought for all books that circulated more
than a fixed number of times.
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I1.5. MARKOV PROCESSES AND MORSE'S MODEL

IT.5.1. Stochastic processes - Markov processes

IT1.5.1.1. Stochastic processes

A stochastic process is any system of functions governed by
probabilistic laws. When time is measured discretely, we have a discrete time
stochastic process denoted by (Sn; n=1,2,3,...). The distinct values the
process can assume are called 'states', and the set of all states is called
the 'state space'. The variable Sn denotes the state at time n. Changes of
state are referred to as 'transitions’'. When a discrete stochastic process
can assume only a finite number of states, the structure of allowable
transitions can be pictured in some kind of digraph (cf. Section I1.2.1),
termed a ‘transition diagram'. States are represented by nodes and transitions
by arrows. The stochastic process can be thought of as the random walk of a

particle over the transition diagram (Fig.II.5.1).

Fig.I1.5.1 A transition diagram

I11.5.1.2. Markov processes
A Markov process is a simple form of a stochastic process having the
property that the conditional probability of an outcome only depends on its
immediately preceding outcome, and not on any of the previous outcomes.
A discrete or finite Markov chain is then a stochastic process that
satisfies the following three requirements :
1) The process must be a discrete-time process, that is, the movement of the
particle among the states must occur at finite intervals.
2) The process must have a finite set of states.
3) The process must possess the Markov property, meaning that the probability
of each outcome relies solely on‘the outcome of its immediate predecessor.




176 I1. Operations research and library management

As in this case the state Sn depends only on Sn-1’ it is sufficient to
know the probabilities of going from one state to.another. These one-step
transition probabilities are recorded in a transition matrix P, where pij
denotes the probability that a particle which is in state i at time n will be
in state j at time n+1. As the pi.'s are probabilities, we have for every i :
z pij = 1, Formally speaking, pij is the conditional probability

J
P(Sn+1 = JlSn = i),

Instead of using a matrix, we could make the transition diagram (a
digraph) into a weighted digraph, where weights are transition probabilities.

See Fig.11.5.2 (note that p,, must be 1).

Py 1 ‘?2 %2

Fig.II.5.2 A labelled (weighted) transition diagram

We will now assume that these transition probabilities will not change
in time. This is the reason why we used the notation pij (independent of n).
The Markov process is then called a 'stationary Markov process'. For such
Markov processes the transition matrix P = (pij) is all that is needed to
describe the entire process.

Indeed, the n-step transition probabilities p

(n)

i are defined by

pgg) = P(Sn = jISO = i). In other words, pgg) is the probability that the
process will be in state j at time n, given the fact that it was in state i
at time 0. One can now show that the matrix P(") = (pgg)) is obtained from
the matrix multiplication P("'1).P and hence by induction P(n) = P". That is,
the matrix of n-step probabilities is merely the transition matrix raised to
the nth power (i.e. multiplied by itself n times).

What happens when n, the number of transitions, goes to infinity? This
limiting distribution is termed the 'steady state' or the 'stationary'’

distribution. In most cases (there are exceptions) the initial state will




11.5. Markov processes and Morse's model 177

become less and less relevant to the n-step transition probability as n
increases. Then, denoting pgn) = P(S,=3),

(n)

T, = lim p(n) i

= 1im P(S_=j) = 1im P(S_=j|Sy=1) = lim p
J Moo J nro n N> n 0 o
Whenever it is true that the steady state probabilities are independent of
the initial state, the matrix P n becomes, as n goes to infinity, a matrix
in which the rows are identical. Each row becomes, in fact, the vector

T = (n1,n2,...), where Im = 1. Table II.5.1 illustrates this phenomenon.

Table II.5.1. A Markov process

i 0 1 2 3 4 5 6 7
P

i

0 .819 .164  .016  .001 -

1 .606 .303 .076  .013  .002 -

2 .449  .300 .144  .038  .008  .001 -

3 .33 .36 .201 .074  .020  .005 .00

4 .247  .345  .242 113 .039  .011  .002  .001

5 .183  .310  .264  .149  .064  .022  .006  .002

6 .135 .271 .271 .18 .09 .03  .012  .005
p2

0 .777 .19  .028  .004  .001 -

1 .719  .224  .047  .009  .001 -

2 .665 .251  .065 .015  .003 001 -

3 .66 .274 .083  .021  .005  .001 -

4 570  .291  .101  .029  .007  .002 -

5 .527  .304 .118  .037  .010  .003 .00 -

6 .487  .314 134 046  .014  .004 .00 -
ot

0 .762 .199  .033  .005 .00 -

1 .758  .201 .035  .005  .001 -

2 .752 .204 .037  .006  .00f1 -

3 .747 .207 .038  .007  .00f -

4 .742 .210 .040  .007 .00 -

5 .527  .304 .118  .037  .010  .003 .00 -

6 .487  .314  .134  .045  .014  .004 .00 -

steady state
all .761 .199 .034 .005 .001 -
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The steady state probabilities have several useful interpretations. If
you fix a point in time in the distant future, nj.i;mthe probability that you
will find the process in state j at that time. It can also be viewed as a time
average : if you ran the process for a long time, s would be the fraction of
time that the process spent in state j. Finally, it can be viewed as the
reciprocal of the mean number of transitions between recurrences of the state.
For example, if Ty = 0.2, an average of 5 transitions will occur before the
system will be back in state 4.

I1.5.2. Morse's Markov model for book use

11.5.2.1. Determination of the Markov process

Let Xt denote the stochastic variable of the number of loans of a fixed
group of books that already belong for t years to the library's collection.
The distribution function and the characteristics of this stochastic variable

depend on the type of collection being studied. The average number of loans
in a given period of time (e.g. one year) will be denoted by Ry-

The stochastic variable of the number of loans of those books which were
borrowed exactly m times (m € N) during the previous year is denoted by Tm'
Then Tmn denotes the probability that a book that was on loan m times Tast year
will be on loan n times this year. Finally, N(m) denotes the average number of
loans this year of books that were on loan m times last year.

In general, one expects Tm, Enn and N{m) to be dependent on time. However,
Morse's model assumes a stationary process, implying that these quantities are
independent of time.

Mathematically, we have the following relations :

E(Xt) = Rt 5 [I1.5.1]
Tmn = P(Tm=n) = P(Xt="|xt-1 =m) [11.5.2]
E(T,) =N(m) = = nT_ . [11.5.3]
n=0
For every m :
nEO Tmn =1. [I1.5.4]

Morse's model further assumes that loans follow a Markov process, where
the Tmn's are the entries of the corresponding transition matrix. Further,
Morse assumes a fixed linear relation between N(m) and m : N(m) = a + bm
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{cf. Subsection I.3.8.4 and Table 1,3.9). Note that the slope parameter b will
lie between 0 and 1 as on the average the popularity of books tends to diminish,
This slope parameter b can then be viewed as an indicator of the rate in which
books of a particular population lose popularity : the smaller the value of b
is, the greater the decline in popularity is.

Finally, Morse assumes Tm to be a Poisson distribution. Consequently,
with the assumed form of N(m) :

. {a+bm)" -(a+bm)
T = e . [11.5.5]

As this determines the transition matrix T, the whole process is firmly
determined. The Markov matrices of Table II.5.1 are in fact those associated
with Morse's model for b = 0.3 and a = 0.2, Whether or not this model applies
to a particular situation has to be investigated in every case. However, Morse
(1968) reports that his model frequently fits data.

11.5.2.2. An application

We consider a group of books where N(m) = a + bm. If R._4 = X, what will
Rt be? Let K be the total number of books under consideration and let ki be
the {unknown) number of books that were loaned out i times in the period t-f.
Then

T ik
5 - i=0 !
—r—
with K= £ k1 .
i=0

Following Morse's model N(i) = a + bi, for every i. The number kiN(i) denotes
the total number of loans (in period t) of those books that were loaned out
i times in period t-1. Summing over all i :

£ kiN(i)
i=0

yields the total number of loans in period t. The average number of loans in
period t is then :
I kiN(i) z ki(a+bi)

‘|=0K ='l=0 X =a+b)'(
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This shows that R, =a + bRy , or R - bR, , = a. This is a difference
equation for which the solution is : e
pt-1

_a a
Rt =1-p t (R1 + —1—_—-5) . [11.5.6]

As 0<b<1, 1imR_ = a » which is the limiting lending rate. Its value is
tao b T- b

a measure of the long-term popularity of this group of books.
By using [I1.4.2], we see that in the case of complete balking the
demand At is also a function of time given by :

where Rt is determined by [II.5.6] and R1 = X;J;%

Some examples.
We will consider the case in which p = 25, R1 = 12 and different values of a
and b; Ui denotes the degree of dissatisfaction (unsatisfied demand) in the
case of i copies.

1) a = 0.05, b = 0.90

t 1 2 3

Ry 12 10.85 9.815
A 23.08 19.17 16.16
U1 11.08 8.32 6.34
u, 4.19 2.73 1.82
U3 1.84 1.1 0.38

2) a=0.30, b =0.60

t 1 2 3

Rt 12 7.5 4.8
A 23.08 10.71 5.94
U1 11.08 3.21 1.14
U, 4.19 0.65 0.13
U 1.84 0.20 0.01
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t 1 2 3

Rt 12 2.85 1.02
A 23.08 3.22 1.06
U1 11.08 0.37 0.04
Uy 4.19 0.02 0.00
U 1.84 0.00 0.00

These examples show, among other things, that if loans can be described
by a Markov process, buying duplicate copies is seldom a wise decision,
especially for those items that decline rapidly in popularity, e.g. a record
library, where rock music usually shows a very rapid decline in popularity.
Moreover, it is generally true that there is always a degradation in the
effectiveness of extra copies, in the sense that when two copies are available,
the number of loans does not double. These remarks are, however, not in
contradiction with the results of Subsection 11.4.4.1.

Table II.5.1 is actually an illustration of Morse's Markov model in the
case in which b = 0.3 and a = 0.2. The steady state distribution shows, for
example, that if such a book is loaned out twice a year, it will take - on the
average - 1/0.034 ~ 29 years before this will happen again.

I1.5.3. Notes and comments

Hendricks (1972) describes arrangements of N books on a shelf. If the
probability of selecting each book is known, if books are returned by placing
them at one end of the shelf and if only one book is removed at a time, then
the N! arrangements of the books are considered as states of a Markov chain
and the stationary distribution is described. Burville and Kingman (1973)
continued this work and found the probability that a given book will be in a
given position on the shelf, in terms of the frequencies with which different
books are demanded.

The relation P(") = P(n'1)P we have observed in Subsection [I1.5.1.2, is
a special instance of a result in Markov theory, generally known as the

Chapman-Koimogorov equation, which states that for all m,n € NO, m<n:
p(n) _ pln-m)p(m)

Besides the discrete time stochastic and Markov processes,continuous
time stochastic and Markov processes are also studied. Unfortunately, they
have been infrequently applied in informetric studies. Movements of authors
among subareas in a scientific discipline have been studied - using Markov
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chains - in Goffman (1971), Goffman and Warren (1980), Pao and McCreery (1986).
The results on queueing theory presented in Chapter-<I1.3 can be proved by
Markov process methods. .

Morse (1968) checked his model at MIT's Science Library and found quite
satisfactory agreement between data and model. In general, he observed that
the parameter a ~ 0.4 and b ~ 0.5 for books of five years of age or less and
a~ 0.2 and b~ 0.5 for older books. From his analysis he predicted future
use and gave suggestions on when to retire books and how to cope with lost
books (and what this loss means to potential users). His book (Morse (1968))
also contains several tables of Markov-Poisson processes.

Chen (1976) pursued a study similar to Morse's in Harvard's Countway
Medical Library. She found that much higher values for the parameter a and
slightly Tower values for b were appropriate for this library. Further, she
confirmed the observation that the parameter a does decrease for older items.
Chen also extended Morse's model by developing a procedure to deal with
biased circulation data. More recently, the model was utilised to evaluate
use patterns in an academic Tibrary and a resource library in the UK (Hindle
(1979)) and to study the use of life sciences books at MIT (Spurlock and Yen
(1978)).

An extensive study to test Morse's model was carried out by Beheshti and
Tague (1984). Utilising eleven years of circulation transactions at the
University of Saskatchewan, they showed that Morse's model fits approximately
99 % of the data, with values for a ranging from 0.37 to 0.43 and for b
ranging from 0.31 to 0.34. Nevertheless, they also found that use of the
Markov model creates some problems. First, the model does not fit the long
tail of the distributions of the number of transactions per document. Once
monographs circulate more than eight times per academic year, the correlation
coefficient between the number of times the documents circulate in one year
and the average number of times they circulate the following year decreases
sharply.

Second, the value of a is time dependent, whereas b fluctuates more
randomly with time. Third, they question the validity of applying the Poisson
distribution to explain the actual transaction distribution about the mean
N(m). Coady (1983) insists that direct tests of the Markovity of library
circulation data should be conducted before models based on the Markov
property are used. The relation of Morse's model to other models and more
detailed criticisms of it will be discussed in the next chapter.



11.6. Other library circulation models 183

I1.6., OTHER LIBRARY CIRCULATION MODELS

11.6.1. Burrell's simple stochastic model for library loans

With the concept of a self-renewing or no-growth library (Trueswell
(1976)) in mind, Burrell (1980), see also Burrell and Cane (1982), presents
a simple mathematical model for library loans. This model should help
practising librarians in collecting and interpreting data, weeding little
used books and purchasing extra copies, where necessary. The main objectives

of such a simple model are :

( 1) to contain only a small number of parameters, of which the meaning is
easy to understand and which can be used to characterise the library;

( ii) to be described by parameters that are not too difficult to estimate;

(ii1) to provide a qualitatively good fit for data from various libraries

and for various time periods.

Later, Burrell (1984) explicitly referred to Sandison (1977) to defend
his simple stochastic model. Indeed, in the paper referred to above, Sandison
asserted that mathematical models proposed to assist librarians should :

i) be based on valid assumptions, ii) be explained in sufficiently simple
terms for the ordinary Tibrarian to carry out and ii1) result in better advice
than that obtainable by simpler techniques. This is exactly what Burrell's
simple model aims to do.

I1.6.1.1. The straight-line phenomenon for frequency of circulation

As has often been observed, when plotting on semilogarithmic scales
(with the y-axis as the logarithmic axis), the number of times (r) an item has
circulated in a fixed period T versus the number of items (fr(T)), the
resulting curves take one of three shapes : see Fig.Il.6.1 (cf. Montgomery et
al. (1976), Burrell (1980, 1982), Burrell and Cane (1982), Leemans et al.
(1989)).

In this section we will study the simple case (a), where we observe the
so-called straight-line phenomenon. The other cases (b) will be dealt with in
Section II.6.2.

The straight-line phenomenon means that : log (f(r)) = a + br, with
b < 0 (as the line is decreasing). This yields further :

f(r) = e3*P"
or

f(r) = Cs
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Fig.I1.6.1 Three basic shapes of circulation distributions
(semilogarithmic scales)

with

C=e¢? and § = eb . [1I.6.1]

If the size of the total collection in the period T is N, the probability that
a book will be on loan exactly r times, denoted Pr(t), is given by

oo

§"  with b ﬁa” -1, [11.6.2]

P.(t) =
r r=0

slo

Hence ﬁ'T47§ =1 or C = N(1-8). So, the probability that a book will be on

loan exactly r times is (1-8)8", meaning that we have a geometric distribution,

Absolute frequencies f.(T) are then given by N(1-8)8". The average number of

loans is then u = §/(1-8) with a variance of 6/(1—6)2 (see Subsection 1.2.4.4).
Burrell assumes p to be proportional to T. This yields :
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L _1q [11.6.3]
uT"1'_' §T_a £ ) L3 .

where 1/a is a proportionality factor. Solving [II.6.3] for GT results in :

T

(ST =a—+-r . [11.6.4]

As y = % T, we can interpret a as the average time between two successive
loans. Clearly, a will depend on such factors as the size of the collection,
the potential reader population, loan policies and so on.

I1.6.1.2. A model to explain the straight-line phenomenon

Every book in a library has a certain desirability, depending on its
popularity or usefulness. As a definition for this desirability, Burrell takes
the average number of times this book is on loan during a unit period of time.

A year is usually a convenient unit.

For a book with a desirability of A, it is assumed that actual loans
occur following a Poisson distribution. This means that the probability that
this book will be loaned out k times during a period of length T is given by

iﬁk-gﬂl'i . k=012, . [11.6.51

Finally, we also need an assumption about the distribution of the
desirability over all documents. Burrell uses a negative exponential
distribution with a parameter of 1/o. This is a continuous distribution with
a density function of f(A) = ae'al, X 2 0 (see Subsection 1.2.4.5).

Pr(T), the probability that a book will be loaned out r times during
a period T is then :

o

-AT r
e (AT -0\
pr(]') = é._ﬂ__)..ae GA da

= 7 }; eMU+3) ' a0

|28 70T D) (arq429) (M1 yar(149))

= (1 +%)r+| F!T 0

!
= ____ilf;T_- (by the definition of the I'-function)

(1™ 1
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o
Tu+%f”

(1~ o))"

This is a geometric distribution (Subsection 1.2.4.4) with a parameter
of 6§ = TQEE’ explaining, in a way, Subsection II.6.1.1, formula [II.6.4].

In conclusion, when we assume the number of loans to be distributed
according to a Poisson distribution with a parameter of AT (where X is the
desirability per unit of time) and when we further assume that desirabilities
themselves are distributed according to a negative exponential distribution,
then loan frequencies over a period T are distributed according to a geometric
distribution with a mean of T/a, where o depends on the specific collection,

11.6.1.3. The zero class : dead items

Burrell assumes that there is a fraction (1-8), 0 £ 8 < 1, of documents
in the collection that never circulate : books on permanent reserve, lost or
stolen books, redundant books (e.g. superseded by more recent, corrected
editions). These items merely serve to inflate the zero class. Note also that
they are distinct from items which, though candidates for circulation, happen
not to have circulated in the observed period. Although part of these ‘dead’
items are well known to be dead (e.g. those on permanent reserve), others are
not. Their fraction (1-8) must be estimated from observed circulation data.
The analysis of Subsections I1.6.1.1 and 11.6.1.2 then only refers to a fraction
B of the collection. In that case, two parameters o and 8 {or g and &, because
a and & are related) must be estimated.

For a period T, so-called maximum likelihood estimators {(a kind of 'best’
estimator) for B8 and § (denoted by B and &) are :

. N- fO(T) - N- fO(T)

§=1-— and B = ———— (Burrell (1980; p.131)) .
£ rf (T) N
r=0

Here N - fo(T) is the number of documents loaned out at least once and
z rfr(T) is the total number of loans. These two numbers are easily available.
r Then, by using [11.6.4],

T(1-8)

@ =20
§
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Fittings can be done recursively. If Er(T) denotes the expected number
of books that are loaned out r times during period T (according to this model),
then, as is clear from the previous sections,

L. s N - fo(T)
Eg = N((1-8) + 8(1-8)) = N(1-88) = N(1 - ———)= f,(T) [11.6.6]
ELT) = NB(1-8)8", v > 0 3 [11.6.7]
hence
E,(T) = NB(1-3)8 = (N-£,(T))(1-3) [11.6.8]
and
Enq(T) = SE(T), r > 1 [11.6.9]

by means of [I1.6.7].

Examples can be found in Burrell (1980) where this model is fitted to data
obtained from the Sussex University Library, the Wishart Library in Cambridge
(UK) and the Pittsburgh University Library.

11.6.1.4. Longitudinal studies and applications to stock relegation

The probability that an item will not circulate during a period T is
(1-8) + B(1-38), where § depends on T and equals T/(a+T). Hence this
probability is :

1-85=1-B, [11.6.10]

The fraction of the collection that circulates at least once during period T
is then 88 = BT/(a+T). The fraction of the loanable items that are loaned out
at least once in period T, is thus 5&27 .

For the Sussex Library, B = 0.3788 and o = 1.009, so that taking T
years yields 8T/(a+T) = 0.315. For this library the dead part is (1-8)
0.6212. This means that about 100 E%;T % = 83 % of the loanable items in this
library are loaned out at least once in 5 years.

Next, let us find the probability that a book will be loaned for the
first time during the nth period (here a period is taken equal to one year).
The probability that a document will be on loan for the first time in the
period between t, and t, (t1 < t,) is denoted by e(t1,t2).

Let 52 be the set of books that are on loan at least once in the period

i
[34]

i
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[U,tzl and S1 the set of books that is on loan at least once in the period
[0,t;1. We are looking for P(S)\S;) : the probabiTity that an item will belong
to the difference between these two sets. By using [11.6.10], this becomes :

t
- ). [11.6.11]
(x+t2 0L+t1

Bt2 ) Bt1 e t2
0L+t2 oc+1:1 -

If stock is relegated on the basis of usage, one will ideally wish to
relegate those items which have a low desirability. As the desirability of a
particular item is unknown, a relegation policy will depend on past
circulation figures. Burell studied the effect of adopting such as policy to
relegate all items which have not been loaned out by time T, except those on
permanent reserve,

The effect of this policy is that the retained and relegated collections
have different desirability distributions. For the relegated stock we find a
geometric distribution with added zeros, but for the retained stock the loan
distribution arises as a difference between two geometric series. The following
results can then be shown (see Burrell (1980)) :

proportion of collection which is relegated or on permanent reserve :

1 - 8T/(a+T) (via [I1.6.10]1);

mean usage (per annum) of retained stock : % (1 + BréFT);

mean usage {per annum) of relegated stock (excluding dead items) :
1/(a+T);

proportion of loans which require items from relegated stock : (a—%&?)z.

We see that this relegation policy has the effect of increasing the mean
usage of the retained collection by a factor of (1 + a/(a+T)) (bear in 'mind'
that the average usage per year for the entire collection is 1/a).

When we take T = 9, this policy implies, for the case in which o =1
and 8 = 0.7, that we relegate 37 % of the collection, the mean usage of the
retained stock will then be 1.1 (i.e., an increase of 10 %), while only 1 % of
the requests will require use of the relegated stock (apply the above
equations).

11.6.2. More refined models

11.6.2.1. Gamma mixture of Poisson processes with added zeros -
Burrell's simple model starts from the so-called straight-line phenomenon.
However, this may sometimes be too simplistic, and more or less greater
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deviations from this straight ITine are observed in real data. A generalisation
is obtained by assuming that observed loan frequencies over a period T, fr(T),
r = 0,1,2,..., fit a negative binomial distribution (which generalises the
geometric distribution). Loans for a particular book might occur at random

(i.e. following a Poisson distribution) at rate A, while the distribution of X
over the population of books is described by a gamma distribution, generalising
the negative exponential one has used in the simple case. We will show that
these assumptions lead to an observed frequency distribution which is negatively
binomial. There is also a dead class to be accounted for, yielding 'added zeros'
(Burrell and Cane (1982), Burrell (1982)). We will assume that a fraction 1 - 8
belongs to this dead class; hence there is a fraction B of active items.

The gamma distribution is a very useful and flexible theoretical
probability distribution defined on the positive real numbers. A particular
gamma distribution is identified by the values of a parameter £ > 0 and an
index v > 0. The parameter £ is associated with a scale of measurement (e.g.
the time scale used when counting numbers of circulation), while the index v
tells us something about the underlying shape of the distribution (see Fig.
11.6.2).

ve 1

v>1

Y

Fig.I1.6.2 Gamma density function : basic shapes



190 I1. Operations research and library management

The gamma density function is then given as :

g()\) = g'\) }\\)'1 exP('A/E) A 20

) s > [I1.6.12]

where in a library context A corresponds to the mean lending rate of a typical
active item. The mean of g(\) is v& and its variance is v£2; T'(v) denotes the
gamma function (cf. [1.2.24]) from which the distribution gets its name. When
v = 1, the gamma distribution becomes a negative exponential distribution,
with a parameter of £ (see Subsection I.2.4.5). When £ = 2 and v = n/2, we
obtain the xz-distribution (Subsection 1.2.4.6) with n degrees of freedom.

Hence, if Pr(T) denotes the probability that an arbitrarily chosen book
will be loaned out r times in a period of length T, then, for r > 0 :

© r _=AT
RURY g LATLe 4() o

= B p(r)Y g

-8 (r+v-r})r.‘z\.)§v)r‘(v)p(-r)v o)’

r+v-1
8 ( ) p(T)” q(T)"
r

and PO(T) = (1-8) + 8p(T)”, where p(T) = (1 +£T)'1 =1 - q(T).

This is a negative binomial distribution with parameters v and p(T) and with
added zeros (Burrell 1982)). The whole model is usually described as a gamma
mixture of Poisson processes.

This model is well known, having been originally investigated by
Greenwood and Yule (1920) in connection with accident data. Since then it
has been applied, for instance, by Wise (1946) in an industrial sampling
context, by Arbous and Sichel (1954) in connection with absenteeism data,
by Spilerman (1970) to describe racial disturbances in the USA, and by Morse
(1976) in connection with library circulation statistics.

We further note that for active books the mean circulation is
vq(T)/p(T) = veT (Subsection 1.2.4.4), where vE is the mean lending rate of
the active population.

Wall (1980) and Ravichandra Rao (1982) suggested using the more general
negative binomial distribution instead of the geometric one. Although the mixed
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Poisson distribution gives better fits to the data in the Pittsburgh and the-
Wishart libraries - see Bagust (1983), who nevertheless does not believe in
(and therefore does not use) a dead category - it involves the estimation of
three parameters : one, denoted B, to determine the fraction of active items
and two, p(T) and v, for the negative binomial distribution. The negative
binomial distribution, without a dead category, was fitted to circulation
data in the Huddersfield Public Library by Bagust (1983). This prompted
Brownsey and Burrell (1986) to study the frequency of the circulation
distribution of 16 public libraries, namely those comprising the original

UK Public Lending Right sample. They could fit data of three libraries by a
simple geometric distribution; the negative binomial distribution provided
reasonable approximations for four more of the Tibraries.

They went further and developed a model consisting of a mixture of
negative binomial distributions. The idea that different frequency
distributions might apply to different subsets of books within one library
had already been advanced by Hindle and Worthington (1980). This yielded fits
for seven other public libraries. Finally, they observed two 'mavericks',
where data behaved so irregularly that they could not even be fitted by the
mixed NBD model.

Finally, Burrell (1985a) applied the simple model to investigate the
so-called 80/20 rule (see also Subsection IV.7.1.1 for more details). He found
the following relation :

y = x(1 +210gx) , [11.6.13]

where y is the proportion of circulations, x is the proportion of circulating
items, ordered according to the decreasing frequency of circulation, and z is
given by

z = (up log(h - I}T—))", up> 1. [11.6.14]

Here Wy is the mean number of circulations of circulating items over
period T. These investigations concluded that over different lengths of time
periods different proportions of circulating items will be required to achieve
a given level of loans (say 80 %), and that conversely, a fixed proportion (say
50 %) of the circulating items will achieve different levels of loans. A
similar investigation producing similar conclusions has been carried out by
Egghe (1986b) but using a Lotka distribution to describe the frequency
distribution of sources (circulating documents). In this case the relation
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between y and x is given by :

[11.6.15]

where vy ~ 0.5772 is Euler's number. For y = 0.8, this yields Table II.6.1.

Table II.6.1. Relation between the mean number of circulations and
the proportion of circulating items needed to obtain
80 % of all circulations

100 x% 100 x%
Hr (Lotka distrib.) (geometric distrib.)
1 77.9 -
2 56. 1 56.8
3 40.4 52.1
4 29.0 49.8
5 20.9 48.6
6 15.0 47.7
7 10.8 47.1
8 7.8 46.7
9 5.6 46.4
10 4.0 46.1
o 0.0 43.8

Table I1.6.1 illustrates the fact that the higher My is, the fewer
sources one needs to obtain a fixed percentage of items. This implies, for
instance, that in a public library one needs fewer books to obtain a fixed
percentage of circulation than in, say, an academic library (since in public
libraries the mean number of circulations is much higher than in academic
libraries).

I1.6.2.2. Incorporating ageing

Burrell (1985b) studied a modification of the mixed Poisson model. A
drawback of the original formulation (as presented in the preceding subsection)
is that it assumes that the lending rate of each item remains constant
throughout time. In his modification Burrell further proposed that items
become less desirable as time goes on, so that the lending process slows
down. More precisely, he assumes that, for each item, desirability A(t)
decays exponentially and that the rate of decay is the same for all items
in the collection; hence A(t) = Ae'at; t >0, a>0. With these assumptions
he is able to show that (Burrell (1985b; p.111-114)) :
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(i) the mean number of loans in the nth year is v(&/a)(1-¢e73) e“",
with 6 = e™3; from this formula we see that the annual mean number of
loans decreases exponentially;
( 11) the frequency of circulation distribution over any given time is a
negative binomial distribution;
(ii1) the annual frequency of circulation distribution exhibits year-by-year
change.
In particular, if the probability that an item will be on loan r times
during the first n years is denoted by P(Xn =r), he shows that

URA vor
P(Xn= r) = ] PpOps r= 0,1,2,...

b= (1+E0-a",

where

and

a, =1 -p, - [11.6.16]

Here £ and v are the parameters of the mixing gamma distribution and
0= e'a; 1 - 6 is the annual rate of decay and 6 is said to be the ageing
factor.

When only active items are considered and ageing effects are neglected

lim P(X =0) = 1im B(1+&n)" = 0 ,
N oo
according to Subsection 11.6.2.1.

This means that without ageing factors every item will eventually be loaned
out. On the other hand, if 6 < 1, i.e. if a # 0, and ageing is present, then

Tim P(X =0) = Tim (1 + 2 (1-¢")™
N ) et a

[11.6.17]

(z3¢) # 0.

Consequently according to this model, if there is ageing, a certain
proportion of the collection will never circulate. In practice, 6 is estimated
by the following fraction :
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total number of loans in year 2
totaT number of Toans in year T °

where we refer to a fixed collection.

This model was further used by Burrell (1987) to predict the future use
of items in a collection and to investigate the consequences of different
relegation procedures based on frequency-of-circulation data. The model
itself obtained strong support from a citation study on obsolescence by
Coughlin and Baran (1988). We also note the importance of relegation to
effective browsing (Morse (1970)).

11.6.2.3. Morse's Markov model and the mixed Poisson model with ageing
(Burrell (1986), Tague and Ajiferuke (1987})

In this subsection we will compare both models. Morse assumes that the
number of uses of items in a fixed class of books follows a Poisson
distribution, while the mixed Poisson model advocates the use of a negative
binomial distribution. The crucial aspect of Morse's model is that year-by-year

usage of items occurs according to a Markov chain. So in the Markov model the
expected number of loans during year n+1 depends only on the number of loans
in year n., On the other hand, according to the mixed Poisson model this
expected number of loans depends on the total number of loans during the first
n years. This implies that the latter model is more conservative.

Finally, the mean circulation N(m) during year n+1 of items circulating
m times during year n is given by A + Bm. In Morse's original model (Morse
(1968), Morse and Elston (1969)) A and B are assumed to be constant for a
fixed class. Beheshti and Tague (1984) suggested an alternative expression
for A, namely A = Ay + Kyn (hence depending on n). Kraft (1970) proposed yet
another expression for A : A = AOKR. Lastly, as a consequence of the mixed
Poisson model with ageing (Burell (1986)) :

VU
A=___ N
ST
and
B = A\)_1 .

th

where H, is the average number of loans per item in the n”" year and is given

by u1en'1 (parameters v and 6 have the same meaning as in the preceding
subsection).
To test which of these dynamic models for library circulation fits real
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data best, Tague and Ajiferuke (1987) conducted an extensive investigation
based on eleven years of circulation at the University of Saskatchewan. The
results were rather disappointing as neither the Markov nor the mixed Poisson
model fit the data. Discrepancies between models and data occurred largely in
the class of non-circulating items.

We furthermore note that noné of these models is fully explanatory since
they assume certain distribution functions as building blocks for the models.

11.6.2.4. Further developments

Gelman and Sichel (1987) solved part of the problem that arose from the
failure of the Tague-Ajiferuke study. They claim that no mixture of Poisson
processes is appropriate for the modelling of book circulation data and show
how an improved fit (in terms of x?-va]ues) is achieved with a complicated
model, namely a beta mixture of binomial distributions. Rather than going into
detail (the functions are complicated and, moreover, unexplained), the
interested reader is referred to the Gelman-Sichel paper {1987).

In a reaction Burrell (1990) admits the success of the beta-binomial
model but observes that the model has three parameters, one of which, denoted
S and interpreted as the maximum possible number of loans in a period, is
difficult to estimate. Indeed, Gelman and Sichel (1987) used an ad hoc method,
requiring visible inspection of the data. Therefore, it is not clear how

reliable predictions can be made from this.

On the other hand, Burrell (1990) demonstrates (based on the Saskatchewan
data) that, admitting the inadequacy of the mixed Poisson model with ageing,
very accurate predictions could still be made. Therefore he concludes his paper
by stating that the gamma-Poisson model can provide the library manager with
useful advice in decision making : 'It may not be the correct model or even
the best, but in general terms it works!'.

The idea of using various models for informetric processes in general
was developed in Burrell {1988a). He suggested ways to use these models for
predictive purposes.

The mathematically inclined reader will have enjoyed the evolution in
library circulation models as described in the preceding sections. On the
other hand, the practising librarian will probably point to Sandison's
principles (1977) and ask 'Can't predictions be based on much simpler
techniques?'. This was also recognised by Burrell (1988c), who developed a
simple empirical Bayesian method which is indeed much easier to use. This
approach was inspired by earlier work in informetrics by Brookes (1975),
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and is based on equations used in statistical and ecological studies by
Goodman (1949) and Good and Toulmin (1956). For a complete account, the
reader is advised to consult Burrell (1988c).
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II.7. FUZZY SETS AND HEURISTIC METHODS IN LIBRARY MANAGEMENT

II.7.1. Fuzzy set theory

I1.7.1.1. Imprecision in daily life

Planning often requires judgements on people or material to be used,
time spent to reach subgoals and so on. Measurements that would be required
to obtain objective estimates of probabilities are sometimes impossible or
too costly in time and/or money. Subjective estimates are then necessary.
Moreover, criteria are often only vaguely defined; for instance, what are
'popular old books'? Books that are at least 30 (20,40,100?) years old
(written, published for the first time, for the last time?) and that circulate
(where?) at least four (three?) times a year?

The first man who really saw and acted upon what has been called 'the
fatal flaw of the denial of the existence of imprecision' was Lotfi A. Zadeh
(1965) of the University of California, Berkeley. He is the founder and
pioneer of that part of mathematics that is known as 'fuzzy set theory'.
Fuzzy set theory breaks through the two-valued classification of classical
set .theory (an item belongs or does not belong to a precisely defined set)
and produces a measuring device to determine the degree to which an item
belongs to a certain class. It is also able to cope with linguistic hedges
such as very, rather, almost and slightly and with imprecise terms such as
old, important, relevant and beautiful. A mathematical analysis based on
fuzzy sets allows one to work with concepts that lie beyond the pale of
classical mathematics, yielding finely nuanced results about the concepts
being investigated.

11.7.1.2. Fuzzy set theory : basic concepts
Informally, a fuzzy set is a class in which the transition from
membership to non-membership is gradual. A more precise definition of a fuzzy

set is given as follows.

Let X be a set in the classical sense. Then a fuzzy subset of X is a
set A of ordered pairs (x,uA(x)) € X x [0,1], where Ma is a function X + [0,1]
called the 'membership function' and uA(x) is the grade of membership of x in
A. If A is a subset of X in the classical sense it can be considered as a fuzzy
subset by taking Hp equal to the characteristic function of A, which is 1 if
x € Aand 0 if x € A. Within fuzzy set theory subsets in the classical sense,
i.e. those defined through a characteristic function, are termed 'crisp sets'.
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An example. Let X =R* (the positive real numbers). We may then define
the fuzzy set B of small positive real numbers by.:....

= (s 3T, xsa,
= 0 . x> 30 .
1
0 ' L ¥ ] 1
0 5 10 15 20 25 30

Fig.I1.7.1 A fuzzy set of small positive real numbers

The fuzzy positive multiples of 5 can be defined as the fuzzy set C c:R+,
with

e =1 - % (min (x (mod 5), 5 - (x (mod 5)))

1_.

0 T T T T T T — -
0 5 10 15 20 25 30

Fig.I1.7.2 A fuzzy set of positive multiples of 5

The support of a fuzzy subset A of X is the crisp subset, denoted as
Supp A and defined by Supp A = {x € X; uA(x) > 0}. In our examples Supp B =
[0,30] and Supp C = R* ~ {5/2,15/2,25/2,...}.
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Two fuzzy subsets A1 and A2 of X are equal if uA1(x) = qu(x) for all
x € X, If A1 and A2 are fuzzy subsets, then A1 is a subset of A2, written
Ay = A, if “A1(X) < qu(x) for all x € X. The complement of a fuzzy subset A
of X, denoted as A®, is defined by

uAc(x) =1 - uA(x) . x€X. {11.7.11
The union of two fuzzy subsets, A1 and A2 of X, denoted as A1 U AZ’ is defined
by

uA1lJA2(X) = max (uA1(x),uA2(x)) . x€X . [11.7.21

Finally, the intersection of two fuzzy subsets A1 and A2 of X, denoted as
A1 n A2 is defined by

”A1r1A2(X) = min (“A1(X)’“A2(x)) , x€X . [11.7.31]

For example, the small multiples of five, shown by Fig.II.7.3 are the
intersection of the small real numbers and the multiples of five.

7 —

0 T T T T * T S ——
0 5 10 15 20 25 30

Fig.II.7.3 Small multiples of five

11.7.2. A practical example : perijodical binding decisions

We will present an example, partly based on Robinson and Turner (1981)
and Turner and 0'Brien (1984) of the use of fuzzy set theory in practical
library work., The problem we will consider is that of periodical binding
decisions, which involve many vaguely defined variables. For example, a
series of periodicals may have 'too many missing issues' or 'too low an
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impact on current research'. However, it is difficult if not impossible to
come up with objective criteria for these variables.-..

A fuzzy-heuristic method, making explicit use of librarians‘ expertise,
could be developed as follows. A small committee of experts is formed. For
reasons of simplicity, we shall consider a team of two experts. Three criteria
will be used :

- number of citations obtained by the journal, as measured by ISI's (Institute
for Scientific Information) citation files;

- percentage of missing issues;

- number of circulations (local use) per issue.

Each committee member must decide on his/her membership function for
each of these variables. So, although each of these criteria can be measured
in an objective way, the interpretation of the measurements with respect to
the ultimate binding decision is subjective and requires an application of
concepts borrowed from fuzzy set theory. An example of membership functions
of two experts is shown in Fig.II.7.4.

1 =

0 T T T 1T T T T T
0 10 20 30 40 50 60 70 80 90 100

% missing

0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

% missing

Fig.I1.7.4 Membership functions of two experts for the variable
‘too many missing issues'
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When experts have decided on membership functions, every journal set can
be judged on all criteria. This can now be done in a straightforward way and
no longer requires a specific intellectual input.

Finally, each expert must also have decided, beforehand, on the relative
importance of each of the three criteria, and the library committee must have
decided on the relative importance of each expert (before the data were
collected!). This leads to a ranking of journals according to their suitability
for binding.

This approach produces a handy method for computerising an otherwise
completely subjective decision procedure., Moreover, effective use is made of
the knowledge and expertise of librarians who will not have the feeling that
the computer has taken over their work. On the other hand, this procedure saves
a lot of time since the librarian does not have to decide on every set of
journals separately.

I1.7.3. Notes and comments

Since 1976 (Tahani (1976))people have tried to apply the concepts in
fuzzy set theory to information retrieval. Although numerous theoretical
papers and even reviews have appeared on this subject (see e.g. Buel (1982),
Bookstein (1985), Rousseau (1985), Kerre et al. (1986)) very little use of
these ideas has been made in actual implementations. Some people (Robertson
(1978)) even gave well-founded criticisms of the application of fuzzy set
concepts to information retrieval (IR), claiming that so-called fuzzy
quantities proposed for use in IR should be quantified by probabilistic
methods.

For a time, it seemed as if fuzzy set theory was a dead issue in IR,
However, fuzzy set theory involves such attractive ideas that it came back in
a different form. Today, its concepts and methods are being incorporated in
relational databases that allow vague queries (Motro (1988)) and in knowledge-
assisted document retrieval proposals (Biswas et al. (1987a, 1987b)). So, fuzzy
sets are becoming a part of the artificial intelligence stream which is
currently pervading every scientific and technological enterprise (Hofstadter
(1980), Winston (1984)).




