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IV.6. FITTING METHODS FOR INFORMETRIC LAWS
A1l of the following fitting methods will work, provided the IPP is not
too small,

IV.6.1. Fitting of Bradford's law

IV.6.1.1. Methodology

The ingredients to be determined are p, Yoo o and k. In principle, p
can be chosen freely, although some limitation is necessary since the data are
finite. We have the following equations :

_A
Yo p o [IV.6.1]

1 1
k=(e'y )P~ (1781 y )P . [IV.5.3]

Furthermore, since rg trok * ...+ rokp'1 =T we get

= Tk-1) [IV.6.2]
kP - 1

o

IV.6.1.2. Example
We apply this method to the bibliography 'Lubrication’', the data for

which can be found in Bradford (1934). We consider p = 3 since Bradford himself
considered this. We then form Bradford's law for p = 7, just to show that p can
be chosen more or less freely.

Table 1V.6.1. Lubrication, 1931 - June 1933 (L)

. corresponding R(r)
# journals # articles r (observed)
1 22 1 22
1 18 2 40
1 15 3 55
2 13 5 81
> 10 7 101
1 9 8 110
3- 8 - - 134
3 7 14 155
i 6 15 161
2 4 24 204
13 3 .37 243
25~ .2 62 293
102 1 164 395
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p =3
We have k = (1.781 x 22)'/3 = 3.0, y; = 32 131,67 ~ 132 and
164 (k-
rg = -—;éjTll = 10.30. Hence we use [rol = 10. The groups are :
Table 1V.6.2. Bradford's law for L, p = 3
# journals # articles k
15t group ro = 10.30 ~ 10 126 -
2" group rok = 35.02 ~ 35 133 3.50
3™ group rok? ~ 119, which is 136 3.40
exactly the last rank
in the bibliography

This is better than Bradford's original example (Bradford (1934)) : he
gets 8/29/127 journals yielding respectively 110/133/152 articles.,

p=7
For p = 7 we find k = 1.69, ¥g = 56 and rg = 2.95 ~ 3, The Bradford
groups are :
Table IV.6.3. Bradford's law for L, p = 7
# journals # articles k
15t group rg = 2.9 =3 55 -
2™ group rok = 4.98 » 5 55 1.67
3" group okl = 842~ 8 56 1.60
ath group rok’ = 14.23 ~ 14 56 1.75
5% group rok? = 24.05 24 55 1.71
6% group rok® = 40.64 41 49 1.71
7" group rok® = 68.68 69 69 1.68
which is exactly the
Tast existing rank
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Other examples can be found in Egghe (1989a or 198%).
With the above methodology one can also show that the Bradford groups

found by Goffmann and Warren (1969,1980) are wrong.

IV.6.2. Fitting Leimkuhler's function R{r) = a log (1 +br)

IV.6.2.1. Methodology
The Leimkuhler function

R(r) = a log (1+br) [Iv.4.2]

can be deduced from Bradford's law (choose any reasonable p) by using the
following exact equations :

y
.0
a - '1'0-97 s [Iv-4-5]
_ k-1
b = '—7:0— . [IV.4.6]

In view of the method developed above (cf. equations [IV.6.1], [IV.5.3]
and [IV.6.2]), Leimkuhler's function [IV.4.2] can easily be calculated.
We present two examples,

1V.6.2.2. Examples

1. Lubrication

When choosing p = 3, we have Yp = 131.67, k = 3.40 and rg = 10.30.
Hence a = 107.7 and b = 0.233. We leave it to the reader to verify that only
negligible differences in these values will occur when another p is chosen.
We obtain the following function :

R(r) = 107.7 log (1+0.233 r) . [1V.6.3]

We have the following fits :

345
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Table 1V.6.4. Fit of Leimkuhler's function for 'Lubrication'

R(r) R(r)

r (observed) (calculated)
1 22 22.6
2 40 41.2
3 55 57.1
5 81 83.2
7 101 104.2
8 110 113.3
11 134 136.8
14 155 156.1
15 161 161.9
22 196 195.2
24 204 203.1
37 243 243.8
62 293 294.8
164 395 395.1

The reader can verify with a Kolmogorov-Smirnov test that the function
[IV.6.3] fits very well.

2. Pope's bibliography
Pope (1975) introduces the following data with respect to a bibliography
on information science :

Table IV.6.5. Pope's bibliography

. corresponding R(r)
# journals # articles r (observed)

1 261 1 261
1 259 2 520
1 220 3 740
1 211 4 951
1 205 5 1156
1 176 6 1332
1 168 7 1500
1 164 8 1664
1 155 9 1819
1 134 10 1953
2 120 12 2193
1 115 13 2308
] 105 14 2413
1 102 15 2515
1 96 16 2611
1 85 17 2696

cont.
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Table IV.6.5 (continued)

, corresponding R(r)
# journals # articles r (observed)
cont.
1 80 18 2776
2 79 20 2934
1 78 21 3012
1 74 22 3086
1 64 23 3150
1 63 24 3213
2 60 26 3333
1 59 27 3392
1 53 28 3445
1 52 29 3497
2 51 31 3599
1 45 32 3644
1 44 33 3688
2 a2 35 3772
1 40 36 3812
2 38 38 3888
1 36 39 3924
2 33 41 3990
1 32 42 4022
5 31 47 4177
1 30 48 4207
1 29 49 4236
1 28 50 4264
1 27 51 429
1 25 52 4316
3 24 55 4388
6 22 62 4543
2 21 64 4585
5 20 69 4685
4 19 73 4761
8 18 81 4905
5 17 86 4990
3 16 89 5038
4 15 93 5098
7 14 100 5196
10 13 110 5326
9 12 119 5434
9 11 128 5533
7 10 135 5603
8 9 143 5675
12 8 155 5771
20 7 175 591 1
14 6 189 5995
35 5 224 6170
45 4 269 6350
68 3 337 6554
534 1 1011 7368
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R(r)

181
0 100 1000 10000

+ = Observed
x = Calculated (Egghe)
e = (alculated (Egghe, truncated)

Fig.IV.6.1 Fittings of Pope's bibliography
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In calculating Leimkuhler's function for Pope's bibliography, we take
for instance p = 5. Then one has Yo = 1473.6, k = 3.415, re © 5.27, a = 1199.8
and b = 0.4584. This gives the function

R(r) = 1199.8 log (1 + 0.4584 r) . [1vV.6.4]

See Fig.1V.6.1 (disregard the dotted curve e for the moment) for a comparison
of the observed and calculated data. The fit is reasonable, taking into
account the large Groos droop; cf. Groos (1967). How to ‘cut off' this droop
is the subject of the next section.

See also Brookes (1985) for other, more 'ad hoc' fitting methods for
Leimkuhler's law.

IV.6.3. Fitting the first part of Leimkuhler's function

IV.6.3.1. Comments on the Groos droop

The above method for calculating Leimkuhler's function is very good,
at Teast for IPP's not showing any 'Groos droop'. This is logical since
Leimkuhler's function

R(r) = a Tog (1 +br) [1v.4.2])

does not involve a Groos droop. Indeed, the graph of [IV.4.2] on a semi-
logarithmic scale (log r, R(r)) looks like Fig.IV.6.2,

oy |
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Fig.IV.6.2 Leimkuhler's function expressed graphically
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We have :
. dR(r) . abr o
1im Tloar = Tim T5Br -2 °

a constant.

It is a well-known fact that most practical examples of IPP's show a
Groos droop (small or large); see, for example, Pope's bibliography. Other
examples can be found in Aiyepeku (1977), Brookes (1969), Brookes (1973),
Brookes (1977b), Brown (1977), Drott et al. (1979), Egghe (1985), Groos (1967)
(although the term ‘'droop' was coined by B.C. Brookes), Lipatov and Denisenko
(1986), Praunlich and Kroll (1978), Saracevic and Perk (1973), Singleton (1976a),
Asai (1981), Avramescu (1980a), Brookes (1980a) and Haspers (1976).

A Groos droop can be defined exactly, as the occurrence of an inflection
point ry in the curve of the function R{r) on a semi-logarithmic scale :

dzr

— {(r,})=0. [1v.6.51
(dlog r) d

This results in the graph shown in Fig.IV.6.3.

Rirs b
GROOS DROOP
100
50
0 T T T U T
1 2 5 v 203 100

Fig.IV.6.3 The Groos droop

This model is not included in Leimkuhler's function [IV.4.2] (the case
in which a = 2) but is included in the generalised Leimkuhler function
[IV.4.43], for a < 2.

Two approaches are possible.
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. Try to model the Groos droop with function [IV.4.43] (or any other well-

fitting function). This droop is then explained in so far as [IV.4.43] is
explained. This reduces to the explanation of lLotka's law

f3) =&,
J
J € [p(0),p(A)] = [1,ym]. This has been given in Section IV.2.2.
The fitting of function [IV.4.43] will be done in the last chapter of this

Part IV.

Accept Leimkuhler's function [IV.4.2] as a good law for modelling certain
'pure’ informetric phenomena and then try to explain deviations from it,
due to several causes. In Egghe and Rousseau (1988b), this last approach
has been taken. There we encountered the following possible explanations
for the Groos droop (from the 'deviations' point of view) :

- Incompleteness of the IPP,

- Merging of IPP's (see also Egghe (1989a) for an exact definition of
merging of IPP's and Rousseau (1989e) for a merging model).
Interpretations of merging are : interdisciplinarity of the subject
(cf. Pope's bibliography) or bibliographies ranging over a very long time
period ('osmotic' merging).

Especially in the case of incomplete IPP's, one might be interested in

having the completed (unknown) IPP, The main idea behind the solution to this
problem is that all the important sources (lower ranks), are certainly known
in the incomplete IPP. Consequently, we say that the beginning of the
Leimkuhler curve R is correct and that the incompleteness occurs where the
Groos droop starts. Therefore, in Egghe (1989e and 1989a) we invented the
following 'cutting-off' method.

1V.6.3.2. Methodology of 'cutting-off’

Choose a preliminary cutt-off rank Po at which the Groos droop becomes
apparent and check the production (the number of items) of the source at
this rank, say n.

Choose a number p of Bradford groups for the unknown IPP without a Groos
droop. Take p high enough (e.g. p = 10) so that ‘interpolation' can take
place until rank r = o is reached (an explanation follows below).

The Bradford factor for the complete IPP is determined as before :
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k= (1781 y )1/P [1V.5.3]

- Based on equation [IV.5.4], calculate the (decimal) number of groups q that

are linked to n :

q
n =K
eY
Hence
Y *+logn
q = Tog k- [IV.6.6]

- Thus, the source on rank r = fg belongs to the ([q] +1)th-1ast Bradford

group.

- Since we later need a whole number of groups, we will take our cut-off
point a Tittle lower in rank (not larger, in order to exclude the Groos
droop). This means that we take the source with the highest rank in the
(Iq] +1)th-group. This is calculated by again using equation [IV.5.4] :

[q]+1
n' = k
oY

[1V.6.7]

The number n' determines the final cut-off rank r'.

- What is left after truncation at rank r' contains p-[q] -1 Bradford groups.

See Fig.IV.6.4.

p"’ group (tgi«1)th group Z”dgmup 1t group
| 1 1 | R 1 1 g
0 A s o complete
bibliography
final cutl-off first cut - off
rank rank

Fig.IV.6.4 Geometry of Bradford groups

- We are now in a position to calculate all parameters of Leimkuhler's

function for the complete Bradford distribution, based on our truncated one.

The number of sources r' = T and the number A of items in the truncated IPP

are of course known directly from the table of observed data.



IV 6. Fitting methods for informetric laws 353

- Since A items are divided over p-~[gq] -1 groups and since all groups
(even for the complete IPP) contain Yo items, we have

~

yg = —2— . [IV.6.8]
p-lql-1

~ Since Yq and k for the complete IPP are now known, we already have

! IV.4.51
a= Tog ¥ - {1v.4.
- Since every Bradford group contains ro,rok,rokz,...,rokp~1 sources
respectively, the truncated IPP contains

T = p-Iql-2

T= rg * rok LT rok .
sources (because in the truncated IPP there are p-[q) -1 groups). Hence ro
is also found :

- 7
0 ik, +xP-HAk-2

o Tk1)
Y‘O —k—p—_—[a']—_—f—-T . [IV.G.Q]

- From this we finally derive

b=kt [1V.4.6)

and
R(r) = a log (1+br) , [Iv.4.2]

representing Leimkuhler's function for the unknown IPP without a Groos
droop.

1V.6.3.3. Example
We once again make use of the example of Pope's bibliography in which

a Groos droop is very apparent (see Fig.IV.6.1). We propose cutting at about
rank r = 185 (although better fits might be obtained when cutting at rank 50
or so; we leave this exercise to the reader). Here n = 6. Take p = 10, in

which case k = 1.848. Now q = 3.86, so that [g] = 3 and [q]+1 = 4, n' = 6,55.
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Lastly, we take rank r' = 189 - 0,55 (189-175) ~ 181. Hence ? = 181 and so,
according to table IV.6.5, A = 5947. Thus Yg = 991.25 a = 1614.0, rg = 3.95 and
b = 0.215. This yields the function

R(r) = 1614 log (1+0.215 r) . [IV.6.10]

We see from Fig.IV.6.1 (dotted line) that the fit is much better now.
Stated earlier, better fits are possible when cutting off earlier. Indeed,
as we can see in Fig.IV.6.1, the Groos droop is also present in the ranks
before 181.

This method has been applied in Rousseau (1987a). In the same paper a
good definition of the nuclear zone of a Leimkuhler curve is proposed. A p-
nucleus is defined within which the slope of the curve is less than the
proportion p of its maximum value. This definition is scale invariant. A
0.75-nucleus is proposed for practical applications. This nucleus consists
of the first % sources. For Pope's bibliography this yields a core consisting

of {g] = [UT%TS] ~ 14 journals.

Other examples and extensions of the above cutting-off method have been
given in Egghe (1989%) and Egghe (1989%a).

In Ravichandra Rao (1989) this ‘cutting-off' method has been used in the
modelling of journal productivity in economics.

In so far as a Groos droop is caused by incompleteness, the above
references also include methods to estimate the upper bound on the size of
the completed (unknown) bibliography.

1V.6.3.4. Note on the arcs near the end of a Leimkuhler curve

There are frequently several high-ranking sources that provide the same
number of items : there might be a rather large number of sources yielding
three items, a larger number yielding two items and an even larger number of

sources yielding only one item each.

Since the increase of R(r) at these ranks is linear in r (per group of
equal productivity), the graph of R versus log r is exponential (per group of
equal productivity). These exponential graphs get more visible as the groups
of sources with equal productivity get longer. This explains the arcs near the
end of a Leimkuhler curve frequently encountered in practice; see, for example,
Warren and Newill (1967), Brookes (1973), Praunlich and Kroll (1978), Wilkinson
(1973), Summers (1983) and Fig.IV.6.5.

This phenomenon is a purely mathematical consequence and has nothing to
do with the above-described Groos droop.
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Fig.IV.6.5 The arcs near the end of a Leimkuhler curve

IV.6.4. Fitting of the generalised Leimkuhler and Lotka functions

1V.6.4.1. Methodology

This final section is devoted to the fitting of the general Leimkuhler

function
2-o

)T:al, [IV.5.2 ]

1-a

R

where r = 1,2,...,T.
Of course this immediately gives rise to the problem of fitting Lotka's

function {(a > 1) :

£(3) =% , [1v.3.17]
J
where j = 1,2,...,ym.
Note that if o < 2, the function [IV.5.2 1 has a Groos droop. Other
functions have been proposed to fit this phenomenon, but their distributions
are usually compiicated and left unexplained; see, for example, Griffith
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(1988) and Sichel {1986).

Several papers have been devoted to fitting Lotka's function (for
general o) : Nicholls (1986), Nicholls (1987), Pao (1982), Pao {1985), Pao
(1986) and Tague and Nicholls (1987). They have devised a few methods for
deriving a good o, some better than others.

The whole problem of fitting (IV.5.2 1 and [IV.3.17] can actually be
reduced to find the 'best' a, Once o determined, C follows as indicated below :

ym
T= % f(j),
J=1
ym1
T=C ¥ —,
. L0
=13

where o > 1. Since X ;% converges (a > 1) we have
=13

CN-C—(TE)— , [IV.6.11]
where z(a) denotes the classical zeta function. Since T is known, C can be
determined from a table of c(a)'1, as given, for instance, in Nicholls (1987),
but extended and reproduced here since we need it further on : see Table 1V.6.6.

Since Ym is also known, we now see that, once o is known, all parameters
in [IV.5.2 ] and [IV.3.17] are known.

In what follows, we will suffice to investigate whether some o and C
that yield a well fitting Lotka function [IV.3.17) (i.e. they fit the practical
data well) will also yield a well fitting general Leimkuhler function
[1V.5.2 1. We will give two examples.

1V.6.4.2. Examples

Example 1 : The Murphy data

These examples can be found in Murphy (1973) as well as in Pao (1986) or
Rao (1980); see Table IV.6.7. For these data, the least squares method
(Nicholls (1986)) yields o = 2.104 and C/T = 0.6424. Lotka's function fits
well, With this a and C, equation [IV.5.2 ] also has a good fit.

Here Dmax = 0.0665, but the 5 % critical value is approximately

1.36 0.0882. We can accept our general Leimkuhler function :
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c_ 1 cep s
Table IV.6.6. Table of T ey for a € [1.11,3.49] with increments of 0.01

o c/T a /T a c/T a c/T o c/T o /T

1.50 0.3828 1.90 0.5715 2.30 0.6981 2.70 0.7848 3.10 0.8450
1.11 0.1033 1.51 0.3885 1.91 0.5753 2.31 0.7007 2.71 0.7866 3.11 0.8463
t.12 0.1121 1.52 0.3942 1.92 0.5791 2.32 0.7033 2.72 0.7883 3.12 0.8475
1.13 0.1208 1.53 0.3998 1.93 0.5828 2.33 0.7058 2.73 0.7901 3,13 0.8488
1.14 0.1294 1.54 0.4054 1.94 0.5865 2.34 0.7083 2.74 0.7918 3.14 0.8500
1.15 0.1378 1.55 0.4109 1.95 0.5902 2.35 0.7108 2.75 0.7935 3.15 0.8512
1.16 0.1462 1.56 0.4163 1.96 0.5938 2.36 0.7133 2.76 0.7952 3.16 0.8524
1.17 0.1545 1.57 0.4217 1.97 0.5974 2.37 0.7157 2.77 0.7969 3.17 0.8536
1.18 0.1627 1.58 0.4270 1.98 0.6009 2.38 0.7181 2.78 0.7986 3.18 0.8547
1.19 0.1708 1.59 0.4323 1.99 0.6044 2.39 0.7205 2.79 0.8003 3.19 0.8559
1.20 0.1788 1.60 0.4375 2.00 0.6079 2.40 0.7229 2.80 0.8019 3.20 0.8571
1.21 0.1868 1.61 0.4427 2.01 0.6114 2.41 0.7252 2.81 0.8035 3.21 0.8582
1.22 0.1946 1.62 0.4478 2.02 0.6148 2.42 0.7276 2.82 0.8052 3.22 0.8593
1.23 0.2024 1.63 0.4528 2.03 0.6182 2.43 0.7299 2.83 0.8068 3.23 0.8605
1.24 0.2100 1.64 0.4578 2.04 0.6215 2.44 0.7322 2.84 0.8083 3.24 0.8616
1.25 0.2176 1.65 0.4628 2.05 0.6249 2.45 0.7344 2.85 0.8099 3.25 0.8627
1.26 0.2251 1.66 0.4677 2.06 0.6281 2.46 0.7367 2.86 0.8115 3.26 0.8638
1.27 0.2325 1.67 0.4725 2.07 0.6314 2.47 0.7389 2.87 0.8130 3.27 0.8649
1.28 0.2399 1.68 0.4773 2.08 0.6346 2.48 0.7411 2.88 0.8145 3.28 0.8660
1.29 0.2471 1.69 0.4821 2.09 0.6378 2.49 0.7433 2.89 0.8161 3.29 0.8670
1.30 0.2543 1.70 0.4868 2.10 0.6409 2.50 0.7454 2.90 0.8176 3.30 0.8681
1.31 0.2614 1.71 0.4914 2.11 0.6441 2.51 0.7476 2.91 0.8191 3.31 0.8691
1.32 0.2685 1.72 0.4961 2.12 0.6472 2.52 0.7497 2.92 0.8205 3.32 0.8702
1.33 0.2754 1.73 0.5006 2.13 0.6502 2.53 0.7518 2.93 0.8220 3.33 0.8712
1.34 0.2823 1.74 0.5051 2.14 0.6533 2.54 0.7539 2.94 0.8235 3.34 0.8723
1.35 0.2891 1.75 0.5096 2.15 0.6563 2.55 0.7560 2.95 0.8249 3.35 0.8733
1.36 0.2958 1.76 0.5140 2.16 0.6593 2.56 0.7588 2.96. 0.8263 3.36 0.8743
1.37 0.3025 1.77 0.5184 2.17 0.6622 2.57 0.7600 2.97 0.8277 3.37 0.8753
1.38 0.3090 1.78 0.5227 2.18 0.6651 2.58 0.7620 2.98 0.8291 3.38 0.8763
1.39 0.3156 1.79 0.5270 2.19 0.6680 2,59 0.7640 2.99 0.8305 3.39 0.8772
1.40 0.3220 1.80 0.5313 2.20 0.6709 2.60 0.7660 3.00 0.8319 3.40 0.8782
1.41 0.3284 1.81 0.5355 2.21 0.6737 2.61 0.7680 3.01 0.8333 3.41 0.8792
1.42 0.3347 1.82 0.5397 2.22 0.6766 2.62 0.7699 3.02 0.8346 3.42 10,8801
1.43 0.3409 1.83 0.5438 2.23 0.6793 2.63 0.7718 3.03 0.8360 3.43 0.8811
1.44 0.3471 1.84 0.5479 2.24 0.6821 2.64 0.7737 3.04 0.8373 3.44 0.8820
1.45 0.3532 1.85 0.5519 2.25 0.6848 2.65 0.7756 3.05 0.8386 3.45 0.8830
1.46 0.3592 1.86 0.5559 2.26 0.6875 2.66 0.7775 3.06 0.8399 3.46 0.8839
1.47 0.3652 1.87 0.5599 2.27 0.6902 2.67 0.7793 3.07 0.8412 3.47 0.8848
1.48 0.3711 1.88 0.5638 2.28 0.6929 2.68 0.7811 3.08 0.8425 3.48 0.8857
1.49 0.3770 1.89 0.5677 2.29 0.6955 2.69 0.7830 3.09 0.8438 3.49 0.8866
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(5

_ 0.6424x170
R(r) = =g 1oa7—

-0.1047_(5-1.1047+U_&%m,)0-0948], [IV.6.12]

R(r) ~ -1043.052 [0.8449 - (0.1690 + 0.0101 r)0-0948;

Table IV.6.7. The Murphy data

R(r)
R(r)

r calculated

observed via [IV.6.12]
1 5 4.9
2 9 9.5
3 13 13.9
4 17 18.1
5 21 22.1
6 25 26.0
7 29 29.7
8 33 33.3
9 37 36.7
10 40 40.0
" 43 43.3
12 46 46.4
13 49 49.4
14 52 52.3
15 55 55.2
16 58 57.9
17 61 60.6
18 64 63.2
19 66 65.8
20 68 68.3
30 88 90.2
40 108 108.2
50 118 123.6
70 138 148.9
90 158 169.3
110 178 186.6
130 198 201.5
150 218 314.7
170 238 226.5

Example 2 : The Radhakrishnan-Kerdizan data

These examples can be found in Radhakrishnan and Kerdizan (1979); see
also Pac (1986) and Table IV.6.8.

In this case the Nicholls least-squares method yields o = 3.4880 and
C/T = 0.8864. The maximum 1ikelihood method (Nicholls (1986)) gives o = 3.4000
and C/T = 0.8782. Both methods give a fit to Lotka's function [IV.3.17]
(although not a splendid one), but a very bad fit to Leimkuhler's function
[IV.5.2 1. In this case, we propose using another simple method : Estimate C
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by

f(1) =C. {IV.6.13]
Here this is 250.
Table 1V.6.8. The Radhakrishnan-Kerdizan data
R(r)
R(r)
r calculated
observed via [IV.6.15]

1 7 6.4
2 13 12.0
3 18 17.0
4 22 21.6
5 26 25.8
6 30 29.8
7 34 33.5
8 38 37.1
9 41 40.4
10 44 43.7
11 47 46.8
12 50 49.8
13 53 52.7
14 56 55.5
15 59 58.2
20 69 70.8
30 89 92.3
40 109 110.7
50 129 124 .1
51 131 125.6
52 132 127.0
100 180 191.5
200 280 283.5
300 380 354.2
301 381 3

354.

This produces

C _ 250 _ 250 _
T-—T—--S-OT—O.8306

Using this and Table IV.G.‘, we get

a = 2.9907

These values not only results in a good fit of Leimkuhler's function,
but the fitted Lotka function (@ = {.),

359
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o(§) = 5206 [1V.6.14]
8
is better than the least squares (LS) or maximum likelihood (ML) methods in
Nicholls {1986). For Lotka's fitting we obtain Dmax = 0,0151, which is smaller
than Nicholls' fits :
LS : DmaX

ML : Dmax

0.0367
0.0285

For Leimkuhler's general function [IV.5.2 ] we obtain DmaX = 0.086
(much better than Nicholls'), which is at about the 1 % level. Consequently,
at the 1 % level, we have a fit (unlike Nicholls). We have here the function

-1.0442 _ (7-2.0442 + .2.0432 r_)0.5108]

_ 0.8378x 301
R(r) = =Zrpagz—

(7

[1V.6.15]

R(r) =~ -241.4923 [0.1311 - (0.0187 + 0.0081 r)0'5108].

This shows that the above simple method deserves to be investigated
more closely.
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Iv.7. APPLICATIONS

What are applications of the informetric laws? First of all, we have
seen that these laws have an explanatory function, raising the status of
informetrics from a technique to a scientific theory. This is a very important
(theoretical) application indeed. Next, once an informetric law has been
accepted, one can deduce new properties from this law to be discussed in this
Section. In these cases it is sufficient to determine only the parameters
(such as C and o in Lotka's law). This saves time and does not require too
much data.

IV.7.1. Aspects of concentration theory, 80/20-rule, Price's law, concentration

measures

In a manner of speaking, IPP's represent very elite situations : the
distribution functions are very skew in the sense that many sources have a
few items and a few sources have many items (the latter sources being the
geniuses where the sources are authors, or top journals when the sources are
journals). These sources form two groups, divided by a ‘middle' group of
sources with an 'average' production.

Bradford himself must have shared these ideas since he always wsed p = 3
groups (cf. Bradford (1934)). The most important sources (in the first group)
form the 'nucleus'. If we think of sources as journals, these sources will be
bought in any case. The middle group will be bought if there are sufficient
funds., The last group can be skipped. Nevertheless this simplistic reasoning
is not an application of Bradford's law : one merely has to divide the articles
(items) in the bibliography into 3 equal parts. One only has to look at the
corresponding sources to obtain the required division, without applying
Bradford's law.

One IPP is more concentrated than another. This is expressed by the fact
that one IPP has a few sources with a very high number of items. This could be
expressed by using the Bradford factor k (where a high k represents a very
concentrated situation). However, k is not a good indicator of concentration
since there is no basis for comparison and since k is p-dependent, The
following three Subsections describe good ways of dealing with concentration.

Iv.7.1.1. The 80/20-rule

We briefly repeat here the 80/20-rule (as was introduced earlier in
Section 11.6.2).

Take an arbitrary discrete IPP (e.g. a bibliography). Order, as usual,
the sources in decreasing ordgr according to the number of items they contain.
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The 80/20-rule states that 20 % of the most important sources will contain
80 % of all the items. Of course this is only a historic formulation; one can
generalise this rule as follows :

Arithmetic expression of concentration :
100 x % of the sources will produce 100 6 % of the items, and we look
for the function

X = x(e) . [Iv.7.1]

The following equation is given in Egghe (1986b), supposing a Bradfordian
IPP :
2
m
g Y- u1-9)
x=—e s [1v.7.2]
™

where p is the average number of items per source (i.e. p = #) and e » 2.7183,
™~ 3,1416, v ~ 0.5772. We refer to Egghe (1986b) for a discussion and
application of this equation (cf. also Burrell (1985a)).

IV.7.1.2. Price's law

Price (1971,1976) states {see also Allison et al. (1976)) that, if there
are N sources in the IPP, then VN of the top sources will have 50 % of the
items. Stated otherwise, N1/2 sources yield a fraction %-of the items. This
phenomenon is associated with the occurrence of invisible colleges (see also
Price and Beawer (1966)), i.e. the hierarchical elites in fields (or subfields)
of science. As the 80/20-rule, this 'Price's law' is too simple, as was already
shown in Allison et al. (1976) and Nicholls (1988). We therefore formulate
the following

Geometric expression of concentration
Let there be N sources. Then the N* (0 < o < 1) top sources will have
100 6 % of the items, and we look for the function

a = af8) . [1v.7.3]

Note that even o = 6 would generalise the above Price’s law (which states in
addition that o = 6 = %). Egghe (1987b) and Egghe and Rousseau (1986)
investigated this function, concluding that in most cases

78S

8sa 1—%-9 [1V.7.4]
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For instance, for 6 = 0.8 one has 0.8 £ a £ 0.9 and certainly for 6 high
(i.e. close to 1) : am 6.

IV.7.1.3. Concentration measures

So far, 'concentration' has been expressed by two parameters :
arithmetically via (x,8) and geometrically via («,8). One might also wonder
what the requirements are for a single measure to be a good concentration
measure. This has been investigated in Egghe and Rousseau (1988) mainly as
a consequence of Allison (1978).

Iv.7.1.3.1. Axioms of concentration measures

In the general situation, there are N 'boxes' each containing X5
(i =1,...,N) 'balls'. To cite an example, N = the number of sources (i.e.
N =T) and X = the number of items in the ith source (assuming the sources
are numbered). While more general interpretations of the sequence XqsXgsenesXy
are possible, this interpretation suffices for this section.

A concentration measure is then a function of the N variables

Xgseersky
f: (x1,x2,...,xN) -+ f(x1,x2,...,xN) . [Iv.7.5]}

We formulate the following requirements for a function f to be a good
concentration measure. Each requirement (axiom) is followed by an interpretation
in econometrics since the 'elite' terminology 'rich' and ‘poor' greatly
facilitates our imagination.

(c1) I1f anl x; are equal, say to ¢ # 0, then f(x1,...,xN) attains its

minimum value, equal to 0.
This is a perfectly natural condition, since there is no concentration.
Note also that (C1) implies that a concentration measure is never negative.

(C2) For every (X1""’XN) and every permutation
T {15e..,N} > {1,...,N} we require that

f(x1,...,xN) = f(xn(1),...,x"(N)) . [1V.7.6]

This principle expresses the fact that, to use our example, the poverty
{or wealth) of a nation is not a labelled property. It is only determined by
the overall configuration.
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(C3) Scale invariance. This principle states that for every (x1,...,xN)
and c > 0 : -

f(cx1,...,cxN) = f(x1,...,xN) . [1v.7.7]

It expresses the requirement that a good concentration measure should
not be influenced by the units. Returning to the case of income distributions,
this means that there may not be a difference, regardless of whether the income
is calculated in dollars, yen or rupees.

(C4) 'When the richest source gets richer, inequality rises'. This
principle is a very natural one. It has two requirements : the first is the
one mentioned above. The second is its dual : when the poorest source gets
poorer, inequality also increases. In a mathematical formulation this becomes
the following :

(C4a) If X; = max {x1,...,xN} and if there exists a k # i such that
Xy # 0, then, for h > 0,

f(x1,...,x1+h,...,xN) > f(x1,...,xN) . [Iv.7.8a}

(cab) 1f X3 = min {x1,...,xN} and 0 < h g X; then

f(x1,...,xj-h,...,xN) < f(x1,..,,xN) . [Iv.7.8b]

(C5) The principle of nominal increase. This principle requires that an
equal, nominal increase in each source should strictly decrease the global
inequality. Stated more formally, this becomes : for every (x1,...,xN), where

not all X; are equal and h > 0 :

f(x1+h,...,xN+h) < f(x1,...,xN) . [Iv.7.9]

(C6) The transfer principle. This principle, postulated by Dalton (1920),
states that if we make a strictly positive transfer from a poorer source to a
richer one, this must lead to a strictly positive increase in the index of
inequality. Formulated in a precise mathematical way, this becomes : if

X; < Xj and 0 < h < Xjs then

f(x1,...,xi,...,xj,...,xN) < f(x1,...,xi—h,...,xj+h,...,xN) . [Iv.7.10]

We note that such a transfer leaves the arithmetic mean unchanged. In
Egghe and Rousseau (1990) it is shown that (C6) implies (C5) and (C4), assuming
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(c3).
It could also be argued that a good measure of concentration should
vary between 0 and 1 :

Principle (B)
For all (X1""’XN)

0 < f(x1,...,xN) <1 . [IV.7.11]

However, this principle is only a mathematical convenience. It should
not imply any preference, as simple transformations can produce any desired
bounds. If a measure f is positive and does not satisfy the requirement that
f < 1, then we can use the transformation

f‘)'TT-f- .

This yields an increasing function of f with values in the interval [0,1].
The transformed function satisfies (C1) to (C6) if f does.

Iv.7.1.3.2. Examples of good and bad concentration measures
1. It is intuitively clear that the classical notions of standard

deviation (o) and variance (02), where

N N
2 _1 32 2 2
o = N'i§1 (x; =) = N-i§1 X{ -

N N
r ¥ (x
2 N° k=t &=1

—xz)z (1v.7.12]

Nlﬂ

k

(and y denotes the mean of the distribution), bear some relation to the
concept of concentration,

2. The coefficient of variation

v=09 [1v.7.13]
U
was introduced to deal with relative instead of absolute values.
Similarly we can consider
2
V=g, [IV.7.14]
]

or Gaston's measure (Gast(_);p:_w(1978))
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2
Ga = S’D- [1V.7.15]

or Allison's modified squared coefficient (Allison (1980))

AN [1V.7.16]

3. From linguistics we consider the Yule characteristic defined

as
2 2
K=_92_=!N_ . [1V.7.17]
ueN

Johnson (1979) advocates the use of Simpson’s index (Simpson (1949)) in
stylistic studies :

n

£ i(i-1) x,

i=1 !

J = G s [Iv.7.18]
where X is the number of words that occur i times and n is the total number
of words that occur in the text being investigated. Simpson's index is
nothing but the number of identical pairs divided by the number of all
possible pairs.

4, The Schutz coefficient (relative mean deviation) (Schutz (1951))

is
;N
NI, 1%l
D =—£‘_-2u—__— [1V.7.19]

According to Gastwirth (1972), this measure was first proposed by Yntema (1933)
and Pietra in the 1930's.

5. Pratt's measure and the Gini Zndex. In order to define Pratt's
measure we first assume that the xi's are ordered in decreasing order.
Taking

and
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N
=1 ia [IV.7.20]
i=t

Pratt's measure C is defined as (Pratt (1977)) :

N+1
2 ( -q)
_ .
C = "“N‘r—z- : [1v.7.21]

Gini's index is then

-1

G = T C. [1v.7.22]
Bear in mind, however, that the Gini index was introduced in econometrics
(Gini (1909)) long before Pratt's measure was defined. Relation [IV.7.22]
was established in 1979 by Carpenter (1979). The usual definition of Gini's
index uses the so-called Lorenz curve; see Egghe and Rousseau (1989).

6. Theil's measure {Theil (1967)). This inequality measure is defined
as :

X

(T‘) Tog (—) [1v.7.23]

||Mz

1
™=y,

(cf. the notion of entropy in information theory).
Note further that in this formula one sets 0. log(0) = 0.

7. The variance of logarithms.

1 N N Tog(x.) 2
L=g = (tog(x;) - = ———N—l—) s
i=1 j=1
ISR (Togx, - log x.)? [1V.7.24]
N ket get kT O9 % o

which is only defined if all Xy #0.

8. Atkinson's index. Atkinson (1970) introduced a family of concentration
measures defined as :

N
Ale) =1 - (W >: (—)1"*)1':é R [1V.7.25]

where e > 0 and e < 1.

If all X # 0, A(1) is defiped as 1im A(e), which is nothing but
el
<
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- GM(X'I)

H ’ [1v.7.261]

as can easily be seen.

Here GM(xi) denotes the geometric mean of the X35 i=1,...,N (see also

1.1.4.3). Note that 1ig A(e) = 0. The equation for the Atkinson index as
-

presented in Allison ?1978), p.873, seems to be in error.

9. The CON-index (Ray and Singer (1973)). In the authors' own words,
this index is the standard deviation of the percentage shares divided by the
maximum possible standard deviation in a system of size N,

This yields :

X
Since a; = ﬁﬁ’ this formula can be rewritten as follows :

¥ x? - uzN

1oy fi=t ! b o
CON = - \' - = [1V.7.27]

N=1) WT VAT
(using equations [IV.7.12] and [IV.7.131).
Equation [IV.7.27] shows that CON is only a variant of the coefficient of
variation.

10. Lotka's o. Lastly, Rao (1988) pointed out that when data follow
Lotka's distribution :

fG) == [1v.3.17]
J

the exponent o could be used as a measure of concentration.

Egghe and Rousseau (1989) present the proof of the validity of the
following table (where Y = has the property and N = does not have the property).
Some proofs are long and based on Hardy-Littlewood-Polya inequalities for
convex functions (Hardy, Littlewood and Polya (1988)).
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Table IV.7.1. Properties of concentration measures

(c1) (cz2) (c3) (c4) (c5) (c6)

0,0 Y Y N

'R Y Y Y Y Y Y
Ga Y Y N

A Y Y N

K,CON Y Y Y Y Y Y
J Y Y N

D Y Y Y Y Y N
C Y Y Y Y Y Y
& Y Y Y Y Y Y
Th Y Y Y Y Y Y
L Y Y Y Y Y N
Ale) (0<e<1) Y Y Y Y Y y
o Y Y Y N

In conclusion, we can state that the following groups of similar
measures are good concentration measures :

1) v, v2, K, CON
2) ¢, 6

3) Th

4) Ale), e > 0.

Egghe and Rousseau (1989) define a new property, the extended transfer
principle, dealing with transfers over the whole population rather than between
two elements, as in (C6). V, C and G are shown to have this strong (C6)

. property, while Th and A(e) do not. So 'excellent' measures are the ones in
the above groups 1 and 2. As shown in Egghe and Rousseau (1989), these two
groups can be reformulated in one formula : the measures
1
( 1_ g g |xk-x2|r)r
k=1 2=1
M

)

P(r) = [1v.7.28]

for r > 0. Then it can be seen that P(1) = C and P(2) = / N%ﬁT-V. The measure
P is called the 'generalised Pratt measure'. A1l these measures P are 'excellent’,
as described above. The relation of P(2) with the variance [IV.7.12] and another
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property of P(2) (and derivatives, such as V, V2, K, CON) makes these measures
the 'ultimate best' ones (as shown in Egghe and Rousseau (1990)). Furthermore,
CON is normalised.

Note :

The aim of dispersion measures, such as those studied in Heine (1978),
is opposite to concentration measures : they measure the degree of dispersion
of a situation XqaXgseensXye In general, for concentration measures f
satisfying 0 < f £ 1 :

g=1-fF

is a dispersion measure (and vice versa). Therefore no other theory of
dispersion measures is needed.

This remark includes, for instance, Singleton's index; see Heine (1978)
or Singleton (1976b). In Egghe and Rousseau {1989) it is shown that this index
is nothing but 1-C.

IV.7.2. Compression of databases

A trivial conclusion is that, when searching codes for words in texts,
it is best to assign the shortest codes to the most frequently used words,
as then they occupy the least space. Not every coding can be used. After all
codes must be able to be decoded. If decodability was not a requirement, the
problem would have a trivial solution : emphasising binary codes; i.e. take @
for the most frequently used word W1 (rank 2), 1 for the word W2 at rank 2,
@@ for the word W3 at rank 3, etc. But this would not be useful, since @@ can
mean W3 as well as W1 W1 and hence @@ cannot be decoded.

Nowadays different decodable compression techniques exist. The

optimality depends on the different way the words are used in the text.
Knowing, for example, that a text is Zipfian gives us concrete information
about selecting the best compression technique. The effect is quite
considerable. The interested reader is advised to consult Heaps (1978) and
Jones (1979) for the details.

IV.7.3. Style and authorship
Zipf's law, or better, the deviations from this law, can be used to
quantitatively determine the stylistic properties of texts. Statistical

(mainly xz-) tests, in particular, can be used to :
- deny an alledged authorship
- put a sequence of texts in chronological order.
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The basic idea here is that an individual author has a proper style,
which is determined by word choice and word use, and that it more or less
deviates from a certain Zipfian pattern. In most cases one uses a derived
equation rather than the Zipf function g [IV.1.5] itself.

Example :
The entropy measure

>
- , p(r) log, p(r)

= _r=
H-= Tog, T s [IV.7.29]

where p(r) = Q%Kl , and T is the total number of words in the text. Equation
[IV.7.29] is independent of the length of the text, a logical requirement. For
more information about these aspects of quantitative linguistics, we refer the
reader to the basic works of Herdan (1960) and especially Herdan (1964), where
extensive and non-trivial methods for style distinctions are described.

IV.7.4, Storage and text retrieval in a computer

Let us suppose that the words of a text we wish to store in a computer
comprise T word types (or 'sources' in our terminology).

Let us further suppose that these words (or their code numbers) are
stored randomly. Clearly, on the average, the system must check % entries in
order to find a specific word.

Let us also suppose that the text is Zipfian : to determine the ideas,
we take g = 1 in [IV.1.5] :

=S|,

g(r) = s [IV.1.5]
where r is the rank of the word. The words are ranked, as usual, in decreasing
order of their use in the text. If the words in the text are stored in this
“order, the system must check r entries in order to search for the word at rank
r. The probability for this is expressed as

F
FK ]

where A is the length of the text (or ‘'items' in our terminology). On the
average the system has to check

M —

1 Tor=H . (1V.7.30]

r
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But, again using [IV.1.51, we get

T
A= x =~FlogT. {1v.7.311]
r=1
Equations [IV.7.30] and [IV.7.31] now yield the average number of entries to
be checked, which is

FT _ T
?—W = Wg—T » [IV.7.32]
or significantly less than %-as T »»ez for every text, Purely mathematically,
it is interesting to note that, for large T, expression [IV.7.32] equals the
number of prime numbers which are smaller than or equal to T (see e.g. Rosen
(1988)), a remarkable coincidence.

IV.7.5. Bradford's law and sampling

If a bibliography is completely known, it is very simple to determine
Bradford's law (see e.g. Section IV.6.1). Of course, Bradford's law itself
cannot be used for purposes of collection management. If we know the complete
bibliography, it is much simpler to use it directly -~ without having recourse
to any laws - in order to determine the number of sources needed to have,
say, a certain percentage of the items.

We are faced with a different problem in the case (encountered
frequently in practice)} in which the librarian does not have the complete
bibliography on a certain topic but only has a sample (for time and budgetary
reasons!). How can we construct a nucleus of, for example, journals to have,
say, 80 % of all the articles on this topic?

This problem has been solved by Tague (1988). To come up with the
solution, one needs :

- The Bradford form of the sample.
- The Bradford model of the complete (unknown) bibliography.
- The knowledge of the most important journal (a very natural supposition}.

Armed with these ingredients and using an extended ‘rule of three’,
one can estimate the parameters o and k of Bradford's law for the complete

bibliography and hence determine the desired nucleus.

In general we can say that informetric laws are useful for modelling
complete (unknown) IPP's based on knowledge of the sampled IPP's (cf. also
Section IV.6.3).
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IV.8. NOTES AND COMMENTS

IV.8.1. History
The reader is referred to Cole and Eales (1917) and Hulme (1923) for the

first recorded informetric (avant la lettre) studies and to Egqghe (1988f),
Schmidmaier (1984) and Bonitz (1982) for more details on the history of
informetrics. Petruszewyc (1978) deals with the historical developments
leading to Pareto's and Zipf's laws (also called 'Estoup's law').

Iv.8.2. Explanations

1. Avramescu (1973,1975,1980b) studied information transfer from a
physical point of view. He considered the transfer as a diffusion process
Tike heat conduction.

2. Naranan (1970) constructed an informetric model based on the
(doubtful) principle (see IV.8.8) of the exponential growth of both the
sources and the items. See also Hubert (1976) for a review of this paper.
In any case this 'explanation' is based on ‘'unexplained' assumptions.

3. Karmeshu, Lind and Cano (1984) presented a rationale for Lotka's
Taw based on the random cutting of a square (or of the random crushing of
rocks). The different sizes in the end conform to a log-normal distribution.

4, Schubert and Gldnzel (1984b) gave an explanation of the so-called
Waring distribution. Let @(j) denote the fraction of authors with j
publications. Then

o ala+k){a+k-1)...{k+1)
S U re s I e s TR R [1V.8.1]

Their explanation is based on :
1) a self-reproducing property,
2) a cumulative advantage ('success breeds succes', c¢f. Section 1V.2.1),
3) a uniform Teakage.
However, the three proposed functions that describe the above principles are
not explained, although, they are admittedly given in the simplest possible
forms. They do obtain reasonable fits with practical data. The Waring
distribution also appears in Herdan {1960 and 1964) and Irwin (1962) in
respectively linguistical and biological contexts; see also Telcs, Gldnzel
and Schubert (1985) and Schubert and Glinzel (1984a).

5. The principle of least effort (Zipf (1949)) states that a human being
will tend to solve problems in such a way that the total work is minimised.
However, no clear link between this principle and Zipf's law exists.
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6. For a (not very recent) review of explanations of informetric laws
we refer the reader to Fedorowicz (1982). This article also cites further
evidence for Lotka-type laws. (This includes a derivation from Bose-Einstein's
cell occupancy model; see Subsection 1.2.5.2). The Bose-Einstein model was
already used before by Woodroofe and Hill (1975) in connection with Lotka's
law; see also some references in this article.

7. In Tague (1981) a generalisation of the success breeds success
principle (generalising an urn-model of Price linked to this principle) yielded
the derivation of the negative binomial distribution and the Mandelbrot
function.

8. Rao (1980) also refined the negative binomial distribution, based on
a success breeds success argument. Bookstein (1979) reviewed explanations of
bibliometric laws.

9. The 'Matthew effect' is a socio-psychological phenomenon related to
the success breeds success principle and the cumulative advantage effect. It
was first described by Merton (1968) (see also Merton (1988) and Bensman
(1985)) who gave it its name by referring to the Gospel according to St.
Matthew :

'For unto everyone that hath shall be

given, and he shall have abundance;

but from him that hath not shall be

taken away even that which he hath'.

The Matthew effect as it was understood by Merton refers to the habit
people have of giving credit (e.g. for scientific discoveries) to already
famous people and minimising or withholding recognition for scientists who
have not (yet?) made their mark.

10. The informetric distributions discussed in Part Il on library
circulations are other models, comparable to Lotka's distribution. These
models fit library circulation better than the Lotka functions and are derived
in a statistical sense. However, no model-theoretical rationales, as developed
in this part for Lotka's law, exist for these circulation models. The same
can be said about Sichel's Generalised Inverse Gaussjan-Poisson (GIGP)
distribution (Sichel (1985,1986) and Sichel's earlier work). Especially the
Sichel functions are extremely intricate ('if it does not fit well, add
another parameter : then the new fit cannot be worse than the old one'),
unexplained, and do not really serve the working librarian. Burrell is more
conscious about this last aspect (see e.g. Burrell (1980,1988c) and other
articles).

For a review of several distributions in relation to document use,
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the reader is advised to consult Rao (1982).

11. In Chen and Leimkuhler (1986 and 1987) the laws of Lotka, Bradford
and Zipf (or better, the functions they represent) are studied from a discrete
index approach and functional relationships are derived. In a manner of
speaking, they are discrete analogues of the relationships developed here.
Morse and Leimkuhler (1979) deal witj analogues, although this work contains
a few speculative relations.

1v.8.3. Zipf - Pareto

Zipf's law (Pareto's law) is included in the equivalent set of
informetric laws determined in theorem IV.4.1.1 (the case in which o = 2) and
theorem IV.4.2.1 (the case in which o # 2) by taking H = 1, Note that in this
case, for every r € [0,T], one has :

G

g(Y‘) = (—:’——)—BT [1v.8.2]
+r
rather than
_ G
g(r) = = . {1V.8.3]
r

These two laws do not differ much in practice, but we stress the fact that
only the form [IV.8.2] can be used (as form [IV.8.3] is not even defined in
r = 0). Egghe (1989a and 1989f) also investigated what other laws are
equivalent to [IV.8.2]. The well-known law of Brookes (or Weber-Fechner) and
the graphical version of Bradford's law (see Wilkinson (1973)) are appearing
in this context.

Let us determine the case in which o = 2. Taking H = 1 for Zipf's law
(Pareto's law) implies (see [IV.4.8]) b = 1. Then [IV.4.6] gives

k=1+ ro - [1V.8.4]

Equation [IV.8.4] shows that the cases of IPP's where Zipf's law (Pareto's law)
is valid are very concentrated (cf. situations as described in Section IV.7.1).
Indeed : either o is small, which is a way of saying (when p = 3 is taken to
determine the ideas) that the core group of frequently produced sources is
small, or ro is large. In the latter case, according to [IV.8.4], k must be
large and hence the core group of ro sources will be small with respect to
the other groups rok, rokz, etc.

We conclude that linguistics (or econometrics) can be viewed as part of
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informetrics, but in practice there is a separation since :

1. In most informetric examples, b < 1 and even b &1} (see Sections IV.6.2 and
1V.6.3, but also many examples in Egghe (1989a,e)).

2. In linguistics and econometrics one often finds b = 1. In informetrics we
only know one example of a bibliography where b = 1 : the ORSA-bibliography,
cf. Kendall (1960).

Incidentally, b = 1 coincides with the distribution called the ‘law of
anomalous numbers'. This is the rank distribution of occurrence of the numbers
with first digit r (r = 1,...,9) of numbers as they appear in real life (see
Brookes and Griffith (1978), Brookes (1984a) or Feller (1948)).

The following philosophical explanation accounts for the fact that
linguistic IPP's are more concentrated than, say, bibliographies (cf. Egghe
(1988d,1989a)).

In bibliographies, the most important sources naturally tend to Tower
the number of items a little, i.e. the most prolific authors will not publish
less important (but still publishable) work. Similarly, the most important
journals in a research area will become more and more selective in accepting
papers, and so on. This is not the case with texts : the most frequently used
words are words such as 'the', 'a', ‘and', etc. There is no limitation on
these words for grammatical reasons! Synonyms are in use only for popular
but not so frequently used words.

So this explains again why Zipf's law is a highly concentrated version
of Mandelbrot's law. '

IV.8.4. Applications

1. An application of informetric laws to the departmental allocation
of funds can be found in Bookstein (1988).

2. An application of Zipf's law to the calculation of the entropy of a
language is given in Yavuz (1974).

3. Pratt (1977) also introduces a measure of ‘relative concentration',
which measures the concentration of one situation compared to another. For
example, the concentration of journal articles in a specific journal (on
different topics) with respect to the articles in the whole area. Egghe (1988e)
shows that this measure does not satisfy all 'axioms' that such a relative
concentration measure should have and proposes another measure. Egghe (1988a)
studies the time evolutions of concentrations.

4, Equation [IV.7.2] is not valid if o # 2. However, in Egghe (1986b)
it is shown that the following effect still holds : the higher p is, the Tower
the fraction x of the sources is needed in order to have a fixed fraction 6 of
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the items.

5. As noted earlier, Price's law is generally not valid. Gldnzel and
Schubert (1985) constructed an informetric law such that Price's square root
law (the most simple one) is valid. This distribution is termed the 'Price
distribution', but does not seem to have many applications.

6. Marshall and OTkin (1979) introduce the so-called ‘'Lorenz-order'

(see also Hardy, Littlewood and Polya (1988)) on sequences (x1,x2,...,xN).
Functions that are increasing with respect to this order are shown to satisfy
all the concentration principles (Ct) - (C6). However, the generalised transfer
property (Egghe and Rousseau (1989), Egghe and Rousseau (1990)) is an extension
of this unifying model.

7. Egghe (1987a,b) and Egghe and Rousseau (1986), study concentration
aspects of the laws of Lotka, Mandelbrot and Zipf as well as of the geometric
distribution,

8. Hustopecky and Viachy (1978) graphed six concentration measures,
including G and CON, as a function of the mean for cases of four probability
distributions.

9. Concentration theory is rooted in econometrics, as is clear from the
use of the Gini index (Gini (1909)). Researchers in informetrics should
generally be aware of the fact that their problems are not always original and
open to solution. Despite a small change in form or terminology, a problem is
often analogous to an existing problem (or even solution) in another discipline.
A typical example was the introduction (in informetrics) of the Pratt measure
(Pratt (1977)). Carpenter (1979) proved that Pratt‘s measure was basically
nothing more than Gini's index (cf. equation 1IV.7.22 ). See, for example,
Lambert (1985), Pfihler (1985) and Berrebi and Silber (1985)) for a few recent
articles on concentration in econometrics. Still, a lot more articles have
been published on this topic. For a variety of references, consult the
econometric journals.

Brookes (1977a) discusses dispersion versus concentration measures and
hints how to apply such measures.

10. Price's square root law (see Section IV.7.1.2) is sometimes called
'Rousseau’s law' (J.J. not R.!) as J.J. Rousseau mentions this explicitly in
his 'Contrat Social’ concerning the size of the 'elite' ('elite’ refers here
to participating in the government). More information about this early
sociometric statement can be found in Zipf (1949) and Rescher (1978).

11. Somewhat related (but different from) concentration measures are
the so-called collaboration measures. These measures calculate the 'degree'
of collaboration in resea{ghrgroups (as e.g. reflected in the co-authored
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papers). We refer to Ajiferuke, Burrell and Tague (1988) and Englisch (1990)
for some very valuable attempts to define 'good' collaboration measures.
Based on these ideas Egghe (1990b) studies the necessary parameters and
formulates some 'collaboration principles'. Furthermore, new measures are
proposed that satisfy these principles.

1v.8.5. Non-Gaussian

The non-Gaussian nature (i.e. statistics for which the central limit
theorem (see Section 1.3.3) is not valid, due to the infinity of certain
moments) of some informetric laws is discussed in Haitun (1982a,b,c and 1983),
Yablonsky (1985) and Brookes (1984b,c), though Burrell (1988b) and Sichel (1986).
apply Gaussian techniques to Zipfian distributions.

IV.8.6. n-dimensional informetrics

Informetrics can be studied in many different ways. One division of
informetrics might be as follows (cf. Egghe (1989)) :

Any study dealing with either the sources or the items separately (i.e.
not linked to each other), can be said to be a 1-dimensional study.

Examples :
1. The numbers of books in a library.

2. The numbers of circulations in a library.
3, The total number of publications in the field of Geography (say in a year).
4. The total number of researchers in mathematics in Belgium.

Such data can be very interesting, especially in the connection with
evolution in time. Many publications have resulted from such studies.

A 2-dimensional study, linking sources and items, was the main object
of Chapter IV.3 and subsequent chapters.

A 3-dimensional approach will no doubt be devised in the future.

Examples :

1. Journals have papers and these papers are written by authors.
2. Journals have papers and papers receive (or have) citations.
3. Papers have references but do also receive citations.
These examples conform schematically with the following diagrams and
graphs :
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Diagram Graph
1. Journals Authors
Papers ; ;
2. Journals v
Papers = (identical)
Citations ; ;
3 Papers v
References Citations

Fig.IV.8.1 Schematic representations of three-dimensional informetrics

One can even conceive of 4-dimensional (or even higher dimensional)
informetrics. This is not an easy problem and may be broken down into several

research projects.
Although it is not clear how to deal with the above 'triangles', one

remark can be made. A1l the above differently oriented triangles can be
unified into one model (see Fig.IV.8.2).

Fig.IV.8.2 Unification of three-dimensional problems

Indeed, depending on how one looks at the problem (i.e. depending on
which side one concentrate$ on), any of the above situations will occur. But,
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contrary to what Fig.IV.8.2 might suggest, the solution to the three-dimensional
problem cannot be obtained by putting together two twb-dimensional functions.
The main reason for this is the fact that, considering real life situations,
orderings in three-dimensional IPP's are different, depending on what sources
are considered. Instead, a kind of 'triality' as found in geometry, might be
needed here : points, lines, planes (in three-dimensional space).

IV.8.7. Many-to-many relations

Another fundamental viewpoint in informetrics different than that given
above is the 'many-to-many' relationship, as was pointed out by S. Robertson
(oral communication). It contrasts with the above techniques in that it studies
(e.g. in the 2-dimensional version) many sources versus many items. We have
here the study of the relationship between a set S1 and a set I1 such that 51
is a subset of the source set S and I1 is a subset of the item set I, where
the ‘device' function is now

f:8, 1 (or <) .
An example is offered by :

a set of index words ,

= the set of papers ,

the function 'stating' that the sources in S1 have the index words
in 11.

- WU -
H

1v.8.8. Time-dependent studies and problems

1. Even in two-dimensional informetrics, one can require a time-dependent
theory. This problem has been raised by B.C. Brookes (oral communication). So
far, only one-dimensional time-dependent studies have been carried out. The
most important topics in these studies are growth and obsolescence. The reader
can note that the success-breeds-success arguments (see Simon (1955), Price
(1976)) and other dynamic models (such as Schubert and Glinzel (1984b) and
Rao (1980)) are time-dependent arguments on two-dimensional IPP's. These
explanations are indeed 'dynamic' but their results (the distributions) are
time-independent (for example, Price derives a time-independent cumulative
advantage distribution, while Schubert and Gldnzel derive the time-independent

Waring distribution).
Thus, we indicate here the problem of the time evolution of the dual
system
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((£),1(8),V,)

the time-dependent version of the IPP's defined in Chapter IV.3 and of the
informetric laws that apply to them. More specifically, make a model of the
growth of such an IPP. Preliminary calculations of Egghe have indicated that
an exponential growth of the sources in conjunction with an exponential growth
of the items is not Tikely to occur. The exponential function, however, seems
to be the basic one used to describe evolution in time for both obsolescence
(at, 0<a<1, see III. 6.3 ) and growth (at, a > 1); see, for example,
Price (1963). However, already in Price (1963), one can read the remark that
in real life growth cannot be exponential forever. Consequently, a deflection
point, changing the curve from convex to concave, must occur somewhere in the
growth curve., Moreover, a horizontal asymptote is reached when t goes to <,
This aspect is also called the 'principle of zero growth' (where t is high).
See Fig.IV.8.3.

Y

Fig.IV.8.3 Growth curve in 'real life' : the logistic curve

Such curves are called ‘logistic curves' (see Price (1963) or Rescher
(1978) for examples). Incidentally, Zipf (1949, e.g. p.529) also discusses
the logistic growth of several social phenomena. The mathematical difference
between exponential growth and logistic growth is given as follows :

Exponential growth :
The increase is proportional to population size P(t) :

9%(5-)-=xp(t).
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A is called the 'Malthusian parameter' of the population. The solution is

P(t) = P(0) 't , : [1V.8.5]

which is indeed exponential. The law of exponential growth is also called
‘Adam's law' (see Rescher (1978)).

Logistic growth :

A Malthusian population makes no allowance for the effects of crowding
or the limitation of resources (cf. also the philosophical note on Zipf's law).
So, instead of a constant Malthusian parameter, one can let it depend on the
population itself. The following model can be traced all the way back to
Verhulst (1845) :

) ar - By e

This is the logistic equation which has a solution (method of separating the
variables) :

K
1+ (P%%T -1)

the curve of which is shown in Fig.IV.8.3.
For further information on population growth we refer the reader to Webb (1985)
(mathematical work) or Rescher (1978) (philosophical work).

Another problem is the time evolution of p(A) or, if you wish, of Yn
(cf. [IV.5.11), the production of the most productive source. It might also be
interesting to conduct a study of the success -breeds-success principle (cf.
Section IV.2.1) in connecting time dependent IPP's.

P(t) = [IV.8.6]

e-kf ’

2. Once time dependent IPP's have been studied, one might look into the
problem of applying 'stopping times' to the IPP's. Stopping times (see, for
example, Egghe (1984)) are measurable functions, stating which objects in the
population 'stop living' at which times.Such developments might be very
important for all kinds of IPP's in practice, such as bibliographies over a
long time period, authors papers bibliographies, patent bibliographies and,
in general, all IPP's (since sources have finite lives).

3. The reader interested in time-dependent model studies (mainly one-
dimensional) is referred to Part IIl (obsolescence), to Part II (library
circulations) and to Kot (1987), Diamond Jr. (1987), Diamond Jr. (1984),
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Kochen and Blaivas (1981), Brookes (1970), Rac (1980), Rouse (1979), Hubert
(1976), Ware (1973), Kochen (1969) and Gama de Queiroz and Lancaster (1981),
concerning growth problems.

1v.8.9. Bradford

1. In fitting Bradford's law (see Section IV.6.1), we chose the number
p of Bradford groups more or less freely in N. This idea is mainly based on
the fact that if an IPP satisfies a certain informetric law (such as
Leimkuhler's law), it satisfies Bradford's law (group-free as well as with
p groups, for any p € N, naturally within the finite limits of the IPP, when
we are dealing with a practical bibliography).

Of course, in practice perfect Bradfordian situations never arise.

The question is then whether one choice of p € N is better than another one.
But what does a 'better Bradfordian division' really mean? Brooks (1989%a)
presented an interesting method for making this distinction. Since the number
of items in every Bradford group must be equal (in the case of perfect Brad-
fordian IPP's), we can define a first Bradfordian division better than another
one if Pratt's measure (cf. Subsection IV.7.1.3.2), calculated over the groups
of items of the first one, is smaller than the one calculated over the groups
of items of the second one. In this connection Brooks defines the term
'perfect Bradford multiplier' if this multiplier is linked to a Bradford
division for which C, calculated over the groups of items, is zero.

Brooks then checks some Bradford fitting methods, namely the one
described above in Section IV.6.1 and the one of Goffmann and Warren (1969).
They determine the maximum possible number of Bradford groups, such that each
group has the minimum possible number of sources. This is determined by
requiring that in the second to Tast Bradford grcup, there must be at least
one source with two items. If not then the second to last group will then
contain only sources with one item. Since -this is then obviously also the case
,with the last group, the fact that all grodps have the same number of items
would imply here that the last two Bradford groups would contain the same
number of sources. Consequently, this would result in a Bradford factor of
k = 1, contradicting the requirement that k must be > 1. In such a situation
in which there is a 'minimum number of sources per group', the sources in the
first Bradford group are called the 'minimal core (or nucleus) sources'. In
Egghe (1989d), based on results in Egghe (1986a), it is shown that this limiting
situation occurs precisely when log k = 0.5, i.e. when k = 1.6487.

Brooks (1989b) makes use of this minimal core Bradford division to
determine a ‘clustering index' in the IPP, used to measure the degree of
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clustering in IPP's, i.e. a comparison between the number of sources with more
than one item and the number of sources with one item: The future will show
the exact place of this promising clustering index in informetrics.

2. In some publications (see, for example, Yablonsky (1980), Goffmann
and Warren (1969)), the Bradford factor k is interpreted as an average u.
This is not true for at least one reason : k is p-dependent. In Egghe (1989d)
the exact function % has been studied and it has been shown that neither k
nor K, the group-free Bradford factor, can be interpreted as averages.



