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PREFACE 

 

In this study, a mathematical treatment is proposed for analysis of entities and relations among entities in 

complex networks consisting of cascaded bipartite networks. This treatment is applied to the case of 

collections of journal papers.  In this case, entities are distinguishable objects and concepts, such as papers, 

references, paper authors, reference authors, paper journals, reference journals, institutions, terms, and term 

definitions.  Relations are associations between entity-types such as papers and the references they cite, or 

paper authors and the papers they write.  An entity-relationship model is introduced that explicitly shows 

direct links between entity-types and possible useful indirect relations.  From this a matrix formulation and 

generalized matrix arithmetic are introduced that allow easy expression of relations between entities and 

calculation of weights of indirect links and co-occurrence links.  Occurrence matrices, equivalence 

matrices, membership matrices and co-occurrence matrices are described.  A dynamic model of growth 

describes recursive relations in occurrence and co-occurrence matrices as papers are added to the paper 

collection.  Graph theoretic matrices are introduced to allow information flow studies of networks of papers 

linked by their citations.  Similarity calculations and similarity fusion are explained.  Derivation of feature 

vectors for pattern recognition techniques is presented.  The relation of the proposed mathematical 

treatment to seriation, clustering, multidimensional scaling, and visualization techniques is discussed. It is 

shown that most existing bibliometric analysis techniques for dealing with collections of journal papers are 

easily expressed in terms of the proposed mathematical treatment: co-citation analysis, bibliographic 

coupling analysis, author co-citation analysis, journal co-citation analysis, Braam-Moed-vanRaan (BMV) 

co-citation/co-word analysis, latent semantic analysis, hubs and authorities, and multidimensional scaling. 

This report discusses an extensive software toolkit that was developed for this research for analyzing and 

visualizing entities and links in a collection of journal papers.  Additionally, an extensive case study is 

presented, analyzing and visualizing 60 years of anthrax research through a collection of journal papers. 

When dealing with complex networks that consist of cascaded bipartite networks, the treatment presented 

here provides a general mathematical framework for all aspects of analysis of static network structure and 

network dynamic growth.  As such, it provides a basic paradigm for thinking about and modeling such 

networks: computing direct and indirect links, expressing and analyzing statistical distributions of network 

characteristics, describing network growth, deriving feature vectors, clustering, and visualizing network 

structure and growth.   
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1. INTRODUCTION 

1.1 Motivation   

Collections of journal papers are defined as databases of information about journal papers whose subjects 

broadly focus on some scientific specialty.  The papers and the entities associated with them, that is, paper 

authors, paper journals, references, reference authors, reference journals, and terms, form complex 

networks whose underlying structure is a manifestation of the structure of the scientific specialty, its 

research sub-topics, paradigm, exemplars, invisible colleges, collaboration groups, and archiving journals.    

 

It is the goal of this study to introduce a unified mathematical treatment of the entities and entity links that 

comprise a collection of papers.  This mathematical treatment will serve to codify many existing concepts 

that pertain to journal paper collections, and greatly simplifies and consolidates the understanding and 

application of many bibliometric analysis techniques.  In this sense, the proposed mathematical treatment to 

be introduced here is a unified mathematical model of the networks that comprise collections of journal 

papers.  

 

The existence of simple mathematical models of the concepts and principles within a scientific specialty is 

tremendously useful to researchers within the specialty.  As an example, in the field of electrical 

engineering there is no principle as ubiquitous as Ohm’s Law. This principle is always spelled out in 

equation form: E = IR, signifying that “the voltage across a resistor is equal to its resistance times the value 

of the electric current through that resistor.”  This principle is so simple, so basic, and seemingly so 

obvious, that electrical engineers use it with absolutely no doubt of its validity. 

 

Yet, the very name ‘Ohm’s Law’ implies that the principle was discovered, and prior to that discovery, 

researchers struggled along in the dark without it.  Interestingly, as Kuhn (1970, p. 183) pointed out, Ohm's 

Law, at its discovery, not only defined the mathematical relation between electrical current, voltage and 

resistance, it defined the very concepts of electrical current and resistance themselves (Schagrin, 1963), 

concepts without which electrical engineering would be very confused indeed.  Considering its supposed 

obviousness, it is surprising that Ohm’s Law was, in fact, accepted only after considerable resistance 

(Schagrin, 1963).  
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The example of Ohm's Law points to the importance and necessity of a mathematical treatment of a 

phenomenon to be studied.  Indeed it would appear that the ability to mathematically describe their 

problems is what separates the physical scientists from the social scientists and allows the formation of 

paradigms wherein Kuhnian puzzle-solving, the efficient mode of ‘normal science’ (Kuhn, 1970, p. 178), 

can  occur. 

 

A complete and consistent mathematical formulation of a phenomenon under study within a specialty has 

two desirable benefits: 1) it standardizes the problem in a way that enables practitioners within the specialty 

to efficiently communicate about the problems they are working on , and 2) it enables researchers to view 

with great insight the structures  and symmetries of the subject that they are studying.    As Crane reports 

(1980), scientists judge proposed mathematical models not only for their potential use and testability, but 

also for their ‘elegance.’  Elegance is a subjective term that describes a model that is  simple, concise, 

starkly symmetric, and insightful.  As an example, for a practicing electrical engineer, the use of complex 

arithmetic to analyze phase relationships in circuits is not only wonderfully useful, but aesthetically 

satisfying and elegant, changing a complicated process of muddling through error-prone trigonometric 

calculations, to the simple addition and subtraction of real and imaginary parts of complex numbers1. 

 

There is little unified mathematical treatment in the study of bibliometrics. There have been a number of 

mathematical models of the process that generates the ubiquitous power law distributions that always 

appear when studying collections of journal papers.  In fact, it seems as if a whole specialty in bibliometrics 

is built on studying a series of eponymous empirically observed mathematical distributions:  Lotka’s Law, 

Bradford’s Law, Zipf’s Law, and so forth (White & McCain, 1989).   Of course, many researchers have 

noticed the similarities among these various ‘laws’ (Bookstein, 1990; Fairthorne, 1969; Seglen, 1992).  

Nevertheless, there has been no study of these distributions and how they are related based on a unified 

mathematical treatment of the entities in collections of journal papers.  

 

Another rich area of study in bibliometrics has been the study of  the process of citation of references 

(White & McCain, 1989).   These models describe stochastic processes that generate distributions of 

citations to references and literature aging, the study of citation rates to references over time.  Many of 

these models are mathematically sophisticated, but all of them stand alone, that is, they are not based on 

any unified mathematical description of the entities in a collection of journal papers.  

 

This report will present a mathematical treatment of collections of journal papers. The term ‘mathematical 

treatment’ is used rather than ‘mathematical model’ to distinguish this treatment from models of underlying 

                                                           
1While physicists and mathematician often speak of elegance with admiration, it is worth remembering 

Albert Einstein’s negative comment that “elegance is for tailors and cobblers.”  
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processes in a research specialty and the manifestation of those processes in the specialty’s literature.  

While it is intended that the mathematical treatment presented here will facilitate construction of unified 

models of research processes, the consideration of such processes is beyond the scope of the discussion in 

this report. Nonetheless, the proposed mathematical treatment, based on matrix arithmetic, is concise, 

consistent, insightful, and, if an investigator is using a scientific software package designed for matrix 

manipulation and analysis, quite effective in practice.  This mathematical treatment can be used to represent 

the entities and the links among entities in collections of papers: 

 

• Bibliometric entities and entity-types.  Definition of bibliometric entities helps define what is 

being studied in bibliometric analysis and further allows systematic study of the manifestation of 

the progress of research in a scientific specialty in the literature.  Examples of entities are papers, 

references, and authors of papers.  

• Direct links among  entities.  Direct links are direct, observable associations between pairs of 

entities in the collection of journal papers.  They are manifested directly as lists of associations 

implemented as tables in the database of the collection of papers.  For example, papers are 

associated with the authors that wrote them, the references they cite, the journals they appear in, 

and the terms they use.  Reference authors are associated with one or more references.  These 

associations constitute direct links between entities in the collection of papers.  

• Indirect links among entities.  Indirect links are associations between pairs of entities that are 

found by calculating paths through networks of direct links.  Examples of indirect links are: links 

from paper authors to reference authors, or links from index terms to references.  The 

mathematical treatment introduced here will present a general method for calculating indirect links 

between entities.  

• Co-occurrence links among entities.  Co-occurrence links between like entities occur when two 

like entities are associated with the same unlike entity.  As examples, two paper authors are linked 

when they co-author a paper, or two papers are linked when they both cite the same reference, or 

two references are linked if they both are cited in the same paper. Co-occurrence links are the 

main tool used for mapping the structure of a research specialty through its manifestation in the 

scientific literature.   

 

Using the mathematical representation of entities and the links among entities as described in the list above, 

many techniques can be used to manipulate and analyze these entities for bibliometric analysis. Most 

bibliometric analysis focuses on analysis of network link structure and this analysis can be divided into four 

main types of applications:  

 

1) Ranking and evaluation.  The ranking of the importance and impact of researchers, journals, and 

institutions is commonly used to provide a tool for assessment of research performance.  Most of 
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the methods of ranking are based on derivation of impact factors and research indicators based on 

patterns of citations in a specialty or field (White & McCain, 1989).  

2) Structural mapping.  Mapping focuses on building abstract models of the network of knowledge 

in a specialty and the social structure of scientists that participate in research in that specialty 

(Borner, Chen, & Boyack, 2002).  This is the process of finding and labeling meaningful entity 

groups and the relations between them.  

3) Search.  Search focuses on finding key pieces of knowledge, critical avenues of communication, 

or important entities within the scientific specialty.  This is the process of finding important 

individual entities and relations (Salton, 1989). This contrasts with structural mapping, which is 

concerned with finding groups of entities.  

4) Forecasting.  This focuses on the dynamic changes occurring within a specialty and attempts to 

extrapolate those changes into the future.  Forecasting deals with both analysis of trends and 

detection of discontinuous events (Morris, DeYong, Wu, Salman, & Yemenu, 2002; Zhu & Porter, 

2002). 

 

As will be seen in the remainder of this report, an entity-relationship (ER) model of the collection of 

papers, and a matrix formulation of the relations among entities is the basis for a mathematical treatment 

that is introduced here.  This treatment is a tool that facilitates the four types of link structure analysis 

discussed above. 

 

A secondary application of bibliometrics is in concept evolution studies.  In a historical sense, concept 

evolution attempts to trace the evolution of ideas and flow of knowledge leading up to and following a 

scientific discovery (Garfield, Pudovkin, & Istomin, 2003).  The emphasis in this type of analysis is on 

information flow from one entity to the next.  For this type of analysis a graph theoretic model of 

collections of papers is necessary.  For example, it is useful to present papers in the collection as a graph, 

where each paper is a node and the links between them are citations.  As will be seen later, the necessary 

graphs for this type of analysis can be easily derived from the entity-relationship model.   

 

The goals of this study are: 1) to produce a consistent notation and mathematical treatment that will allow a 

researcher to obtain a simple view of the data and analysis techniques associated with paper collections.  2) 

to suggest preferred methods and tools for analysis according to the applications and, 3) to consolidate 

existing bibliometric analysis techniques within the framework of a unified mathematical treatment.  

 

1.2 Summary   

The remainder of this report is organized as follows.   
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• In Chapter 2, an entity-relationship (ER) model of collections of journal papers is introduced.  

Entities and relationships are defined, the entities within a collection are enumerated through an 

entity-relationship diagram, and a mathematical notation is introduced to represent entities and 

relations.   

• In Chapter 3, a generalized matrix arithmetic is introduced that is used for calculation of link 

weights and indirect links.   

• In Chapter 4, the concept of occurrence matrices is introduced to express relations between 

entities.  The calculation of occurrence matrices of indirect links is demonstrated. Equivalence 

matrices are introduced to relate pairs of bibliometric entities to physical entities, while 

membership matrices are introduced for calculating group memberships of entities.  

• In Chapter 5, co-occurrence matrices are introduced.  The calculation of co-occurrence matrices is 

explained using matrix multiplication for calculation from binary occurrence matrices and using 

the overlap function and other generalized link weight functions for calculation of co-occurrence 

matrices  from non-binary occurrence matrices.       

• In Chapter 6, bibliometric distributions are discussed.  This includes an explanation of static and 

cumulating dyadic occurrence distributions as well as the introduction of co-occurrence 

distributions and clustering coefficient distributions. 

• In Chapter 7, a recursive matrix formulation is introduced to express the growth of a collection of 

papers.  This recursive formulation is used to show the growth of occurrence matrices as well as 

the growth of static and cumulating co-occurrence matrices. 

• In Chapter 8, a formulation of graph theoretic methods in bibliometrics is introduced. The 

calculation of graph theoretic linkages from occurrence matrices and equivalence matrices is 

explained. 

• In Chapter 9, the calculation of inter-entity similarities in terms of the proposed mathematical 

treatment is introduced.  Fusion of multiple similarities is introduced and these fusion methods are 

used to express Small’s similarity that is based on graph theoretic methods. 

• In Chapter 10, the concept of entity feature vectors is introduced, and feature vectors based on 

both occurrence and co-occurrence are explained. 

• In Chapter 11, the relation of the proposed mathematical treatment to seriation and clustering is 

explained.  Seriation, matrix shading, agglomerative hierarchical clustering, and c-means 

clustering are discussed. 

• In Chapter 12, visualization of occurrence matrices is explained.  Timelines, usage plots, and 

crossmaps are introduced. 

• In Chapter 13, existing bibliometric analysis techniques are reviewed in terms of the proposed 

mathematical formulation.  These techniques include: 

 

 Co-citation analysis 
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 Bibliometric coupling analysis 

 Author co-citation analysis 

 Journal co-citation analysis 

 Braam-Moed-vanRaan (BMV) co-citation/co-term analysis 

 Latent semantic analysis 

 Hubs and authorities analysis. 

 White’s concepts of author identities and author images 

 Pathfinder analysis 

 

• In Chapter 14, a software toolkit for analyzing and visualizing collections of journal papers using 

the methods developed through this research is presented. 

• In Chapter 15, a case study on the specialty of anthrax research is presented, which illustrates the 

application of the methods developed through this research. 

• In Chapter 16, there is a concluding discussion of the possible impact of the proposed 

mathematical formulation on bibliometric theory and analysis.  Notes on more software 

implementations of analysis techniques are discussed.  Directions for continued research to extend 

the proposed mathematical treatment also discussed. 
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2. ENTITY-RELATIONSHIP MODEL OF A COLLECTION OF JOURNAL 

PAPERS 

2.1 Definition of collections of journal papers 

Collections of journal papers, as discussed in this report, are databases of information about journal papers.  

In the database are lists of papers and the data associated with each paper: title, abstract text, published 

journal information, references, paper authors, and index terms.  For the discussion here, it is assumed that 

the body text of the paper is not stored in the database.  For brevity, from this point forward, collections of 

journal papers will be referred to as ‘collections’ or ‘collections of papers.’   

 

These collections typically consist of papers that broadly cover the topic of some scientific specialty.  The 

papers and the entities associated with them, paper authors, paper journals, references, reference authors, 

reference journals, and terms, form complex networks whose underlying structure mirrors the structure of 

the scientific specialty, its research sub-topics, exemplars, invisible colleges, collaboration groups, and 

archiving journals.   Collections of papers are typically gathered from an abstracting service, very often 

from the Science Citation Index, but also from other services such as Chemical Abstracts or Petroleum 

Abstracts. 

 

The papers are usually gathered by using queries against index terms, by using seed references (by finding 

all papers that cite some set of base references in the specialty), or by using seed reference authors (by 

finding all papers that cite some important reference author’s oeuvre.)   Databases holding collections of 

journal papers typically do not contain the papers’ body text and figures, and may or may not contain lists 

of references cited by each paper.  For discussion purposes, this study assumes that the body text of papers 

is not available and that the references cited by papers are available. 

2.2 Entities in collection of journal papers   

Using an entity-relationship (ER) model, a collection of journal papers can be considered as a collection of 

entities of different entity-types (Morris & Yen, 2004).  Define bibliometric entities as objects of interest in 

the collection of papers.  Examples of bibliometric entities include papers, references, and terms.  The 

objects from the physical world, to which bibliometric entities may correspond, are defined as physical 

entities.  Bibliometric entities are manifestations of physical entities, and a single physical entity may 

correspond to more than one bibliometric entity.  For example, paper author "H. Small", and the two 
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reference authors "Small H" and "Small HG"  are three bibliometric entities that all correspond to the same 

physical person, Henry Small.  In another example, a reference identified as "SMALL-H-1978-SOC-

STUD-SCI-V8-P327" and a paper whose title is "Cited documents as concept symbols" both correspond to 

a physical paper written by Henry Small and published in Social Studies of Science in 1978.   

 

In much of bibliometric analysis, it is quite useful to work with a bibliometric entity without regard to the 

physical entity to which it corresponds, and without regard to other bibliometric entities that correspond to 

the same physical entity. As will be explained in the next paragraph, cited bibliographic entities pick up 

symbolic meaning that is detached from the original physical entity.   It is, however, often necessary to 

equate pairs of bibliometric entities through their corresponding physical entities.  This procedure is 

necessary, for example, when using paper collections to trace concept evolution, where, for the purpose of 

tracing information flow, it is necessary to equate cited entities to citing entities.   In this report, the term 

"entity" or "entities" will refer to bibliometric entities unless specifically stated otherwise.    

 

The great power of studying entities within a collection of papers is in the analysis of those entities as 

symbols representing research elements. In this report, research elements are defined as the objects that 

comprise scientific research, such as researchers, research topics, institutions, invisible colleges, funding 

sources, and corporate and government research consumers (Leydesdorff, 1995). Taking this definition a 

step further, the Kuhnian research elements are paradigms, exemplars, and puzzles (Kuhn, 1970). The goal 

of bibliometric analysis is to find these abstract objects and groups of objects and analyze the relations 

among them.  The following entity-types and their related symbolic meanings are of interest: 

 

• Papers.   These are research reports and comprise the basic unit within a collection of papers.  

The collection of papers grows one paper at a time. 

• References. In this study references are objects that are cited by papers.  References are objects 

while citations are actions. References can, in a general sense, be considered as concept 

symbols, especially those references that are heavily cited. 

• Paper journals. These are the journals within which papers are published.  In general, paper 

journals can be considered as research report archives for the specialty.  

• Paper authors.  Paper authors are the creators of papers and can be considered as researchers.   

• Reference journals. These are journals which are associated with references.  They can be 

considered base knowledge archives for a specialty. For a specialty which borrows much loan 

knowledge from other fields, there may be little overlap of reference journals and paper journals.   

• Reference authors.  These are authors associated with references.  In a general sense, they can 

be considered as base knowledge generators, or experts, but can also be considered as symbols 

of schools of thought.  Heavily cited authors are often studied in order to map the knowledge 

structure of the specialty (White & Griffith, 1981) . 
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• Terms.  These are words or phrases that are concept symbols.  Many types of terms can be of 

interest.  Author keywords, with little quality control, are supplied by paper authors for 

searching and classification purposes.  Index terms, are supplied by journals or abstracting 

services and are often taken from a fixed thesaurus, generating a fixed pool of consistent, easily 

searched terms.  Keywords and index terms are associated only once per paper. Linguistic terms 

are terms extracted from prose within titles, abstracts, and the main text body of papers.  Title 

terms are extracted automatically from titles of papers by software that parses titles and extracts 

single and multiword terms.  A stop word list is usually used to eliminate useless terms.  

Abstract terms are similar to title terms but are taken from paper abstracts.  Title and abstract 

terms can have multiple associations with papers they appear in.  

• Paper author institutions.  These can be considered as research generating organizations.  In 

practice, it is difficult to use this information because of the need to extract consistent institution 

names from author addresses, which tend to contain ambiguously and inconsistently used 

institution titles, institution sub-division titles, and a great array of confusing institution 

acronyms. 

 

The entity-types listed above form a general list of entity-types that are commonly studied.   Several 

auxiliary entity-types can also be studied: 

 

• Paper publication year.  Although this is often treated as an attribute of papers, it is possible to 

define year as an entity-type for knowledge mapping purposes. Such mapping can be used to map 

trends and events in research activity. 

• Reference year. Similar to paper publication years, this is often treated as an attribute of 

references.  Reference year has been used for literature obsolescence studies (Burrell, 2001).  

However, as concept tokens, interpretation of reference age may have some interpretational 

problems.  For example, a study of exemplar references in emerging specialties (Morris, 2004) 

indicates that it may be useful to consider reference age as the time since its first use in the 

specialty’s literature rather than the time since the publication of the book or paper corresponding 

to the reference.   

• Paper country.   This is an entity which is easier to acquire from paper author addresses than 

author institutions.  It can be used to study research activity by country. 

• Reference country.  This type of entity is more difficult to acquire than paper country because it 

must be found by matching reference authors to paper authors.  Once acquired, reference country 

can be used to study production and flow of base knowledge among countries. 
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2.3 Relationships among entities in collections of journal papers 

Within a collection of journal papers the entities are associated with each other.  For example, a paper is 

associated with the paper authors who wrote it, the references it contains, the journal it was published in, 

and the terms that it contains.  For the purposes of the mathematical treatment to be proposed here, all the 

direct links among entities are always defined between two differing entity-types.   There are no direct 

associations between entities of the same entity-type.  At first glance, this seems odd, because intuitively it 

appears that papers should be directly linked to the papers that they cite.  

 

There are two reasons why citation links between papers must be considered as indirect links. First, 

consider that data from ISI’s Web of Science product, which is a typical source of collections of papers,   is 

supplied paper by paper and contains lists of references contained in each paper.  There is no table provided 

to relate references to the actual papers to which they correspond. There are many references that 

correspond to books, reports, and web pages, for which there are no corresponding papers.  Furthermore, 

since there are typically an order of magnitude more references than papers in a collection of papers, 90% 

of the references in the collection have no corresponding papers in the collection.  Not only this, highly 

cited references typically have several versions in a paper collection, brought about by misspellings, 

missing information, and transcribing errors of authors and abstract services.  

 

Secondly, even without the problem of matching references to papers, it would be necessary to treat them 

as separate entity-types because of the difference in symbolic meaning of references and papers.   

References are concept symbols while papers are research reports.  The fact that a reference may 

correspond to a paper isn’t really relevant to the meaning that the reference acquires as a concept symbol.  

It is therefore necessary to separate papers and references as separate entities. Similarly, reference authors 

and paper authors are semantically separate entity-types, and reference journals and paper journals are 

semantically different entity-types.   

 

In the literature on entity-relationship models (Chen, 1976) it is common to differentiate between ‘one-to-

one,’ ‘one-to-many,’ and ‘many-to-many’ relationships.  For the ER model of collections of papers, it is 

also necessary to deal with the question of uniqueness in the associations.  Uniqueness is important when 

dealing with questions of calculating link weights for co-occurrence counts and indirect links.  Another 

concept of importance is the distinction between independent entities which appear and exist on their own 

and dependent entities which can only exist in association with an independent entity. In the ER model of 

paper collections, papers are independent, references are dependent on papers, and reference authors and 

reference journals are dependent on references.  These dependencies are important for considering growth 

dynamics of collections of papers. Also in the ER modeling methods, it is common to list the relation 

between entities explicitly. For example, if there are two entity-types, employers and employees, then an 
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employer entity ‘employs’ employee entities, and employee entities ‘work for’ employer entities. Starting 

with papers, 6 pairs of direct relations are possible in collections of papers: 

 

• Papers-paper authors:  paper authors appear once in multiple papers, papers contain multiple 

unique paper authors.  

• Papers-paper journals: paper journals contain multiple unique papers; papers appear in one 

journal once. 

• Papers-references: references appear once in multiple papers; papers contain multiple, unique 

references. 

• Papers-terms: 1) title and abstract terms appear multiple times in multiple papers; papers contain 

multiple terms multiple times.  2) index terms appear once in multiple papers;  papers contain 

multiple unique index terms. 

• References-reference authors: reference authors appear once in multiple references, references 

contain one reference author. 

• References-reference journals: references journals appear once in multiple references; references 

contain one reference journal. 

• Paper author-institution: Institutions contain multiple paper authors.  

 

2.4 An entity-relationship diagram for collections of journal papers   

Figure 1 shows an entity-relationship (ER) diagram of a collection of journal papers.  The entity-types are 

denoted as circles while lines denote direct relationship pairs.  Each relation should be read from the base 

of the arrow to the tip of the arrow.  For example, the arrow going from papers to paper authors should be 

read “a paper contains multiple unique paper authors.”   

 

Note the central position in this diagram played by papers.  As noted previously, papers are the basic unit in 

a collection of papers, data is added to the collection one paper at a time, with associated dependent entities 

and attributes.   Papers are directly associated with: 1) the paper authors who write them, 2) the references 

that the papers cite, 3) the paper journals that they appear in, and 4) the terms that appear in them.  In the 

database for the collection, database tables corresponding to each of these four dependent entity-types will 

typically exist, with each entity indexed by the paper that it is associated with.  The lines between entity-

types shown in Figure 1 represent direct links, that is, direct associations as discussed in Chapter 2.3.      

 

Indirect links between two entity-types on the diagram are formed by chaining direct links on the diagram.  

For example, it is possible to find indirect links from paper authors to reference authors by starting with the 

paper authors, finding the papers they are associated with, finding the references cited by those papers, then 

finding the reference authors associated with those references.    
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A second entity-relationship diagram is possible, as shown in Figure 2, if the correspondences of 

bibliometric entities to physical entities are considered.  Note that for clarity, in this figure the terms and 

institutions have been left off the diagram. Here it is possible to see multiple types of indirect links between 

entities, and indirect links that are circular, that is, indirect links between like entities.   For example, it is 

possible to find links from paper authors to paper authors by starting with paper authors, finding the papers 

associated with them, finding the references those papers cite, finding the reference authors associated with 

those references, finding the physical authors associated with those reference authors, then finding the 

paper authors that correspond to those physical authors. 
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Figure  1.   Entity-relationship diagram of a collection of journal papers.  

2.5 Dyadic links and dyad notation 

Table 1 lists the conventions used in this report to denote entity-type variables within the collection of 

papers.  The variables x1, x2, and so forth will be used to denote unspecified entity-types.   Specific entity-
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types are denoted by the first letter of the name of the entity-type, e.g., p denotes paper, r denotes reference.  

Paper authors and other entity-types that have two words in their entity-type names use two letter variables 

with the letter for the dependent entity-type first. For example, ap for paper author. Additionally, to denote 

the number of entities of a particular entity-type in the collection of papers, attach an n ahead of the entity 

variable listed above, e.g., np is the number of papers in the collection, while nr is the number of references 

in the collection.   Attach a g ahead of an entity-type variable to denote groups of entities of that entity-

type. For example, gp denotes groups of papers.  

 

In this report all links are dyadic, that is, they occur between two entities at a time.  In a dyadic link, the 

two entities can be: 1) like entities, that is, entities of the same entity-type, or 2) unlike entities, that is, 

entities of different entity-type.  Occurrence links are between unlike entities that are associated with each 

other. For example, there is an occurrence link between a paper and reference if the paper is associated with 

the reference by having cited it.    The first entity of interest in a dyad is the primary entity while the other 

entity is the relative entity.  Co-occurrence links are between like entities and occur if the like entities of 

the dyad are both associated with one or more common unlike entities.  For example, two papers are linked 

when they both reference one or more identical references, or two paper authors are linked if they co-author 

one or more papers.  In co-occurrence links the like entities of the dyad are primary entities, while the 

unlike entities with which they co-occur are the relative entities.   

 

Table 1. Variable conventions used in this report for entities in collections of journal papers.  

• p – paper 

• r – reference 

• cp – paper as reference 

• ap – paper author 

• ar – reference author 

• t - term 

• jr – reference journal 

• jp – paper journal 

• yp – paper year 

• yr – reference year 

• ip – paper institution 

 
Note: 

• prefix n to any entity variable to denote the number of entities in the collection of that entity-type, 
e.g., np denotes the number of papers in the collection 

• prefix g to any entity variable to denote groups of entities of that entity-type, e.g., gr denotes 
groups of references. 

 
 

 

Dyad identifier notation.  For notation in this report, the symbols of primary and relative entity-types 

associated with dyads will be separated by a semicolon and placed between square braces: [x1;x2], where x1 

denotes the primary entity-type, and x2 denotes the relative entity-type. This notation will be referred to as 

the dyad identifier. This notation will be used as a suffix to variables and in functions as well to specify the 
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entity-types of interest.  However, the dyad identifier will be dropped to reduce clutter in the notation when 

the primary and relative entity-types are obvious from context. Some examples of the use of dyad 

identifiers: 

• O[p;r] denotes the occurrence matrix listing the links of papers, the primary entity-type, to 

references, the relative entity-type.   

• C[ap;p]  denotes the co-occurrence matrix listing the co-authorship counts of paper authors, the 

primary entity-type, in papers, the relative entity-type. 

• p(k, O[ap;p])   denotes the “paper per paper author” distribution, that is, the probability that a 

paper author, the primary entity-type, will be associated with k papers, the relative entity-type. 

 

The ER model of collections of papers, the concepts of direct and indirect links, bibliometric and physical 

entities, and the notation introduced in this chapter provide the basic framework for the mathematical 

treatment that will be introduced. Before introduction of the mathematical treatment it will be necessary to 

use Chapter 3 to discuss the method to compute indirect links from direct links in collections of papers.  
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Figure 2. Entity-relationship diagram of a collection of journal papers showing links to physical 
entities by citing and cited bibliometric entities.  
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3. COMPUTATION OF LINK WEIGHTS  

3.1 Bipartite networks 

Bipartite networks are graphs comprised of two distinct groups of nodes, where all links in the graph are 

from entities in the first group to entities in the second group.  As an example, Figure 3 shows a diagram of 

a bipartite graph of a group of papers linked to a group of references.  Note that there are no links between 

papers or links between references.   
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Figure 3.  A collection of papers and references as a bipartite graph.  References are linked to 
papers in which they are cited.  

 

A bipartite network is comprised of entities of unlike entity-types.  Assume the diagrammatic convention as 

shown in Figure 4, that entities of x1, the primary entity-type, are the entities in the group on the left and the 

entities of x2, the relative entity-type, are the entities in the group to the right.  There are nx1 primary 

entities and nx2 relative entities.  The strength of the link between x1 entity i and x2 entity j is the link 

weight,  oij[x1;x2].  The following conventions are used in this report for link weights:  

1. The magnitude of the link weight is proportional to the strength of the connection between two 

nodes.   

2. Nodes with no connection have zero link weight.   

3. Link weights can range from zero to positive infinity.  
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Mathematically, the links in the bipartite network are described by an occurrence matrix, analogous to an 

adjacency matrix in graph theory.  The occurrence matrix is an nx1 by nx2 matrix that lists all the link 

weights between the entities of the two unlike entity-types: 
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There is a bipartite network for every possible pair of unlike entity-types in the collection of papers. Given 

NE entity-types in the collection, there are NE(NE-1)/2 bipartite networks in the collection.   Occurrence 

matrices for entity-type pairs with direct relations are derived directly from the tables in the collection’s 

database.  Occurrence matrices for entity-type pairs with indirect links are calculated by cascading bipartite 

networks of direct links, as will be shown later.   
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Figure 4. Diagram of a general bipartite network and conventions for naming entities and links.  
 

3.2 Cascaded bipartite networks 

Many of the entity-type pairs of interest in collections of papers are indirectly linked.  Cascaded bipartite 

networks allow for the investigation of these types of networks.  Given a cascade of bipartite networks with 

occurrence matrices O[x1;x2], O[x2;x3], …, O[xn-1;xn], this cascade can be reduced to a single bipartite 

network  with occurrence matrix O[x1;xn] listing the link weights between the x1 entities and the xn entities 

in the network.  

 



 

 17

Consider a pair of cascaded bipartite networks, with entity-types x1, x2, and x3, as shown in Figure 5.  
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Figure 5. Diagram of a pair of cascaded bipartite networks. 
 

There are nx1, nx2, and nx3 entities of the entity-types x1, x2, and x3 respectively.  A pair of links that 

connects an x1 entity to an x3 entity is defined as a path. Figure 6, part (a) shows a path from x1 entity i to x3 

entity j, connected through x2 entity k by links oik[x1;x2] and okj[x2;x3]. There are nx2 possible paths from x1 

entity i to x3 entity j as shown in Figure 6 part (b).   
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Figure 6. Paths between x1 entity i and x3 entity j though x2 entities.  
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The path weight associated with a path is calculated from the weights of the path’s two links using a path 

weight function: 

 

]);[],;[(f)( 32212 xxoxxokp kjikij =  (2) 

 

The resulting link weight from x1 entity i to x3 entity j is calculated from the path weights of all possible 

paths between those two entities using a path combining function:  

 





= )(,),2(),1(f];[ 2131 nxpppxxo ijijijij K  (3) 

 

Substituting Equation (2) into Equation (3) gives the link weight function which defines the rules for 

calculating link weights of cascaded bipartite networks: 

 








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





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








= jnxinxjijiij ooooooxxo

22
,f,,f,,ff];[ 2222112131 K  (4) 

 

where the first of each of the f1 operands is taken from occurrence matrix O[x1;x2], and the second of each 

of the f2 operands is taken from occurrence matrix  O[x2;x3]. 
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Figure 7. Diagram illustrating vector operation of the link weight function.   
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The link weight function of Equation (4) is a matrix function that is used to compute all the nx1 times nx3 

possible weights  of the occurrence matrix O[x1;x3] according to the rules for weight computation given by 

f1(i,j) and f2(i,j,k ).  Consider Figure 7 which illustrates how the link weight function uses row i of O[x1;x2] 

and column j of O[x2;x3] to produce element oij of matrix O[x1;x3].  As shown, the function f2 is applied to 

matching elements of the row vector and column vector to produce nx2 scalar results.  The function f1 

operates on all these nx2 results to produce the final scalar result oij[x1;x3].   

 

 Table 2. List of function pairs f1 and f2 that can be used in the link weight function for various 
applications.  Matrix A describes the first bipartite network and matrix B describes the second 
bipartite network. 

 
 f1 f2 function application 
1 
∑
=






2

1
2 ,f

nx

k
kjik ba  kjik ba ⋅  matrix multiplication calculate 

occurrence and 
co-occurrence 
counts for when A 
or B is binary 

2 
∑
=






2

1
2 ,f

nx

k
kjik ba  ( ) rr

kj
r

ik ba
1−−− +  

inverse Minkowski calculate links 
similar to 
conductances in 
series 

3 
∑
=






2

1
2 ,f

nx

k
kjik ba  

( )kjik ba ,min  overlap function calculate co-
occurrence counts 
and indirect 
occurrence counts 

4 

















∑

=

2

1
2 1,,fmin

nx

k
kjik ba  

kjik ba ⋅  simple 
occurrence/co-
occurrence 

produce binary 
occurrence/co-
occurrence matrix 

5 )],f(),,max[f(
2211 jnxnxiji baba K ( ) rr

kj
r

ik ba
1−−− +  

maximum similarity 
path of length 2 from 
node i to node j.  

pathfinder 
analysis (see 
Chapter 13.11) 

6 )],f(),,max[f(
2211 jnxnxiji baba K  ( )kjik ba ,min  maximum similarity 

path of length 2 from 
node i to node j  for r 
= -∞ 

pathfinder 
analysis (see 
Chapter 13.11) 

 
 
The link weight function can be used not only for calculating occurrence matrices of cascaded bipartite 

networks, but it is also useful for calculating co-occurrence matrices (see Chapter 5) and for performing 

pathfinder network calculations (See Chapter 13.11).   Table 2 shows a list of various functions f1 and f2 

that can be used for the link weight function.   For applications where at least one of the matrix arguments 

is binary, standard matrix multiplication, the first function listed in Table 2, is often used because it directly 

yields simple occurrence and co-occurrence counts. 
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3.3 Matrix multiplication 

If the path weight function f2 is defined as a product:  

 

( ) ];[];[];[],;[f 322132212 xxoxxoxxoxxo kjikkjik ⋅=  (5) 

 

and the path combining function f1 is a summation: 
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nx
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 (6) 

 

Then the link weight function is simply standard matrix multiplication: 
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Figure 8. Example of cascaded bipartite networks: paper author to paper network cascaded with 
paper to reference network. All links have unity weight. 
 

As an example, assume that x1, x2, and x3 are paper authors, papers and references respectively, as shown in 

Figure 8.  The binary matrix O[ap;p] lists the associations of the individual paper authors with each paper: 
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














=

1110
0010
0011

];[ papO  (8) 

 

and the binary matrix O[p;r] lists the associations of individual papers with each reference: 

 



















=

1101001011
0011010101
0000111101
0000000111

];[ rpO

.

 (9) 

 

It is easy to show that in the case of binary matrices, using matrix multiplication as the link weight function 

will generate counts of associations between entities of the first and third entity-types in the cascade pair of 

bipartite networks: Using matrix multiplication: 

 

];[];[];[ rppaprap OOO ⋅=  (10) 

 

This yields: 

.
1112122213
0000111101
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];[
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

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=
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

































=rapO

 (11) 

 

This is a matrix, O[ap;r], containing the counts of occurrences of individual paper authors to individual 

references.   When cascading bipartite networks where, for both networks, the occurrence matrix weights 

correspond to association counts, and where one of the occurrence matrices is binary, it can be shown that 

using matrix multiplication as the link weight function yields an occurrence matrix whose weights are 

counts of occurrences from entities of the first entity-type to the entities of the third entity-type. 
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3.4 Overlap function 

While matrix multiplication is often used as the link weight function, in the situation where both matrices 

are non-binary, matrix multiplication fails to give meaningful occurrence counts when used as a link weight 

function.  The raw weights of the adjacency matrices in collections of papers are usually associated with 

occurrence counts, and the occurrence counts are binary, that is, there is either no association between a 

pair of entities and their corresponding weight is zero, or there is a single association between the pair of 

entities and the weight is unity.   It can be shown that calculation of link weights in a cascade of bipartite 

networks with binary link weights will always yield the number of occurrences between any two unlike 

entities in the network.   

 

When the occurrence counts are not unity then the path weights from x1 node i to x3 node j through x2 node 

k is a function of the two links weights, oik  from node i to node k and okj from node k to node j.   It is 

natural to think of linkages as analogous to electrical conductances between entities.  In this sense when 

thinking of links connected in successive links in a path, the resulting link weight should be limited by the 

smallest link weight in the path.  This can be accomplished using a path weight function that finds the 

minimum of the weights of the two links on the path: 

 






= ];[],;[minf 32212 xxoxxo kjik . (12) 

 

Using a path combining function that sums the path weights: 

 

∑
=






=

2

1
322121 ];[],;[ff

nx

k
kjik xxoxxo

.
 (13) 

 

This yields the overlap function (Salton, 1971) as the link weight function: 

 

∑
=






=

2

1
322131 ];[],;[min];[

nx

k
kjikij xxoxxoxxo . (14) 

 

This can be defined as a matrix operation “OVL”: 

 

]);[],;[(];[ 322131 xxxxOVLxx OOO =  (15) 

 

The overlap function is entry 3 in Table 2. Discussion of the application and characteristics of this function 

can be found in  Jones and Furnas (1987).   
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As an example, assume that x1, x2, and x3 are terms, papers and reference authors respectively, as shown in 

Figure 9.   
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Figure 9. Example of cascaded bipartite networks with non-binary links.  Terms to paper network 
cascaded with paper to reference author network.  
 

The matrix O[t;p] lists the occurrence counts of the individual terms with each paper: 

 



















=
91
62
53

];[ ptO  (16) 

 

and the matrix O[p;ar] lists the associations of individual papers with each reference author: 

 












=

140
032

];[ arpO  (17) 

 

Using the overlap function to calculate the link weights of O[t;ar]:  

 

];[];[];[ rppaprap OOO ⋅=  (18) 

 

This yields: 
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];[ OVLartO  (19) 
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3.5 Inverse Minkowski function 

The inverse Minkowski function, an adaptation of the well-known Minkowski distance metric (Cios, 

Pedrycz, & Swiniarski, 1998), can be used when it is desired to model path weights as if the link weights 

were electrical conductances in series.   In this case use the inverse Minkowski metric as the path weight 

function: 

 

( ) ( )[ ] pp
kj

p
ik xxoxxo

1

32212 ];[];[f
−−− +=  (20) 

 

Where p ranges from zero to positive infinity.  Note that, in contrast to the Minkowski metric as normally 

expressed, the exponents in the inverse Minkowski metric are negative. This function will always generate 

a path weight that is less than or equal to the smallest link weight in the path, modeling a situation where 

indirect links tend to be weaker than direct links. Figure 10 shows a plot of the inverse Minkowski metric 

for the ratio of the two weights used as arguments to the function.  Using a path combining function that 

sums the path weights: 

 

∑
=






=

2

1
322121 ];[],;[ff

nx

k
kjik xxoxxo  (21) 

 

Yields the final inverse Minkowski link weight function: 

 

( ) ( )[ ]∑
=

−−− +=
2

1

1

322131 ];[];[];[
nx

k
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kj

p
ikij xxoxxoxxo  (22) 

 

This corresponds to entry 2 of Table 2, and can be defined as a matrix operation “INVMINK”: 

 

]);[],;[(];[ 322131 xxxxINVMINKxx OOO =  (23) 

 

When this function is used with p  =  ∞, Equation (20) produces the minimum of its arguments and so 

reverts to Equation (12), making the inverse Minkowski link weight function revert to the overlap link 

weight function.  When p = 1, then the path weight function, Equation (20), becomes:  
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This makes the path weight function produce a value that is twice the harmonic average of the link weights 

of the path.  This is equivalent to calculating the path weight by modeling the link weights as electrical 

conductances in series.   
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Figure 10. Plot of inverse Minkowski metric for various values of exponent p as a function of the 
ratio of weights.  Note that when p is infinity the inverse Minkowski metric reverts to the min 
function.  When p = 1 the Minkowski metric yields two times the harmonic mean of the two 
weights.  
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Figure 11. Illustration of the computation of link weights using different path weight functions.  
   

 
Figure 11 presents a diagram showing the calculation of path weights using three different path weight 

functions.  The upper diagram shows two entities connected through a third entity with links that are 

greatly unequal.  The lower diagram shows entities connected by links that are of equal weight.  Using 

multiplication as the path weight function generates path weights that are the same for both these cases 

even though it is logical that the upper path weight should be less than the lower path weight, since it has 

one link of low value.  Using the minimum as the path weight function yields a smaller weight for the 

upper path compared to the lower path but doesn’t reduce the path weights further.  Using the inverse 
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Minkowski function as path weight function lowers each path weight below its minimum link weight, thus 

reducing the link weight for an indirect link over that possible using a direct connection, similar to 

conductances in series.  

 

The concepts introduced in this chapter: 1) bipartite networks of entities, 2) cascaded bipartite networks, 

and 3) link weight functions, provide a systematic means of tracing indirect links between entities in 

collections of papers and calculating the weights of those indirect links.   The framework provided by the 

ER model and dyadic notation introduced in Chapter 2 and the indirect link computation methods 

introduced in this chapter, are the foundation upon which the proposed mathematical treatment of 

collections of papers is built.  This mathematical treatment is a matrix based formulation based on 

occurrence matrices, discussed in Chapter 4,  listing the links between unlike entities.   
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4. OCCURRENCE MATRICES 

4.1 Definition of occurrence matrix 

As discussed in Chapter 3.1 an occurrence matrix lists the weights of links in a bipartite network.  This 

chapter discusses occurrence matrices in a less general sense, as integer matrices that count associations 

between dyads of unlike entities.  Define an occurrence matrix as O[x1;x2], where oij[x1;x2] is equal to the 

number of times that primary entity i is associated with relative entity j.  The occurrence matrix O[x1;x2] is 

an nx1 by nx2 matrix whose rows correspond to the primary entities, of entity-type x1, and whose columns 

correspond to the relative entities, of entity-type x2. As an example, consider a collection of 4 papers and 10 

references and its corresponding paper to reference matrix: 

 



















=

1101001011
0011010101
0000111101
0000000111

];[ rpO  (25) 

 
In this case O[p;r] is a matrix whose rows correspond to papers and whose columns correspond to 

references.  Occurrence matrices for direct relations are usually binary because associations among unlike 

entities in the collection are usually counted as logical associations.  Paper author to paper associations, for 

example, are logical, i.e., given an author and a paper, the author is either an author of the paper or not an 

author of the paper.  This is coded in the occurrence matrix as 1 or 0 for associated or not associated 

respectively.  In another example, while it is true that a paper can cite a reference multiple times, generating 

multiple associations for paper-reference dyads, abstract services and citation index services never record 

the number of times that references are cited in papers, and report only the logical association of “cited or 

not cited,” resulting in a binary paper to reference matrix.   Associations of linguistic terms with papers 

however, are often extracted as term counts from titles, abstracts, and paper text bodies, and so produce 

non-binary occurrence matrices.  Excepting the paper to term relationship, all of the 7 direct relationships 

shown in the entity relationship diagram of Figure 1 are assumed to be binary occurrence matrices.   

 
Occurrence matrices for indirect relations are often not binary matrices.  For example in paper-reference 

author dyads, a reference author may appear in multiple references associated with a paper, resulting in 

multiple associations of reference authors with papers, giving a non-binary occurrence matrix.  Using a 

threshold value, non-binary occurrence matrices can be converted to binary matrices.  
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Note the following property of occurrence matrices: 

Txxxx ];[];[ 2112 OO =   (26) 

 
Using dyad identifier notation, transposing the variables is equivalent to transposing the occurrence matrix.   

 

4.2 Indirect occurrence matrices calculated by cascading occurrence matrices  

As discussed in Chapter 3.3, in a cascade of bipartite networks where all the link weights are binary, the 

use of matrix multiplication as the link weight function results in computing an occurrence matrix where 

the link weights correspond to the counts of associations between  starting and ending entities in the 

cascade.   Using the dyad identifier and applying Equation 26 when appropriate, the matrix multiplication 

is expressed as: 

 

];[];[];[ 322131 xxxxxx OOO ⋅=

First and fourth entity-types become primary and relative 
entity-types in new occurrence matrix.

Second and third entity-types must be same.  (27) 

 
Note that, with the notation as defined, the primary entity-type of the resulting indirect occurrence matrix is 

the primary entity-type of the first matrix on the right side, the relative entity-type of the resulting 

occurrence matrix is the relative entity-type of the second matrix on the right side. The first matrix relative 

entity-type and the second matrix primary entity-type must be the same. That is, the inner two entity-types 

in the four entity-types that appear on the right side are the same.  Thus, the dyad identifier notation makes 

it quite easy to arrange occurrence matrices for calculation of indirect occurrence matrices.  In fact, several 

occurrence matrices may be multiplied together at once to calculate an indirect occurrence matrix for 

several cascaded bipartite networks. The matrices are arranged so that desired primary entity-type is the 

primary entity-type of the first matrix, the desired relative entity-type is the relative entity-type of the last 

matrix, and all the primary entity-types of the matrices within this order are matched by the same relative 

entity-type in the matrix proceeding it.  Assume the collection of 4 papers containing 10 references from 

Equation (25) has 3 paper authors, and that the paper to paper author matrix is given by: 

 



















=

101
000
101
011

];[ appO  (28) 



 

 29

 

Also assume that the collection of papers has 6 reference authors and that the reference to reference author 

matrix is given by: 

 







































=

100000
010000
001000
001000
001000
000100
000100
000010
000010
000001

];[ arrO  (29) 

 

Now suppose we wish to find the paper author to reference author matrix.  Consulting Figure 1, the direct 

links from paper authors to reference authors go from paper author to paper to reference to reference 

author. Calculation of the occurrence matrix, O[ap;ar], from paper author to reference author is performed 

by the matrix multiplication: 

 

];[];[];[];[ arrrppaparap OOOO ⋅⋅=

desired primary
entity-type

desired relative
entity-type

relative entity-type of 
preceeding matrix matched
to primary entity-type of following
matrix

];[];[];[];[ arrrppaparap OOOO ⋅⋅=

desired primary
entity-type

desired relative
entity-type

relative entity-type of 
preceeding matrix matched
to primary entity-type of following
matrix  (30) 

 

First find the paper author to reference matrix by pre-multiplying the paper author to paper matrix by the 

paper to reference matrix:  
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


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
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




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];[];[];[ rppaprap OOO

                                

 (31) 
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Then pre-multiply the paper author to reference matrix against the reference to reference author matrix: 
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




































=⋅=

112322
000021
112343

100000
010000
001000
001000
001000
000100
000100
000010
000010
000001

1101112112
0000000111
1101112223

];[];[];[ arrraparap OOO

                                             

 (32) 

 

The result in Equation 32 gives the desired occurrence matrix of paper authors to reference authors for the 

example.  Matrix multiplication provides an easy method of calculating occurrence matrices for indirect 

relations.  This is especially useful when using existing sparse matrix multiplication algorithms for making 

the computations.   

 

4.3 Equivalence matrices   

In some types of bibliometric studies, particularly studies of information flow from paper to paper through 

citations (Garfield et al., 2003), it is useful to find and list those pairs of bibliometric entities that 

correspond to the same physical entity.  This can be done by matching attributes of the entities, for 

example, matching references and papers that have the same first author, publication year, volume, journal,  

issue and page number.  Paper journals and reference journals, and additionally, paper authors and 

reference authors can be matched by matching names. Note that in a paper collection there are typically 10 

times more references, reference authors, and reference journals than there are papers, paper authors, and 

paper journals respectively.   A paper collection will typically have many references that correspond to 

books, and these references will have no corresponding physical paper.   So the list of references and 

papers that correspond to the same physical paper is typically very incomplete.  Many references will have 

no corresponding papers and many papers will have no corresponding references.  Define an equivalence 

matrix that maps the pairs of entities that correspond to the same physical entity:   
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





=
otherwise  , 0

  toscorrespond  if    1,
];[:],[ 21

2121

xx
xcxaxcx ijA  (33) 

 

Here the variable cx1 is used to denote “x1 as a cited entity.” As an example, assume that in the collection of 

papers denoted by Equation (25) that three of the papers can be matched to references, and that this yields 

the following equivalence matrix: 

 





















=

0000000000
0100000000
0001000000
0000001000

],[ rcpA  (34) 

 

The adjacency matrix that relates direct citation relations among like entities can be calculated using the 

matrix multiplication: 

 

],[],[],[ 122111 cxxxxcxx AOO ⋅=  (35) 

 

Using the example of four papers from Equation (25) and its equivalence matrix from Equation (34), the 

adjacency matrix from papers to cited papers is computed: 

 





















=



























































=⋅=

0111
0010
0001
0000

0000
0100
0000
0010
0000
0000
0001
0000
0000
0000

1101001011
0011010101
0000111101
0000000111

];[];[];[ cprrpcpp AOO

 (36) 

 

Figure 12 shows a diagram of the calculation of an adjacency matrix of papers to papers using an 

equivalence matrix. 
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Figure 12. Diagram showing calculation of paper to paper adjacency matrix using an equivalence 
matrix.  
 

4.4 Membership matrices   

Given a membership function for an entity-type, a membership matrix lists the association of the entities 

with each of the groups of entities.   We can use the letter ‘G’ (for ‘group’) to denote the membership 

matrix: G[gx1, x1].  For example, assume that papers from the example of Equation (25) are clustered into 

two research fronts and that the membership matrix for the research front is given by: 

 









=

1100
0011

],[ pgpG  (37) 

 

which shows that papers 1 and 2 are members of paper group 1 and that papers 3 and 4 are members of  

paper group 2.    Also assume that references were clustered into 3 reference groups, and that the 

membership matrix for reference groups is: 

 
















=

0100010000
1010101000
0001000111

],[ rgrG  (38) 

 

Matrix multiplication can be used to show the association of entities of other entity-types with the groups: 

 

1 2 1 1 1 2[ , ] [ , ] [ , ]gx x gx x x x= ⋅O G O  (39) 
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Using our example we can compute the relationship of paper groups to base references through matrix 

multiplication: 

 

[ ; ] [ ; ] [ ; ] [ ; ]
1 0 0
1 0 0
1 0 0

1 1 1 0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 5 2 1
0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 5 3 3

1 1 0 1 0 0 1 0 1 1 0 0 1
0 1 0
1 0 0
0 1 0

gp gr gp p p r r gr= ⋅ ⋅ =

 
 
 
 
 

   
        =         
      

 
 
 
  

O G O G

 (40) 

 

Membership matrices can also be used to clean up matrices after disambiguating names and references.  

Suppose that in the example of Equation (25) after disambiguating references it’s found that reference 5 

and reference 2 refer to the same physical entity.  Then, in order to eliminate reference 5 and move its 

citations over to reference 2, construct a membership matrix: 

 



































=

1000000000
0100000000
0010000000
0001000000
0000100000
0000001000
0000000100
0000010010
0000000001

];1[ rrG  (41) 

 

where r1 denotes the collection  after reference 5 has been eliminated.  The new paper reference can be 

found from: 

 

]1;[];[]1;[ rrrprp GOO ⋅=  (42) 
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Which gives: 

 



















=

110101011
001100111
000011111
000000111

]1;[ rpO  (43) 

 

Occurrence matrices are the building blocks of the mathematical treatment proposed here.  They are lists of 

the links between entities in the collection of papers and so  form the basic tools for analysis of structure of 

the complex networks within paper collections that are manifestations of social process and scientific 

progress of research in a research specialty.     

 

In review of topics discussed so far in this report: 1) from Chapter 2, the entity-relationship (ER) model of 

paper collections allows identification of objects (entities) to be studied in the collections, and shows how 

those entities are directly linked.  The ER model further shows the chains of links that must be followed 

when computing indirect links.  2) from Chapter 3, the cascaded bipartite network model of indirect links 

provides a general method of tracing and computing indirect links  within the collection of papers. This 

method is general and applicable to both  binary and non-binary links and adaptable to most methods 

currently in use for calculating link weights.  3) occurrence matrices list all the links between entities of 

interest and allow simple manipulation of the those links using matrix arithmetic.  

 

The next chapter will introduce co-occurrence matrices, which are used to measure links between like 

entities.  It will be shown that co-occurrence matrices are easily found from occurrence matrices using 

simple matrix arithmetic and cascaded bipartite network models.  Co-occurrence matrices form the basis of 

clustering of like entities, which is so important for mapping the social and knowledge structures that are 

manifested in collections of journal papers.  
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5. CO-OCCURRENCE MATRICES 

5.1 Definition of co-occurrence matrix  

Co-occurrence matrices are symmetric matrices that list the number of the co-occurrence counts of 

common associations that pairs of like primary entities have with entities of some relative entity-type. For 

example, the co-occurrence matrix of papers relative to references lists the number of common references 

for each pair of papers in the collection of papers.   For binary occurrence matrices the co-occurrence 

matrix can be found by post multiplying the occurrence matrix by its transpose: 

 

];[];[];[ 122121 xxxxxx OOC ⋅=  (44) 

 
Where C[x1;x2] is the co-occurrence matrix listing the number of common associations of pairs of x1 

entities with x2 entities.   For example, to calculate the co-occurrence of papers relative to papers 

(bibliographic coupling) using the paper to reference matrix example from Equation (25): 

 





















=



























































=⋅=

6222
2532
2352
2223

1000
1000
0100
1100
0010
0110
1010
0111
1001
1111

1101001011
0011010101
0000111101
0000000111

];[];[];[ prrprp OOC

 (45) 

 
The diagonal of the co-occurrence matrix cii[x1; x2] lists the number of associations that each x1 has with 

entities of the x2 entity-type.  For example in the bibliographic coupling matrix, C[p;r], calculated in 

Equation (45), the diagonal lists the number of references each papers cites.   
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Computation of co-occurrences can be viewed, similar to the discussion of Chapter 3.2, as the calculation 

of links in a cascade of two bipartite networks.  Given a bipartite network of two unlike entity-types, mirror 

the network across the relative entity-type entities to obtain a cascade of two networks.  For example, the 

paper to reference network shown in Figure 3 has been mirrored on the references to produce the paper-

reference-paper cascade of two bipartite networks shown in Figure 13 (a).  Calculating the path weights of 

this ‘virtual’ cascade using matrix multiplication will produce the co-occurrence counts of papers relative 

to references (bibliographic coupling) as was done in Equation (45).    
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Figure 13. Mirror of paper to reference bipartite network to calculate co-occurrence as a cascade 
of two bipartite networks.  (a) Mirror across references to calculate bibliographic coupling.  (b) 
Mirror across papers to calculate co-citation.  
 
The same network of Figure 3 can be mirrored on the papers to produce the reference-paper-reference 

cascade of bipartite networks shown in Figure 13 (b).  Calculating the link weights in this network using 

matrix multiplication yields the co-occurrence counts of references relative to papers (co-citation.)  Note 

that each occurrence matrix has two co-occurrence matrices associated with it.  Figure 14 illustrates this for 

a sample paper to reference occurrence matrix, O[p;r].  Note to the right of O[p;r] is the square symmetric 

bibliographic coupling matrix C[p;r], whose size is number of papers in O[p;r].  Similarly, below O[p;r] is 

the square symmetric co-citation matrix, C[r;p] whose size is the number of references in O[p;r].  

 

5.2 Overlap function for calculating co-occurrence   

Linguistic term occurrence matrices are not binary since each term usually occurs multiple times in a paper.    

Because of this, it is not desirable to calculate term co-occurrence matrices using matrix multiplication, 

because the resulting link weights cannot be interpreted.  Noting that calculation of co-occurrence matrices 

is analogous to computing link weights for a pair of cascaded bipartite networks, as was demonstrated in 

Figure 13 and the discussion above, link weight functions can be used to find term co-occurrence matrices.  

This can be done, for example, using the overlap function of Chapter 3.4.    



 

 37

 
 
Figure 14. Diagram showing that each occurrence matrix is associated with a pair of co-
occurrence matrices.  Upper left matrix is paper to reference occurrence matrix O[p;r], below is 
reference co-occurrence matrix relative to papers (co-citation matrix), C[r;p].  Upper right matrix is 
paper co-occurrence matrix relative to references (bibliographic coupling matrix), C[p;r]. 
 

As an example, assume the paper to term matrix: 

 



















=

525011
456200
102945
013598

]1;[ tpO  (46) 

 

Using the overlap function, the term co-occurrence matrix relative to papers is found:  
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
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141156
141756
552116
661626
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   ,

525011
456200
102945
013598

]);[],;[(];[

OVL

pttpOVLtp OOC

 (47) 

 

5.3 Commonly used co-occurrence matrices   

Bibliographic coupling matrix.  Bibliographic coupling between a pair of papers  was defined by Kessler 

(1963) as the number of references that both papers cite.  Bibliographic coupling is used to cluster papers 

into research fronts, that is, groups of papers that cover the same topic.  The bibliographic coupling matrix 

is a symmetric matrix that contains the bibliographic coupling counts between all papers in a collection: 

 

];[];[];[ prrprp OOC ⋅=  (48) 

 

Co-citation matrix.  Co-citation between a pair of references is defined by Small (1973) as  the number of 

papers that cite both references.  Co-citation is used to cluster references into base reference groups.  The 

co-citation matrix is a symmetric matrix that contains all the co-citation counts among all the pairs of 

references in the collection of papers: 

 

],[],[];[ rpprrp OOC ⋅=  (49) 

 

Author co-citation matrix.  Author co-citation between a pair of reference authors is defined by White 

and Griffith (1981) as  the number of papers that cite both reference authors.  It is used to cluster reference 

authors into base reference author groups.  The author co-citation matrix is a symmetric matrix that 

contains the author co-citation counts for all pairs of reference authors in a collection of papers.  To 

calculate the author co-citation matrix C[ar;p] it is first necessary to find the  paper to paper author 

occurrence matrix from the product of the paper to reference matrix and the reference to reference author 

matrix:  

 

];[];[];[ rarrparp OOO ⋅=  (50) 
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The paper to reference author matrix, O[p;,ar], is non-binary, so matrix multiplication cannot be used to 

find the co-occurrence matrix, C[ar;p].   The co-occurrence matrix can be calculated using the overlap 

function as defined in Chapter 3.4: 

 

]);[],;[(];[ arpparOVLpar OOC = . (51) 

 

Alternatively, the single co-occurrence definition of the author co-citation count between a pair of papers is 

the number of papers that cite both authors at least once.  This can be calculated by first setting all non-zero 

entries in O[p;ar] to unity, then pre-multiplying O[p;ar] by its transpose.  In equation form this is 

accomplished by:  

 

)1],;[max()1],;[max(];[ arpparpar OOC ⋅=  (52) 

 

where max(X,m) is defined as a function between a matrix X, and a scalar m, where every element of X is 

set to m if it is greater than m.    

 

Journal co-citation matrix.  Journal co-citation was proposed by McCain (1991).  The calculation for 

journal citation is very similar to the calculation for author co-citation.  Calculating the non-binary paper to 

reference journal occurrence matrix: 

 

];[];[];[ jrrrpjrp OOO ⋅=  (53) 

 

 the co-occurrence matrix can be calculated from the overlap function: 

 

]);[],;[(];[ jrppjrOVLpjr OOC =  (54) 

 

Alternatively, the single occurrence journal co-citation matrix can be calculated: 

 

)1],;[max()1],;[max(];[ jrppjrpjr OOC ⋅=  (55) 

 

Co-term matrices.    The use of co-occurrence of terms in papers for bibliometrics analysis is discussed by 

Callon, Courtial and Laville (1991) .  Co-term matrices based on co-occurrence of title or abstract linguistic 

terms in papers are often based on the overlap function: 

 

]);[],;[(];[ tpptOVLpt OOC =  (56) 
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Figure 15 shows an entity-relationship diagram showing useful co-occurrence relations in a collection of 

papers.  In this diagram co-occurrence relation labels are placed next to their primary entity-type and are 

adjacent to a line that connects the primary entity-type to the relative entity-type.  As drawn, with 7 entity-

types, there are 42 possible co-occurrence relations, although, as previously mentioned, many of these 

relations are trivial or otherwise not useful. In the diagram, 5 co-occurrence relations, previously studied by 

bibliometricians, are given names commonly used in the bibliometrics literature. Other co-occurrence 

relations on the diagram have no commonly used label.  In these cases the labeling convention “x1 coupling 

by x2” is used, where x1 is the primary entity and x2 is the relative entity.   
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Figure 15. Entity-relationship diagram showing some useful co-occurrence relations.  As shown 
in the diagram’s key, co-occurrence relation labels are placed next to the primary entity-type and 
adjacent to a line connecting the primary entity-type to the relative entity-type.  Co-occurrence 
relations shown in bold are often used by researchers in bibliometrics.  
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6. BIBLIOMETRIC DISTRIBUTIONS 

Bibliometric distributions are useful as indicators of the processes that drive the growth of scientific 

research specialties and the manifestation of that growth in collections of journal papers.  It is important to 

examine well-studied bibliometric distributions such as Lotka’s Law, Bradford’s, Law, and Zipf’s Law in 

the context of the mathematical treatment proposed here.  Beyond this consideration however, it is 

important to enumerate and classify other possibly important distributions that can occur in collections of 

journal papers, and discuss how those distributions can be used as indicators of important aspects of 

research activity in a scientific specialty. 

6.1 Dyadic distributions 

Dyadic distributions are distributions of the number of occurrences of entities of one entity-type relative to 

a second entity-type.  Assume that the vector M[x1;x2] is a 1 by nx2 vector where each element mi[x1;x2]  is 

a count of the number of times x2 entity i is associated with an x1 entity.  The vector M[x1;x2] can be 

considered the x1 group to x2 occurrence matrix that results from considering all x1 entities as belonging to a 

single group.  In this case,  the membership matrix is a 1 by nx1 matrix whose elements are all ones and the 

vector M[x1;x2] is computed as: 

 
[ ] ],[111],[ 2121 xxxx OM ⋅= K  (57) 

 
More trivially, M[x1;x2] is the row vector of the sum of individual columns of the occurrence matrix 

O[x1;x2].  The distribution of the elements of M[x1;x2] is the “x1 per x2 distribution.”   For example, assume 

that M[p;ap] is a row vector that lists the number of papers associated with each paper author in the 

collection of papers. Then the distribution of the elements of M[p;ap] is the “paper per paper author” 

distribution, the distribution that is associated with Lotka’s Law.   

 

There are two dyadic distributions for every pair of entity-types in the collection of papers. Assuming NE 

entity-types, there are NE⋅(NE-1) possible dyadic distributions in the collection.  For the 8 entities shown in 

Figure 1, there are 56 possible dyadic distributions.  Of these, 4 distributions have been studied extensively: 

1) the paper per paper author distribution, known as Lotka’s Law (Lotka, 1926), 2) the paper per paper 

journal distribution, known as Bradford’s Law (Bradford, 1934),  3) the linguistic terms per paper 

distribution, known Zipf’s Law (Zipf, 1949),  and 4) the paper per reference distribution, referred to here as  

the reference power law  (Naranan, 1971; Redner, 1998; Seglen, 1992).  Of the many possible dyadic 
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distributions in a collection of papers, many are trivial, for example, the paper journal per paper distribution 

and reference journal per reference distributions are both unity, that is, there is always only one paper 

journal per paper, and always only one reference journal per reference.  Define the dyadic x1 per x2 

distribution as: 

 
]);[,( 21 xxkp M   (58) 

 
This is the probability that an x2 entity will have k associations with x1 entities.  This probability mass 

function can be estimated from the frequency function: 

 
]);[,( 21 xxkf M   (59) 

 
which is the frequency table of the number of x2 entities that have k associations with x1 entities.  This is a 

frequency table of the elements of the vector M[x1;x2].  Figure 16 shows a diagram of dyadic distributions 

extracted from a paper to reference matrix, O[p;r].   Summing the number of references along the rows of 

the matrix yields a column vector, the transpose of M[r;p], which contains the number of references cited 

in each paper.  This can be binned into a frequency table to yield the reference per paper distribution 

f(k,M[r;p]).  Summing the number of papers along the columns of the matrix yields M[p;r],  a row vector 

containing the number of papers citing each reference.  This can be binned into a frequency table to yield 

the paper per reference distribution.   

1 1 1 0 0 0 0 0 0 0 3
1 0 1 1 1 1 0 0 0 0 5
1 0 1 0 1 0 1 1 0 0 5
1 1 0 1 0 0 1 0 1 1 6

4 2 3 2 2 1 2 1 1 1

P
A

P
E

R
S

REFERENCES

1 10 100 1000
0

10

20

30

40

50

60

70

80

90
Citations per paper-- Lognormal fi t-- Database: 'network'

µ = 24.8
σ =0.29 decade
323 papers
6898 references
10697 citations
p = 0.6449

Sum references per paper

Sum papers 
per reference

10
0

10
1

10
2

10
3

10
0

10
1

10
2

103

10
4

10
5

k = number of citation  received

nu
m

b
er

 of
 re

fe
re

nc
es

 re
ce

ivi
ng

 k 
cit

ati
on

s

MEMS RF Swi tch

2 00 31 10 2T 1 211 26 .fig

simulation
actual

10
0

10
1

10
2

10
3

10
0

10
1

10
2

103

10
4

10
5

10
0

10
1

10
2

10
3

10
0

10
1

10
2

103

10
4

10
5

k = number of citation  received

nu
m

b
er

 of
 re

fe
re

nc
es

 re
ce

ivi
ng

 k 
cit

ati
on

s

MEMS RF Swi tch

2 00 31 10 2T 1 211 26 .fig

simulation
actual

f(k,M[r;p])
reference per paper frequency

f(k,M[p;r])
paper per reference frequency

M[p;r]

M[r;p]T

1 1 1 0 0 0 0 0 0 0 3
1 0 1 1 1 1 0 0 0 0 5
1 0 1 0 1 0 1 1 0 0 5
1 1 0 1 0 0 1 0 1 1 6

4 2 3 2 2 1 2 1 1 1

P
A

P
E

R
S

REFERENCES

1 10 100 1000
0

10

20

30

40

50

60

70

80

90
Citations per paper-- Lognormal fi t-- Database: 'network'

µ = 24.8
σ =0.29 decade
323 papers
6898 references
10697 citations
p = 0.6449

Sum references per paper

Sum papers 
per reference

10
0

10
1

10
2

10
3

10
0

10
1

10
2

103

10
4

10
5

k = number of citation  received

nu
m

b
er

 of
 re

fe
re

nc
es

 re
ce

ivi
ng

 k 
cit

ati
on

s

MEMS RF Swi tch

2 00 31 10 2T 1 211 26 .fig

simulation
actual

10
0

10
1

10
2

10
3

10
0

10
1

10
2

103

10
4

10
5

10
0

10
1

10
2

10
3

10
0

10
1

10
2

103

10
4

10
5

k = number of citation  received

nu
m

b
er

 of
 re

fe
re

nc
es

 re
ce

ivi
ng

 k 
cit

ati
on

s

MEMS RF Swi tch

2 00 31 10 2T 1 211 26 .fig

simulation
actual

f(k,M[r;p])
reference per paper frequency

f(k,M[p;r])
paper per reference frequency

M[p;r]

M[r;p]T

 
Figure 16. Diagram showing extraction of two dyadic distributions from an occurrence matrix.  
Using the paper to reference occurrence matrix, sum along the rows to find references per paper, 
then bin results to find the reference per paper distribution.  Sum down the columns to find papers 
per reference, then bin results to get the paper per reference distribution.  
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Figure  17 shows an entity-relationship diagram showing several interesting dyadic distributions.  Those 

distributions that have been well studied by bibliometricians are noted in this diagram.   The typical model 

of the measured distribution of each dyadic distribution is noted if it has been studied in the literature or 

otherwise measured.   

6.2 Fixed occurrence dyadic distributions 

Two types of dyadic distributions are possible: 1) fixed occurrence distributions, and 2) cumulating 

occurrence distributions.  Fixed occurrence distributions are distributions where entities of the relative 

entity-type can gain no additional associations as the collection grows. An example of a fixed occurrence 

distribution is the reference per paper distribution, p(k,M[r;p]).  All distributions with papers as the relative 

entity-type are fixed occurrence distributions. Individual papers are fixed and do not acquire more 

associations to paper authors or references as the paper collection grows.  Because of this the paper author 

per paper and the reference per paper distributions are both fixed occurrence distributions.   Fixed 

occurrence distributions cannot be linked to cumulative advantage (success-breeds-success) processes, 

since associations to the relative entities don’t cumulate as the collection grows.   These distributions are 

not as likely to be power-law distributions as the distributions associated with cumulative advantage 

processes.  Figure 18 shows examples of two typical fixed occurrence distributions found in paper 

collections, a) the paper author per paper distribution, p([k,M[ap;p]), which appears to be the result of a 

Poisson process, and b) the reference per paper distribution, p([k,M[r;p]), which appears to be a log-normal 

distribution, typical of multiplicative noise processes.  

 

6.3 Cumulative occurrence dyadic distributions 

Cumulating occurrence distributions are associated with distributions where the relative entity-type can 

acquire more associations as the collection grows.  All distributions where the relative entity-type is a cited 

entity-type are cumulating occurrence distributions.  Distributions where the relative entity-type is 

linguistic terms are also cumulative occurrence distributions.  Cumulative occurrence distributions are 

typically highly skewed power laws that characteristically occur for cumulative advantage processes.  

Figure 19 shows examples of two typical cumulating occurrence distributions found in paper collections, a) 

the paper per reference distribution, p([k,M[p;r]), which is reported to be a power law (Naranan, 1971), and 

b) the paper per paper author distribution, p([k,M[p;ap]), which is a power law usually referred to as 

Lotka’s Law (1926). 
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Figure 17. Entity-relationship diagram showing several interesting dyadic distributions. 
Distribution labels are adjacent to the distribution’s primary entity-type, and adjacent to a line 
connecting the primary entity-type to the relative entity-type.  Labels that are not underlined are 
fixed distributions, while labels that are underlined are cumulating distributions.  Well-studied 
distributions are indicated by their common names in bold font.  
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Figure 18. Example of fixed occurrence distributions. Left, (a), shows distribution of non-first 
authors per paper.  Right, (b), shows the distribution of references per paper.  
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Figure 19. Example of cumulating  occurrence distributions. Left, (a), shows distribution of papers 
per reference.  Right, (b), shows distributions of citations per reference author.  
 

6.4 Co-occurrence distributions 

Co-occurrence distributions describe the probability of the number of times that a pair of entities of the 

primary entity-type will co-occur in their association with entities of the relative entity-type.  Define the co-

occurrence of  x2 per x1 pair distribution as: 

 

]);[,( 21 xxkp C   (60) 

 

This is the probability that a pair of x1 entities will have k co-occurrences in their associations with x2 

entities.  The frequency: 

 

]);[,( 21 xxCkf   (61) 

 

is the frequency of pairs of x1 entities that  have k co-occurrences in their associations with x2 entities across 

the entire collection of papers.  Figure 20 shows two examples of co-occurrence distributions found in 

collections: a) p(k,C[p,r]), the co-occurrence of references per paper pair distribution (bibliographic 

coupling distribution), and b) p(k,C[r,p]), the co-occurrence of papers per reference pair distribution (co-

citation distribution).   

 

Co-occurrence distributions can be estimated from the distribution of the magnitude of the upper or lower 

triangle of the corresponding co-occurrence matrix (excluding the diagonal.)  Co-occurrence distributions 
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are useful for characterizing the clustering characteristics of entities within the collection of papers.  Morris 

(2004), for example, used bibliographic coupling distributions and co-citation distributions as metrics to  

evaluate clustering characteristics of papers and references in a proposed model of literature growth.   
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Figure 20. Example of co-occurrence distributions. Left, (a), shows co-occurrence of references 
per paper pair distribution (bibliographic coupling distribution).  Right, (b), shows co-occurrence of 
papers per reference pair distribution (co-citation distribution).  
 

6.5 Clustering coefficient distributions 

The clustering coefficient is a concept borrowed from complex network theory (Albert & Barabasi, 2002). 

When two entities have non-zero co-occurrence, define that as a co-occurrence link.  Given an entity, i, its 

neighbor entities are the set of all entities with which it has a co-occurrence link.  Define ki as the number 

of neighbors of entity i and yi as the number of links among the neighbors of entity i. This doesn’t include 

links to entity i.   The clustering coefficient ci, of entity i, is the fraction of all possible links among the 

neighbors of entity i that are non-zero.  That is, the number of links among the neighbors of entity i, divided 

by the number of possible links among those neighbors:  
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The x1 co-occurrence of x2 clustering coefficient is a measure of the local connectivity in a network of x1 

entities, and is analogous to the clustering coefficient used in complex networks theory as a measure of 

connectedness among nodes in a network (Albert & Barabasi, 2002)  Figure 21 shows a diagram of the 

process of calculating the co-occurrence clustering coefficient for an entity using the co-occurrence matrix.   
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Figure 21. Diagram illustrating calculation of clustering coefficient for an entity i from a co-
occurrence matrix.   
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Figure 22. Example bibliographic coupling clustering coefficient distribution.   
 
The co-occurrence  clustering coefficient is a measure of the tendency of groups of entities to be locally 

connected.  The x1 co-occurrence of x2 clustering coefficient distribution:  

 

]);[,( 21 xxcf C  (63) 
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is a continuous probability density distribution of the clustering coefficient, c, that ranges from zero to 

unity.  An example of this type of distribution, shown in Figure 22, is the paper co-occurrence of references 

clustering coefficient distribution, f(c,C[p,r]) (bibliographic coupling clustering coefficient distribution.) 

This is a measure of the tendency of local groups of papers to cover the same research topic, as measured 

by co-occurrence of references among papers.  Morris (2004) used this distribution to compare clustering 

characteristics of papers from actual collections to simulations based on a proposed model of the 

manifestation of the emergence of  scientific specialties in a collection of papers.   

 

This chapter has presented three types of distributions that appear in collections of papers:  1) dyadic 

distributions, which measure the distribution of the number of associations that an entity has with entities of 

other entity-types, 2) co-occurrence distributions, which measure the distribution of the number of common 

associations that a pair of entities will have with entities from some other specific entity-type, and 3) co-

occurrence clustering coefficient distributions, which measure the distribution of clustering coefficient in 

some co-occurrence network of like entities.  These distributions are the result of growth processes in the 

scientific specialty associated with a collection of papers and therefore are candidates of measures of those 

processes.   

 

It is beyond the scope of this report to discuss in detail the detailed characteristics of bibliometric 

distributions and the interpretation of their measured parameters. Discussing this topic briefly however, it 

has been shown in this chapter that there is a tendency of cumulating distributions to generate power laws 

that are characteristic of cumulative advantage processes.  As such, the measured parameters of cumulating 

distributions may allow interpretation of the underlying cumulative advantage processes in the scientific 

specialty. There is already a large body of research on this topic (White & McCain, 1989)  There has, 

however, been little research on fixed dyadic distributions, co-occurrence distributions and clustering 

coefficient distributions.  Morris (2004) has shown that the reference per paper distribution, a fixed dyadic 

distribution, must be measured and modeled in order to build a realistic model of growth of paper 

collections.  Additionally, in the same work, Morris shows that bibliographic coupling distributions and co-

citation distributions, which are co-occurrence distributions, and the bibliographic coupling clustering 

coefficient distribution, are excellent indicators of local clustering within a collection of papers and 

references.   
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7. RECURSIVE MATRIX GROWTH 

7.1 Introduction 

Many of the techniques used for mapping, search, and forecasting from collections of journal papers are 

based on processing the entire collection of papers.  There is little research that addresses the problem of 

dynamic updating of collections of papers.  

 

The recursive growth equations presented in this chapter are a natural outgrowth of the matrix-based  

mathematical treatment of collections of journal papers introduced in this report.  A dynamic expression of 

the growth of the collection of journal papers can have the following benefits: 

 

• Provide insight into the dynamics of growth in the collection of papers, particularly in the growth 

of fixed and cumulating distributions. 

• Suggest efficient methods of processing of existing paper collections. 

• Suggest efficient update schemes for revising analyses results as new papers are added to a 

collection of papers. 

 

The basic record in a collection of journal papers is the paper.  The collection grows paper by paper in the 

temporal order of the publication dates of the papers.  The index of papers is sequential by time.   When a 

new paper is added, it is associated with the existing entities in the collection and additionally, new entities, 

e.g., new paper authors or new references, and new terms enter into the collection.  

 

This chapter will present a recursive model of the growth of both occurrence and co-occurrence matrices as 

papers are added to the collection.  The recursive model of matrix growth is found by examination of 

matrix partitions in occurrence and co-occurrence matrices as papers are added to the collection.  Some 

applications of this recursive representation are immediately apparent.  For example, the recursive model 

suggests methods of quickly and efficiently updating occurrence and co-occurrence matrices stored in 

computer memory.  The recursive model also allows easy identification of static and cumulating links 

among the possible entity pairs within the collection of papers.  Note, however that this work is preliminary 

and that research to explore, in depth, the possible applications of this model are out of the scope of this 

study.  
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7.2 Growth of the paper-reference matrix  

It is easiest to consider the growth of an example occurrence matrix; then generalize this example to other 

occurrence matrices.  For convenience, the paper-reference matrix will be designated Ω. In the matrix Ω 

the rows correspond to papers and are ordered in the sequence of publication of the papers to which they 

correspond. The columns correspond to references and are ordered in the sequence in which their 

corresponding references first appear.   As shown in Figure 23, the matrix Ω contains a descending stair 

step sequence of ones from its upper left corner diagonally to its lower right corner.  This sequence of ones 

corresponds to the initial appearance of references as papers are added to the collection.  Below this 

diagonal sequence of ones is a roughly lower triangular region sparsely populated with ones that 

correspond to citations to existing references as each paper is added.  Above the diagonal sequence of ones 

is a roughly upper triangular area of zeros.   

 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1

0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0

new paper
cites to old references: δi

cites to new 
references: 1

all zeros: 0old paper-reference matrix:  Ωi

papers

references
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1

0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0

new paper
cites to old references: δi

cites to new 
references: 1

all zeros: 0old paper-reference matrix:  Ωi

papers

references

 
 

Figure 23. Diagram of the structure of a paper to reference matrix.   
 

7.3 Dynamic growth of the paper-reference matrix 

Considering the collection of journal papers dynamically, the collection grows from an initial paper by 

sequential addition of papers in the order in which they were published.  In this sense the paper-reference 

matrix  Ω grows dynamically one paper at a time.  Assume i to be the number of papers, while nri is the 

number of references that have appeared in all papers up to and including paper i.  Assume Ωi, whose size 

is i by nri, as the paper-reference matrix after the addition of paper i, then consider the addition of paper 

i+1. A new row vector, i+1, is added to Ωi. This vector is partitioned into a 1 by i vector δi listing the 

paper’s citations to existing references, and 1, a 1 by nri+1-nri
 vector of ones occurring in new columns 

added for the new references that have appeared with paper i+1.  Figure 23 shows a pictorial representation 
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of this addition.  In the new columns, 0, an i by nri+1-nri zero matrix appears.  The recursive matrix 

equation for growth of the paper-reference equation is: 
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
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i
i 1  (64) 

 

Figure 24 shows a map of a typical paper-reference matrix, where each dot shows the location of a one in 

the matrix.  This collection of 404 papers contains 9892 citations to 6791 references.  The collection was 

constructed using ISI’s Web of Science product to find all papers that cite a seminal 1967 sociology paper 

by Milgrams titled “Small-World Problem.” 
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Figure 24. Example paper to reference matrix, from a collection of papers citing Milgram’s 1967  
“Small Worlds” paper.    
 

7.4 Dynamic growth of the bibliographic coupling matrix   

The bibliographic coupling matrix, which will be designated β, is a symmetric matrix that lists the 

bibliographic coupling counts of all pairs of papers within the data collection.  The diagonal of β contains 

the counts of the number of references cited in each paper.   The bibliographic coupling matrix β can be 

obtained by multiplying the paper-reference matrix by its transpose: 

 
TΩΩβ ⋅=  (65) 
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The recursive growth equations for the bibliographic coupling matrix can be derived by substituting (64) 

into (65): 
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where (δi|1) is the bottom row of βi+1, i.e., the concatenation of δi and 1. Also, mi+1 is the number of 

references cited by paper i+1.  Figure 25 shows a pictorial representation of a typical bibliographic 

coupling matrix with the partitions in Equation (66) identified.  It is easy to see from Equation (66) and 

Figure 25 that bibliographic coupling counts between pairs of papers are static, and do not change as more 

papers are added to the collection. 
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Figure 25. Diagram of a bibliographic coupling matrix.  
 

7.5 Dynamic growth of the co-citation matrix  

The co-citation matrix, designated Γ, is a symmetric nr by nr matrix that lists the co-citation counts of all 

pairs of references within the data collection.  The diagonal of Γ contains the counts of the number of 

papers that cite each reference.   The co-citation matrix Γ can be obtained by multiplying the transpose of 

the paper-reference matrix by itself: 
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ΩΩΓ ⋅= T  (67) 

 

The recursive growth equations for the co-citation matrix can be derived by substituting (64) into (67): 
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Figure 26 shows a pictorial representation of a typical co-citation matrix with the partitions in (68) 

identified.  It is easy to see that the co-citation count between two references is not static, but can be 

increased with the addition of each new paper to the collection. 

 

OLD
REFER-
ENCES

ALL NEW 
REFERENCES 
ARE CO-CITED 
IN NEW PAPER

OLD
REFERENCES

NEW 
REFERENCES

3 2 3 1 2 1 3 3 2 1 1 1 1 1 1 1
2 4 3 2 2 2 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1
3 3 4 2 2 1 3 4 3 1 1 1 1 2 1 1 1 1 1
1 2 2 3 1 1 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 1 2 1 2 2 2 1 1 1 1
1 2 1 1 1 2 2 1 2 1 1 1 1
3 3 3 2 2 2 5 4 4 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 4 3 2 1 4 5 4 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1
2 4 3 3 2 2 4 4 5 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 3 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 3 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2 1 2 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 2 1 1 2 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

NEW
REFER-
ENCES

δT
i1

Γi+ δT
i δi

1Tδi 1T1

OLD
REFER-
ENCES

ALL NEW 
REFERENCES 
ARE CO-CITED 
IN NEW PAPER

OLD
REFERENCES

NEW 
REFERENCES

3 2 3 1 2 1 3 3 2 1 1 1 1 1 1 1
2 4 3 2 2 2 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1
3 3 4 2 2 1 3 4 3 1 1 1 1 2 1 1 1 1 1
1 2 2 3 1 1 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 1 2 1 2 2 2 1 1 1 1
1 2 1 1 1 2 2 1 2 1 1 1 1
3 3 3 2 2 2 5 4 4 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 4 3 2 1 4 5 4 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1
2 4 3 3 2 2 4 4 5 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 3 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 3 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2 1 2 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 2 1 1 2 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

NEW
REFER-
ENCES

δT
i1

Γi+ δT
i δi

1Tδi 1T1  
 

Figure 26. Diagram of a co-citation matrix.  
 

7.6 General growth of occurrence and co-occurrence matrices  

It is easy to generalize the example of the paper-reference matrix to other occurrence and co-occurrence 

matrices. Given a pair of entity-types, we define the dependent entity-type as the entity-type that depends 

on the creation of the first entity-type to be created.  References, paper authors, paper journals, paper 

authors and terms within a collection of papers are dependent on papers.  Reference authors and reference 

journals are dependent on references.  For a generalization of the recursive matrix equations for occurrence 
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and co-occurrence matrices assume that the independent entity-type corresponds to rows of an occurrence 

matrix and that the dependent entity-type is placed on the columns of the matrix.  Given entity-types x1 and 

x2, where x2 is the dependent entity-type, the recursive matrix equation for the occurrence matrix is:   
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Where: 

• Ω is the occurrence matrix O[x1;x2] 

• δi is an nx1(i+1)-nx1(i) by nx2(i) matrix containing associations between the new x1 entities and the 

old x2 entities.  When x1 is papers then nx1(i+1)-nx1(i) is always unity because papers are added 

one at a time.  When x1 is references then nx1(i+1)-nx1(i) can be greater than unity as multiple 

references can be added with each paper. Note that the paper index is placed between parentheses 

in the notation to avoid confusion with entity-type index subscripts. 

• η  is an nx1(i+1)-nx1(i) by nx2(i+1)- nx2(i) matrix containing associations between the new x1 

entities and the new x2 entities.   

 

The co-occurrence matrix for the row entity-type is: 
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Where β is the co-occurrence matrix C[x1;x2].  The co-occurrence matrix for the column entity-type is:    
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Where Γ is the co-occurrence matrix C[x2;x1].  Note that the recursive matrix equations of Equation (70) 

and Equation (71) can easily be generalized for using link weight functions other than matrix 

multiplication. See Chapter 3.2.   

 

The recursive growth model introduced in this chapter may have several applications.  The recursive 

equations themselves suggest methods of saving memory and computation when updating matrices in the 

computer memory.  While this may be useful for very large collections of papers, it has not been found 
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necessary in practical experience.  Most topics of interest are covered sufficiently by just two or three 

thousand papers, and such collections do not present unmanageable computational difficulties. This is 

particularly true when using MATLAB when computation can be “vectorized” and MATLAB’s sparse 

matrix algorithms can be applied.    Two computational problems are encountered  for large collections: 1) 

calculation of similarities, and 2) hierarchical clustering.  The recursive approach presented here may allow 

efficient recursive methods of attacking these two computational problems.   

 

The methods are also possibly applicable to building viable growth models for complex networks. There 

are several key complex network growth models being investigated currently (Albert & Barabasi, 2002; 

Dorogovtsev & Mendes, 2002).  The most important of these are preferential attachment models related to 

the Yule model, of which the popular Barabasi-Albert model (Albert & Barabasi, 2002) is a special case.  

All of these models are single entity-type models that are very limited in scope.  The dynamic equations 

introduced here should allow building complex multiple entity-type models of complex networks, a more 

realistic approach.  The ability to model multiple entity-types and, in particular, the ability of these 

recursive matrix equations to discriminate between fixed and cumulating links promises to add a new 

dimension to growth models of complex networks.  This will enable the dynamic modeling and simulation 

of dyadic, co-occurrence, and clustering coefficient distributions.  This recursive formulation of growth of 

paper collections also holds promise for analysis of causal relations in networks, through the distinction 

between fixed and cumulating relations, which will allow extraction of practical and useful analysis of 

complex multiple entity-type networks.   
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8. GRAPH THEORETIC MATRICES   

 

The term ‘graph theoretic’ is used to denote analysis methods based on direct citations from paper to paper 

within the collection.  This type of analysis is often used to trace flow of information and seminal ideas 

from paper to paper (Garfield et al., 2003). A model of a collection of papers as a graph connected by 

citations is the key basis for a collection of knowledge mapping techniques introduced by Small (1997).  

Small’s method of clustering papers for analysis is based on deriving inter-paper similarities on a 

combination of 4 different types of graph theoretic links in the network of papers.  These graph theoretic 

link types are 1) direct citation, 2) longitudinal coupling, 3) bibliographic coupling and 4) co-citation.  This 

chapter will discuss the derivation of these four types of links in the context of the matrix formulation and 

notation introduced in this report.    

 

As noted in Chapter 2.3 and Chapter 4.3, it is necessary to match references and papers to the same 

physical entity in order to find the adjacency matrix of papers linked by their citations.  The paper to cited 

paper adjacency matrix, O[p;cp], is calculated from the paper to reference matrix O[p;r] and the reference 

to cited paper equivalency matrix A[r;cp]:  

 

];[];[];[ cprrpcpp AOO ⋅=  (72) 

 

Matrices for each of the four types of graph theoretic links can easily be calculated through matrix 

arithmetic operations on the paper to cited paper adjacency matrix.  The diagram of Figure 27 shows four 

types of links as they occur on the paper graph.  Each diagram shows a pair of papers, i and j, and a 

possible third paper k. and the links among them that comprise the graph theoretic link.    

 

8.1 Direct citation  

A direct citation link between two papers occurs if one paper cites the other: 
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The matrix DC is a symmetric binary matrix that lists all the direct citation links in the paper graph.  It can 

be calculated by adding the adjacency matrix to its transpose: 

 

];[];[ pcpcpp OODC +=  (74) 
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Figure 27. Diagram of paper to paper links based on graph theoretic paths. 
.  

8.2 Longitudinal coupling 

A longitudinal coupling link between a pair of papers occurs if one paper cites a third paper that cites the 

other paper of the pair: 
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The longitudinal coupling count between a pair of papers is the number of longitudinal coupling links 

between them: 
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The matrix LC is a symmetric non-binary matrix that lists all the longitudinal coupling links in the paper 

graph.  It can be calculated from the square of the adjacency matrix added to the transpose of the square of 

the adjacency matrix: 

 
T
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8.3 Co-citation 

Co-citation of cited papers is completely analogous to co-citation of references as discussed in Chapter 5.3.   

A co-citation link occurs between a pair of papers if both papers are cited by a common third paper: 
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The co-citation count between a pair of papers is the number of co-citation links between them: 
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The matrix CC is a symmetric non-binary matrix that lists all the co-citation counts in the paper graph.  It 

can be calculated by pre-multiplying the graph adjacency matrix by its transpose: 

 

];[];[ cpppcp OOCC ⋅=  (80) 

 

8.4 Bibliographic coupling 

Bibliographic coupling between papers in a citation adjacency matrix is completely analogous to 

bibliographic coupling of papers citing common references as discussed in Chapter 5.3.  A bibliographic 

coupling link occurs between a pair of papers if both of them cite a common third paper: 

 







=
otherwise   ,0

  ites   AND  ites  if    1,
)( ijki

ij

pcppcp
kbc  (81) 

 

The bibliographic coupling count between a pair of papers is the number of co-citation links between them: 
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∑=
k

ijij kbcbc )(  (82) 

 

The matrix BC is a symmetric non-binary matrix that lists all the bibliographic coupling counts in the paper 

graph.  It can be calculated by post-multiplying the graph adjacency matrix by its transpose: 

 

];[];[ pcpcpp OOBC ⋅=  (83) 

 

The four matrices of graph theoretic linkages described in this chapter can be used for both calculation of 

Small’s similarity measure and for analysis of information flow among papers.  When calculating Small’s 

similarity measure, it is necessary to fuse the weights from the four types of links into a single similarity 

measure.  Chapter 9.3 will discuss the fusion technique introduced by Small and generalize that technique 

to allow arbitrary weighting of the four different link types in the similarity calculation. 
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9. SIMILARITY 

9.1  Calculation of similarity   

A similarity value is a measure of the similarity between a pair of entities of the same entity-type and is 

used for analysis of the relations between entities in the collection of papers. Similarity values range from 

zero for no similarity to unity for identical entities.  Converting raw co-occurrence values to similarities 

before analysis is usually advantageous because this tends to suppress artifacts caused by dominant entities 

with large numbers of links.  

 

Similarities are usually calculated by normalizing co-occurrence counts. Many normalization schemes 

exist.  Salton (1989) gives a review of several similarity formulas, while Jones and Furnas (1987) discuss 

some of the advantages of each. The cosine coefficient, Jaccard coefficient, and the dice coefficient will be 

reviewed here.  To simplify notation, use the following simplified variables: 

 

• sij[x1;x2] → sij:   is the similarity between entity i and entity j  of the x1 entity-type based on co-

occurrence with the x2 entity-type 

• cij[x1;x2] → cij:  is an element in the co-occurrence matrix and is the co-occurrence count  between 

entity i and entity j  of the x1 entity-type based on co-occurrence with the x2 entity-type  

• cii[x1;x2] →  cii:  is from the diagonal of the co-occurrence matrix and is the occurrence count  of 

entity i of the x1 entity-type, that is, the number of times entity i is associated with an x2 entity-

type.  

 

The similarities are calculated from elements in the co-occurrence matrix.  As shown in Figure 28, 

similarities between entity i and entity j are calculated using three elements from the co-occurrence matrix: 

1) the co-occurrence count cij, 2) the occurrence count cii and 3) the occurrence count cjj. Note that for 

similarity to properly range from zero to unity, cij, cii, and cjj must all be greater than zero and the following 

constraints must be satisfied: 

 

jjiiij ccc +<2  (84) 

 

jjiiij ccc <2  (85) 
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All of the link weight functions discussed in Chapter 3.2 produce co-occurrence matrices whose elements 

satisfy these constraints, these functions include matrix multiplication, the overlap function, and the inverse 

Minkowski function.  
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Figure 28. Diagram showing the co-occurrence matrix elements used for computation of 
similarity. Similarity sij is computed from element cij and diagonal elements cii and cjj.  
 

The cosine coefficient is given by: 
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The dice coefficient is given by: 
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The Jaccard coefficient is given by:  
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The three similarity formulas shown above all produce maximum similarity equal to unity when 

cii = cjj = cij and reach minimum at zero when cij is equal to zero.  For purpose of calculation, the 

similarities cannot be directly computed using matrix multiplication.  However, it is possible using sparse 

matrix techniques, such as those available in MATLAB, to vectorize the computations for very efficient 

calculation.   

9.2 Fusion of similarity from co-occurrence of multiple entity-types  

Similarities can be combined to give a similarity value derived from more than one co-occurrence value. A 

straightforward method of similarity fusion is simply: 
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As an example consider: 
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Equation (90) fuses similarity from bibliographic coupling with similarity derived from co-occurrence of 

paper authors, papers linked by common paper authors, a measure used by Asnake (2003) to improve 

clustering of papers into research fronts.   Some other fused multiple entity-type similarities are the dice 

coefficient: 
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and the cosine coefficient:  
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The weights, w1, w2, w3,… , wk in the two equations above are greater than or equal to zero and are used to 

adjust the relative emphasis on each of the similarity measures in the calculation.  A threshold on 

occurrences can be used to reduce the resulting similarity if occurrences of a particular type fall below 
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some threshold.  As an example Equation (92) for the fusion cosine formula can be modified to include 

occurrence thresholds for each measure: 
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where δ1, δ2, … δk are the occurrence thresholds for each measure.  This similarity fusion formula will be 

used to generalize Small’s similarity, discussed in the next section. 

 

9.3 Small’s similarity   

Small’s similarity (Small, 1997) is used for clustering papers using graph theoretic properties for mapping, 

and is a weighted, normalized sum of direct citations, bibliographic coupling, co-citations, and longitudinal 

coupling.  This similarity measure was introduced as a method of calculating similarities to map large 

collections of papers.  It is based on the graph theoretic relations discussed in Chapter 8 using the adjacency 

matrix O[p;cp] defined in Equation (72). The equation for Small’s similarity is originally defined as: 

 

)1)(1(
2

ji

ijijijij
ij nn

lcccbcdc
s

++

+++
=  (94) 

 

where ni is defined as: 

 

iiii nlcnccnbcn ++=  (95) 

 

jjjj nlcnccnbcn ++=  (96) 

 

where nbci, ncci, nlci, are the total number of bibliographic coupling links, co-citation links, and 

longitudinal coupling links connecting to paper i respectively.  Small’s similarity is an empirically derived 

similarity that is a compromise measure that relates a paper to the papers it cites, the papers that cite it, the 

papers that cite the same papers it does, and finally, to the papers that it is cited together with. Assuming 

that papers covering the same topic will tend to be linked in several different ways, Small’s similarity is 

effective as a basis for clustering papers because the fusion of four different similarities tends to reduce 

noise in the resulting measured similarity.  This makes the clustering more robust and helps to successfully 

classify more of the marginally related papers than would otherwise be possible.  
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Note, however that Small’s measure can confuse the symbolic representation (a concept to be defined and  

discussed in Chapter 11) of groups of papers clustered using that measure.  There are 6 possible relations 

between two papers A and B that can contribute to Small’s similarity: 

 

1. A uses B 
2. A is used by B 
3. A and B use C 
4. A and B are both used by C 
5. A used C which used B 
6. A is used by C which is used by B 

 

The relations above, if used singly, will produce groups that have some definite symbolic representation, 

such as groups of papers that use the same references, item 1 in the list above. See Chapter 11.1 for a 

discussion of symbolic representation of groups of entities.  Groups formed by clustering using Small’s 

similarity are ambiguously related in this sense, at best they can be described as groups of papers that are 

somehow related by what they use or how they are used. 

 

To generalize Small’s similarity, we will use the general similarity fusion formula as introduced in Chapter 

9.2.  Define the following matrices, taken from Chapter 8: 

 

DCC =];[ 1xp  Direct citation (97) 

 

BCC =];[ 2xp  Bibliographic coupling (98) 

 

CCC =];[ 3xp  Co-citation (99) 

 

LCC =];[ 4xp  Longitudinal coupling (100) 

 

Variables x1, x2, x3, and x4 are dummy variables for indexing purposes.  Now, using the similarity fusion 

formula with minimum threshold given by Equation (93), Small’s similarity in general form is: 
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where w1, w2, w3, w4 are weights used to adjust the relative emphasis on each of the measures: direct 

citation, bibliographic coupling, co-citations, and longitudinal coupling respectively.  The thresholds δ1, δ2, 

δ3, δ4 are used to adjust the importance of the missing measure.  Comparing Equation (101) to Equation 

(94), for Small’s similarity as originally proposed the following weights and thresholds are used. 

 

• w1 = 2 δ1 = ½ 

• w2 = 1 δ2 = 0 

• w3 = 1 δ3 = 0 

• w4 = 1 δ4 = 0 

 

This results in direct citation linkage receiving twice as much emphasis as the other measures and direct 

citation receiving a threshold of ½ while other measures have no threshold.  

 

As expressed in this chapter the similarities can be systematically expressed and used in terms of the co-

occurrence matrices in the collection of papers.  Furthermore the similarity fusion formulas shown here are 

general and easily adaptable to fuse similarities for any primary entity-type in relation to multiple relative 

entity-types.  Using programming languages adapted to matrix arithmetic, such as MATLAB, the 

calculations are easily vectorized and adapted to existing fast and efficient sparse matrix functions.   
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10. ENTITY FEATURE VECTORS 

10.1 Introduction 

In the pattern recognition sense, a feature is a measurable observable associated with an entity that can be 

used to characterize an entity for purposes of clustering, mapping, and other statistical techniques.  A full 

review of features and their use in pattern recognition can be found in Duda and Hart (2001). A feature 

vector is a vector where each element holds a feature. Usually, feature vectors are considered as 

coordinates in some multi-dimensional feature space.  Given the feature vectors for a collection of entities, 

many techniques, such as c-means clustering or multidimensional scaling, can be applied to classify, 

compare and map the entities for analysis.   

 

10.2 Types of feature vectors  

Using the mathematical treatment proposed in this report it is possible to define two types of feature vectors 

for entities in collections of journal papers: 1) occurrence feature vectors and, 2) co-occurrence feature 

vectors.  The occurrence vector shows the pattern of associations that an entity has with entities of an 

unlike entity-type,  while a co-occurrence vector shows the pattern of co-occurrences that an entity has with 

like entities.  Assume a pair of entity-types described by an occurrence matrix.  From the occurrence matrix 

two co-occurrence matrices can be formed.  Given primary entity-type, x1, and relative entity-type, x2, 

assume that the ith entity of entity-type x1, is the entity of interest, Two feature vectors can be formed for 

entity i that describe its relation to the relative x2 entities: 

 

• Oi[x1; x2]: an occurrence feature vector listing the number of times each x2 entity is associated with 

x1 entity i.  This corresponds to row i in the occurrence matrix O[x1; x2]. 

• Ci[x1; x2]: a co-occurrence feature vector listing the number of times each x1 entity co-occurs with 

entity i in their association with x2 entities. This corresponds to row i (and column i since the 

matrix is symmetric) in the co-occurrence matrix C[x1; x2]. 

 

The length of the occurrence feature vector is the number of relative entities nx2.  The length of the co-

occurrence feature vector is the number of primary entities nx1.  Figure 29 shows a diagram of a paper 

author to reference author occurrence matrix, O[ap;ar], and the associated paper author co-occurrence 

matrix, C[ap;ar].  A paper author i is highlighted and its occurrence feature vector and co-occurrence 
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feature vector are shown. Each entity in a paper collection has NE-1 occurrence feature vectors and NE-1 

co-occurrence features, where NE is the number of entity-types in the paper collection. 

Paper author to reference author matrix, O[ap;ar] Paper author co-occurrence  matrix, C[ap;ar] 

Paper i

Occurrence feature vector, Oi[ap;ar] Co-occurrence feature vector, Ci[ap;ar] 

Paper author to reference author matrix, O[ap;ar] Paper author co-occurrence  matrix, C[ap;ar] 

Paper i

Occurrence feature vector, Oi[ap;ar] Co-occurrence feature vector, Ci[ap;ar]  
 

Figure 29. Example of feature vectors.  Given papers as the primary entity-type and references 
as the relative entity-type, the occurrence feature vector for paper i is row i from the paper to 
reference matrix O[p;r], while the co-occurrence feature vector for paper i is row i (or column i) 
from the co-occurrence matrix C[p;r].   
 

The occurrence vector,  Oi[x1; x2], associated with x1 entity i, describes the set of x2 entities associated with 

x1 entity i and serves as a characterizing pattern, that is, a pattern of associations that helps to characterize 

and classify x1 entity i. For example, the vector Oi[ar; ap], listing the paper authors citing a reference 

author i,  characterizes  reference author i by the pattern of  authors that read and use his or her work. Table 

3 shows a list of different types of occurrence feature vectors with their associated characterizing patterns. 

 

Table 3. Examples of occurrence feature vectors for entities in a collection of papers. 
 
Primary 
entity-type 
x1 

Relative 
entity-type 
x2 

Feature 
vector for 
entity i 

Characterizing pattern 

paper reference Oi[p;r] a) The concept symbols used by a paper (Small, 1978).  b) 
the knowledge sources used by a paper. 

reference paper Oi[r;p] The papers using a reference as a concept symbol.  
paper 
author 

paper Oi[ap;p] A paper author’s oeuvre 

paper 
author 

reference 
author 

Oi[ap;ar] The reference authors whose work a paper author reads 
and uses. An author’s identity (White, 2001). 

reference 
author 

paper author Oi[ar;ap] The paper authors that read and use a reference author’s 
work.  

paper 
journal 

reference 
journal 

Oi[jp;jr] The reference journals holding source knowledge used by 
papers in a paper journal 

reference 
journal 

paper 
journal 

Oi[jr;jp] The paper journals whose papers draw knowledge from a 
reference journal 

paper terms Oi[p;t] A paper’s research vocabulary 
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The co-occurrence vector, Ci[x1; x2],  associated with x1, gives the set of x1 entities that are associated with 

the same x2 entities as x1 entity i.   Similar to occurrence feature vectors, co-occurrence feature vectors may 

serve as some specific characterizing pattern.  For example, the vector Ci[r,p] characterizes reference i by 

the list of the references that are co-cited with reference i.  Table 4 shows a list of primary entity-type to 

relative entity-type pairs and characterizing patterns that can be derived from the associated co-occurrence 

feature vectors. 

 

Table 4. Examples of co-occurrence feature vectors for entities in a collection of papers. 
 
Primary 
entity-type 
x1 

Relative 
entity-type 
x2 

Feature 
vector for 
entity i 

Characterizing pattern 

paper reference Ci[p;r] The papers that use the same concept symbols as paper i. 
(Papers covering the same topic as paper i.) 

reference paper Ci[r;p] The references being used by the same papers the use 
reference i.  (Exemplar references for the same Kuhnian 
paradigm as reference i. ) 

paper 
author 

paper Ci[ap;p] The collaborators of paper author i. 

paper 
author 

reference 
author 

Ci[ap;ar] The paper authors using the same knowledge sources as 
paper author i. Paper author i’s invisible college.  

reference 
author 

paper author Ci[ar;ap] The reference authors used as knowledge sources by the 
same paper authors as reference author i.  The image of 
reference author i.  (White, 2001) 

paper 
journal 

reference 
journal 

Ci[jp;jr] The paper journals using the same sources of knowledge as 
paper journal i.  

reference 
journal 

paper 
journal 

Ci[jr;jp] The reference journals (sources of knowledge) being used 
by the same paper journals as reference journal i.    

paper terms Ci[p;t] Papers using the same research vocabulary as paper i.  
(Papers covering the same topic as reference journal i.)  

 

Occurrence and co-occurrence feature vectors, together with the similarities discussed in Chapter 9, provide 

measurements of inter-entity relations that can be used to map the structure of the entity groups in a 

collection of papers. Chapter 11 will discuss the seriation and clustering methods that are used to map and 

group entities in the collection of papers.   
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11. SERIATION, CLUSTERING AND ENTITY GROUPS 

11.1 Introduction 

Seriation is a method to order lists of entities according to some criteria. Clustering is the process of 

finding groups of entities according to some criteria.  Both methods are important for uncovering structure 

among the entities within a collection of papers.  Most seriation and clustering routines use inter-entity 

similarities derived from co-occurrence matrices as input to their algorithms.  For example, seriation based 

on the traveling salesman problem (TSP)  attempts to place entities that are most similar to each other in an 

ordering by maximizing the sum of similarities of adjacent entity pairs in the ordering (Bar-Joseph, Gifford, 

& Jaakola, 2001). Hierarchical agglomerative clustering, the most commonly used clustering technique, 

produces clusters by an iterative bottom-up fusing of the two most similar entities or clusters in the 

collection (Gordon, 1999).   For seriation and clustering methods based on comparing distances between 

entities, distances can be calculated from similarities by subtracting them from unity or by other well-

known methods (Jones & Furnas, 1987).   

 

When groups of primary entities are found based on co-occurrence with a relative entity, it is important to 

consider what such groups represent.  Groups of entities clustered on co-occurrence share a common 

characteristic.  Given the common characteristic of such groups, they can be assigned a symbolic 

representation.  For example, groups of paper authors that are formed by clustering on co-occurrence of 

papers have a common characteristic of “common papers.” From this characteristic it can be inferred that a 

group of authors clustered this way have co-authored one or more papers together.  The symbolic 

representation for such groups then would be collaboration groups.  Figure  30 shows an entity relationship 

diagram listing several useful symbolic representations for groups of primary entities formed by clustering 

on co-occurrence with different relative entities.   A primary entity-type may yield several symbolic 

representations depending on the relative entity-type.  For example, groups of papers formed by clustering 

on co-occurrence with paper authors share a common characteristic of “common authors” and can be 

assigned a symbolic representation of “collaboration group oeuvres.”  However, groups of papers can also 

be formed by clustering on co-occurrence of references. A group of such papers would have a common 

characteristic of “common references.”     A group of papers using the same references are using the same 

concept symbols and it follows that they are reporting on the same research topic.  The symbolic 

representation of such a group could be “research front,”  meaning a group of papers covering a common 

topic or Kuhnian puzzle.   
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Aside from using similarities, it is possible to work with feature vectors as input to vector based clustering 

methods, such as c-means clustering, to produce clusters.  These methods are based on iteratively adjusting 

the locations of cluster centers  in the feature space.  Each entity is assigned to the cluster whose center is 

closest to its feature vector.   

 

The discussion in this chapter will center on the effects of clustering on the occurrence and co-occurrence 

matrices within the collection of papers.  Rather than reviewing extensively the mechanics of seriation and 

clustering, the discussion will focus on the results of such methods and how they are related to the 

permutation and shading of occurrence matrices in a collection of papers.  This will aid in understanding 

the process of clustering and seriation as the ordering of entities and permutation of occurrence matrices in 

a way that reveals structure in the relation of entities in the collection of papers.   
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Figure 30. An entity relationship diagram showing symbolic representations for groups of entities 
formed by clustering on co-occurrence relations.  
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11.2 Seriation and matrix shading 

Seriation is the method of ordering entities such that closely related entities are adjacent in the order and 

remotely related entities are far apart in the order. Seriation can be loosely considered a one dimensional 

multidimensional scaling problem (Kruskal & Wish, 1978).  Seriation can be performed simultaneously on 

two entity-types related through an occurrence matrix by using a process known as matrix shading.   The 

objective of matrix shading is to rearrange the rows and columns of a matrix such that it approximates, as 

much as possible, a Robinson matrix.  In a Robinson matrix the magnitudes of the elements of the matrix 

decrease monotonically as one moves away from the matrix diagonal in any direction (Robinson, 1951).  

Visualizing the matrix by darkening matrix elements in proportion to their magnitude,   a Robinson matrix 

is dark along the diagonal and gets lighter as one moves away from the diagonal. See Figure 31. 

9 8 7 6 5 4 3 2 1
8 9 8 7 6 5 4 3 2
7 8 9 8 7 6 5 4 3
6 7 8 9 8 7 6 5 4
5 6 7 8 9 8 7 6 5
4 5 6 7 8 9 8 7 6
3 4 5 6 7 8 9 8 7
2 3 4 5 6 7 8 9 8
1 2 3 4 5 6 7 8 9

(a) (b)

9 8 7 6 5 4 3 2 1
8 9 8 7 6 5 4 3 2
7 8 9 8 7 6 5 4 3
6 7 8 9 8 7 6 5 4
5 6 7 8 9 8 7 6 5
4 5 6 7 8 9 8 7 6
3 4 5 6 7 8 9 8 7
2 3 4 5 6 7 8 9 8
1 2 3 4 5 6 7 8 9

(a) (b)
 

Figure 31. Example of the structure of a Robinson matrix (a), and the corresponding matrix 
shading (b). 
 
Matrix shading algorithms typically use iterative matrix permutations to minimize a penalty function that 

measures the moment of the matrix element weights around the diagonal of the matrix.  Assuming an 

occurrence matrix O[x1;x2], one such penalty function for matrix shading is: 
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Figure 32 (a) shows an example of matrix shading of a paper to paper author matrix, O[p;ap], for a 

collection of papers covering the topic of SARS with 475 papers and 1901 paper authors. Papers authors 

with only one paper were eliminated, leaving a 475 paper by 443 binary paper author matrix. Matrix 

shading was performed using a greedy algorithm that iteratively performs alternating row and column 

permutations to minimize the penalty function of Equation (102).  Dots in the figure correspond to ones in 

the matrix.  Note that shading has concentrated the ones along the diagonal of the matrix, approximating a 
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Robinson matrix.  Adjacent papers in this matrix are related because they share common paper authors.  

Adjacent paper authors in this matrix are related because they tend to be coauthors on the same papers.   

 
Figure 32 (b) shows an example of matrix shading of a paper to reference matrix O[p;r], for a collection of 

SARS papers. There are 396 references in this collection. Reference authors appearing only once in the 

collection were eliminated, leaving a 475 paper by 584 reference binary matrix. Note in the figure how 

matrix shading tends to move the most highly cited references to the center columns of the matrix.  These 

references appear as heavy vertical streaks in the shaded matrix.  There is a great deal of overlap in 

references in adjacent papers, but the diagonal structure is definitely evident. In this case matrix adjacent 

papers in this matrix are related because they tend to cite the same references. Adjacent references in the 

shaded matrix are related because they tend to be cited by the same papers.  
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Figure 32. Results of matrix shading of occurrence matrices in a collection of papers on the topic 
of SARS research.  Left in (a) shows a paper to paper author matrix. Right in (b) shows a paper 
to reference matrix.  
 
Many methods exist for matrix shading.  Packer (1989), for example, used simulated annealing and the 

penalty function of Equation (102) to do matrix shading on a paper author to reference author matrix, 

O[ap;ar], from a collection of papers on the topic of neuroscience.   Several other matrix shading 

algorithms can be found in the literature (Brower & Kile, 1988; Lenstra, 1974). 

 

11.3 Hierarchical agglomerative clustering 

Agglomerative clustering gathers groups of entities by iteratively fusing clusters of entities that have the 

greatest similarity according to some linkage function.    The method starts by assuming that each entity is a 

cluster with a single member.  Given N entities in the collection, there are N-1 successive fusings, where 
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the members of the two most similar groups are combined, and the similarity of the newly fused group to 

all remaining groups is recalculated using the linkage function.  Examples of commonly used linkage 

functions are single linkage, complete linkage, average linkage, and incremental sum-of-squares (Ward’s 

method) linkage.  Definitions of these linkage functions can be found in Gordon (1999).  Careful selection 

of the linkage function is necessary in order to avoid chaining artifacts, where a large percentage of the 

entities are clustered into a single group (Gordon, 1999). The order of the successive fusings in 

agglomerative clustering can be used to build a clustering tree, or dendrogram.   The tree can be truncated 

at the desired number of clusters.   

 

 
Figure 33. A crossmap of research fronts (groups of papers) to reference author groups for a 
collection of papers on the topic of molecular imprinting.  The crossmap is a visualization of the 
paper to reference author matrix after agglomerative clustering and seriation of papers and 
reference authors.  Note that the resulting matrix approximates a Robinson matrix.  
 
The dendrogram also provides an ordering of the clusters.  For any dendrogram with N leaves, there are 2N-2 

possible orderings of the dendrogram.  Selecting the ordering from among these possibilities poses another 

seriation problem.    Seriation of dendrograms is a method often applied to genome data, for example Bar-

Joseph, Gifford et al (2001) pose dendrogram seriation as a traveling salesman problem and use a search 

algorithm to find the optimal ordering.  Morris, Asnake, and Yen (2003) use simulated annealing with a 

similarity times distance penalty function for dendrogram seriation.  Agglomerative clustering and 
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dendrogram seriation can be applied to both primary and relative entities in an occurrence matrix.  This 

method can be used for matrix shading and is the method used to produce crossmap visualizations (Morris 

& Yen, 2004) of occurrence matrices, which will be explained in Chapter 12.3.   The net result of clustering 

entities is a shading of the occurrence matrix.  For example, Figure 33 shows a research front (groups of 

papers by topic)  to reference author group matrix, O[gp;gar] after clustering papers by bibliographic 

coupling and clustering reference authors by co-citation in papers. Here the circles on the diagram are 

proportional to magnitude of the elements of the matrix.  Note the diagonal structure of the matrix after 

clustering.  

 

11.4 Vector-based c-means clustering 

Vector based clustering, such as c-means clustering, does not produce a dendrogram, as does agglomerative 

hierarchical clustering.  In the c-means algorithm, the user selects the number of clusters N.  The method 

starts by randomly selecting N points in the feature space.  These are the cluster centers. At each iteration, 

two steps are performed: 1) the entities are assigned to the cluster whose center is closest to its feature 

vector in the feature space.  and 2) each center is moved to the vector mean of the feature vectors of the 

entities assigned to its cluster. This iteration process proceeds until the cluster center positions converge to 

some final positions.  The final result is: 1) a list of cluster memberships by entity,   and 2) the cluster 

centers themselves, which can serve as prototypes that illustrate the typical pattern of features in each 

cluster.   It is possible to use agglomerative clustering of the cluster centers to obtain a dendrogram if 

desired.  Calculation times for c-means clustering tends to be shorter than agglomerative clustering.  The 

method suffers less from chaining artifacts than agglomerative clustering as well. Chaining artifacts 

produce highly skewed distributions of cluster sizes in hierarchical clustering when entities do not fall into 

well-defined clusters in the feature space (Gordon, 1999). A fuzzy c-means algorithm (Bezdek, 1981) can 

be used that models fractional membership of entities in clusters, thus modeling overlap in cluster 

membership. 

 

Similar to agglomerative clustering, c-means clustering can be considered as a rearrangement of the rows 

of the occurrence matrix.  Using the cluster assignment produced by clustering and permuting the matrix so 

that rows from entities in the same cluster are adjacent to each other, the method produces a simple matrix 

shading that is much easier and faster to compute than using simpler matrix shading techniques discussed 

in Chapter  11.2. 

 

Consider an example that uses the factor matrix from the well known study of information science authors 

by White and McCain (1998).  The factor matrix is derived from factor analysis, a statistical technique, 

similar to latent semantic analysis, that expresses occurrences in terms of a reduced set of dummy entities. 

The technique is very similar to latent semantic analysis that is described in Chapter 13.8.  Figure 34 (a) 

shows a diagram of the  factor to reference author matrix, O[f;ar]  from White and McCain (1998), where 
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dots in the diagram show non-zero elements in the matrix.  Using agglomerative clustering, the factors 

were clustered based on the Euclidean vector distance between rows, while the reference authors were 

clustered based on the Euclidean vector distance between columns. After seriation of both the resulting 

dendrograms using simulated annealing (Morris, Asnake et al., 2003), the resulting entity orders were used 

to permute the factor to reference author matrix to yield the matrix in Figure 34 (b).  Note the resulting 

structure in the permuted matrix, which approximates a Robinson matrix after a trivial reversal of column 

order.  This illustrates that clustering of entities can be viewed as a method that produces matrix shading of 

occurrence matrices.  Figure 35 shows a permuted matrix of 34 (b) with clustering dendrograms, factor 

labels and reference author labels attached.  It is evident, from the dendrograms and the structure of overlap 

of reference authors across the factors, that factors and reference authors generally fall into two fields, 

information retrieval on the bottom and left of the matrix, and bibliometrics/citation theory on the top and 

right of the matrix, broad classifications discussed by White and McCain (1998). 
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Figure 34. Factor to reference author matrix from analysis of Information Science authors by 
White and McCain (see text).  Top (a) shows the original matrix.  Bottom (b) shows the matrix 
after agglomerative clustering and seriation.   
 
All the techniques discussed in this chapter: matrix shading, seriation, hierarchical clustering and c-means 

clustering can be seen as methods to rearrange the rows and columns of an occurrence matrix to 

approximate a Robinson matrix, thereby exposing the similarity structure of the entities of both the primary 

and the relative entity-types under consideration.  Chapter 6, which follows, will discuss how this matrix 

shading can be exploited to visualize the structure of links among entities in a collection of papers.  
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Figure 35. Factor matrix of Figure 34 (b) with clustering dendrograms and group labels.  
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12. VISUALIZATION OF OCCURRENCE MATRICES 

Three types of visualizations are found useful for mapping relations within a collection of papers: 1) 

timelines, 2) usage plots, and 3) crossmaps.  Each of these visualizations is a simple visual representation 

of occurrence matrices within a collection of papers.  Matrices are most readily visualized as bubble plots, 

in which the elements of the matrix are plotted as bubbles whose size is proportional to the magnitude of 

the matrix element (or some other variable) and whose position on the plot is determined by its row and 

column position in the matrix.  

12.1 Timelines 

Timelines are maps of individual entities plotted by time.  Entities are mapped as dots on the plot, placed in 

horizontal tracks by group on the y axis and plotted by time on the x axis.   Timelines are typically drawn 

for groups of papers in an effort to visualize research trends, emergence of new research fronts, and 

obsolescence of old research fronts.  Assume that a membership matrix O[gp;p] is constructed using some 

clustering technique to group the papers (denoted gp) into research fronts (groups of papers that cover a 

similar research topic.)  For example, hierarchical agglomerative clustering can be used to cluster papers 

into research fronts using bibliographic coupling (Morris, Yen, Wu, & Asnake, 2003). Using the paper 

publication year, yp, as an entity-type, the occurrence matrix O[p;yp] lists the publication year of the papers 

in the collection. The timeline matrix can be formed by multiplying out the matrices: 

 

];[];[][ ypppgpgp;py OGO ⋅=  (103) 

 

A similar matrix can be formed for publication month, mp, if such data is available for papers:   

 

];[];[][ mpppgpgp;mp OGO ⋅=  (104) 

 

A typical timeline is shown in Figure 36, from a collection of papers on the topic of anthrax research 

published from 1945 to 2002.  In this case the papers have been clustered into 35 groups using similarities 

based on bibliographic coupling.  Papers were excluded that did not have a minimum of 5 bibliographic 

coupling counts with at least one other paper in the collection.  The papers have been plotted according to 

Equation (104) but the plot has some added information.   The size of the circles representing each paper is 

proportional to the number of times that the paper has been cited.  Circles are shaded to be proportional to 
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the number of times that a paper has been cited from papers in the final 12 months of the collection.  Note 

that with this visualization that it is possible to pick out important papers in the collection based on the 

number of times each paper has been cited.  Furthermore, it is easy to pick out current high-interest, highly 

cited papers by their dark shading on the plot.  In this visualization the research front appears as 

horizontally arrayed circles with corresponding topic labels on the right of the plot. It is easy to see the 

emergence of individual research fronts on the timeline.  Obsolescence of research fronts and superceding 

of old research fronts by newer ones is also easily distinguished on this visualization.   

 

Timelines of groups of base references can be used to find sources of loan knowledge for emerging 

specialties.  Assuming that groups of references are formed using some clustering technique to yield a 

membership matrix G[gr;r], and that a reference to reference year matrix, O[r;yr], is constructed, the 

reference group to reference year matrix can be calculated from :  

 

];[];[][ yrrrgrgr;yr OGO ⋅=  (105)  

 

This is a matrix of groups of references as the rows, and reference year as columns.  For any reference year 

column, the elements of the matrix are the count of the number of references in a group that have that 

reference year.   

 

In emerging specialties, references that are used to symbolize loan knowledge from other fields usually 

predate the date of emergence of the field.  Figure 37 shows a base reference timeline for a collection of 

papers on the topic of complex networks.  Here, the references have been clustered into base reference 

groups using co-citation. Reference years are on the y-axis and the base references are arrayed on the x-

axis. Putting the base references on the x-axis allows the base references to be aligned with crossmap 

visualizations where base references are also shown on the x axis.  

 

Note that in this collection the principle discovery paper for the specialty is a 1998 paper by Watts and 

Strogatz, whose corresponding reference is the large circle marked with crosshairs on the figure.  

References that pre-date the Watts and Strogatz discovery reference should represent loan knowledge 

drawn from other specialties.  As shown in the figure, there are four base references that pre-date the Watts 

and Strogratz reference. On the left are references corresponding to a 1967 paper by Milgrams on social 

‘small world phenomena,’  and a second reference to a 1994 paper by Wasserman on social network 

analysis.  These two references represent loan knowledge drawn from social network theory.  Two 

references on the right, one by Erdos, another by Bollobas, represent loan knowledge drawn from random 

graph theory. 
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12.2 Usage plots 

Usage plots are similar to timelines, but in this case, instead of publication year, the number of associations 

between two groups of entities is plotted as a function of time. Usage plots of references in a collection can 

be used to map the accretion of knowledge in a specialty, as shown by the appearance of exemplar 

references in the specialty. This type of plot can be calculated from the occurrence matrices: 

 

][][][][ p,ypr,pgr,rgr;yp OOGO ⋅⋅=  (106) 

 

This matrix has groups of references as rows and paper publication years as columns.  For any particular 

publication year, the matrix elements count the number of citations to references within a reference group 

for that year. This visualization technique shows the emergence and obsolescence of groups of exemplar 

references that accompanies discoveries and paradigm shifts.  Figure 38 shows a usage plot of references 

from a collection of papers on the topic of angiogenesis.  In this plot it is possible to identify the growth of 

specific references as exemplar references in the collection.  Exemplar references appear as vertical tracks 

of large circles in the plot.  The time of emergence of concepts in the specialty can be seen as the starting 

time of the tracks of the well-cited exemplar references.  Paradigm shifts and obsolescence are seen as 

sudden declines of citations to formerly well-cited references, although the usage plot shown in the figure 

does not contain good examples of such sudden citation decline.   

 

Usage plots of reference authors in the collection can be used to map schools of thought, that is broad 

conceptual frameworks typically associated with specific groups of authors.  Assuming groups of reference 

authors, gar, formed by clustering on co-citation of authors in papers, the reference author group to paper 

year matrix can be calculated by matrix arithmetic from:   

 

][][][][][ p,ypr,par,rgar,argar;yp OOOGO ⋅⋅⋅=  (107) 

 

This matrix, with reference authors as rows and publication year as columns, shows the number of citations 

received by the reference authors in each reference author group by year.  Figure 39 shows a usage plot of 

reference authors from a collection of papers on the topic of angiogenesis. Similar to a reference usage plot, 

in this plot it is possible to identify the growth of specific reference authors as symbols of schools of 

thought in the collection as vertical tracks representing highly cited reference authors.  Also, similar to 

reference usage plots, paradigm shifts and obsolescence of schools of thought can be tracked from temporal 

changes in the number of citations received by base references authors.   
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12.3 Crossmaps 

Crossmaps are visualizations of occurrence matrices between pairs of entity-types (Morris & Yen, 2004).   

Crossmaps are very useful for visualizing overlap in relations among groups of entities.  Entity groups for 

both entity-types are formed by agglomerative hierarchical clustering. After clustering, dendrogram 

seriation is performed to place related leaves adjacent to each other.  The rows and columns of the group 

co-occurrence matrix are rearranged to match the two dendrograms.  The resulting matrix tends to 

approximate a Robinson matrix.   The matrix is plotted as a bubble plot with the dendrograms appropriately 

placed at the left and top, and group labels placed on the right and bottom.  In this type of plot, the overlap 

of relations across groups of different entities tends to show as clumps of bubbles on the plot.     

 

One type of useful crossmap can be formed from groups of papers and groups of references. Assume 

membership matrix G[gp;p], which lists of groups of papers (research fronts) clustered using  bibliographic 

coupling, and also assume membership matrix G[gr;r], which lists groups of references gr, as exemplar 

reference groups clustered using co-citation,  The occurrence matrix for plotting can be calculated from: 

 

][][][][ r,grp,rgp,pgp;gr GOGO ⋅⋅=  (108) 

 

This type of crossmap shows the relation between research fronts (groups of paper covering the same topic) 

and exemplar reference groups ( groups of references that are often cited together in papers.)  As such, it is 

a visualization of the relation of base knowledge to research in the collection.  Figure 40 shows a crossmap 

of research fronts to base references for a collection of papers covering the topic of angiogenesis.  In this 

crossmap groups of large circles correspond to groups of papers that are closely related to groups of 

exemplar references.   

 

A second type of useful crossmap is derived from the occurrence matrix of groups of papers and groups of 

reference authors.  Papers are clustered by bibliographic coupling into research fronts to yield membership 

matrix  G[gp;p], while reference authors are clustered by co-citation counts to yield membership matrix 

G[gra;ra].   Research fronts to reference author groups can be calculated from: 

 

][],[][][][ ar,gararrp,rgp,pgp;gar GOOGO ⋅⋅⋅=  (109) 

 

Figure 41 shows an example of a crossmap of research fronts to base reference authors.  The interpretation 

of this type of crossmap is similar to that of the research front to base reference group crossmap shown in 

Figure 40.  The research fronts represent research topics while the base reference author groups represent 

schools of thought. 
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A third type of useful crossmap is derived from the occurrence matrix of groups of papers and groups of 

paper authors.  Assume G[gp;p], the paper membership matrix discussed above, and also assume 

G[gap;ap], a paper author membership matrix from groups of paper authors clustered using co-authorship 

counts.   Research fronts to paper author groups can be calculated from: 

 

][][][][ ap,gapp,apgp,pgp;gap OOGO ⋅⋅=  (110) 

 

Figure 42 shows a crossmap of reference fronts to paper authors for a collection of papers covering the 

topic of angiogenesis.  In this map collaboration groups appear as leaves on sub-branches of the 

dendrogram that is placed along the top of the plot.  Groups of horizontal adjacent circles on the map 

correspond to collaborating groups of authors publishing a series of papers in a research front. 

 

The visualization techniques described in this chapter are effective in showing the static structure of links 

as well as dynamic changes in link structure in a collection of papers.  Timelines of papers can be used to 

show emergence and obsolescence of ideas, important papers and current hot concepts.  Timelines of 

references can show references corresponding to ideas borrowed from other fields.  Usage plots allow the 

easy visualization of growth of key concepts and schools of thought in a specialty.  Crossmaps show links 

among unlike entities, and particularly show the relation of research fronts to schools of thought, groups of 

exemplar references and author collaboration groups.  

 

All of these visualizations are adaptations of simple bubble diagrams of occurrence matrices.  As shown by 

the equations presented in this chapter, these matrices are easily calculated from direct occurrence matrices 

using matrix arithmetic.   
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Figure 36. Research front timeline of a collection of papers on the topic of anthrax research over 
a 60 year period.   
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Figure 37. Timeline of base references for a collection of papers on the subject of complex 
networks. 
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Figure 38. Reference usage plot from a collection of papers on the subject of angiogenesis. 
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Figure 39. Reference author usage plot from a collection of papers on the subject of 
angiogenesis. 
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Figure 40. Research front to base reference crossplot from a collection of papers on the topic of 
angiogenesis. 
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Figure 41. Research front to base reference author crossmap for a collection of papers on the 
subject of angiogenesis. 
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Figure 42. Research front to paper author crossmap for a collection of papers on the subject of 
angiogenesis. 
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13. EXISTING ANALYSIS TECHNIQUES 

13.1 Introduction 

This chapter will review many techniques commonly used in bibliometric analysis and present them in the 

context of the mathematical treatment proposed in this report.  All of these methods can be expressed in 

terms of the formation and manipulation of occurrence matrices and co-occurrence matrices. The following 

bibliometric analysis techniques will be reviewed: 

• Co-occurrence clustering techniques 

o Co-citation analysis.  This is a technique for finding groups of related references that are 

cited together in papers. The technique is used for finding groups of base references.   

o Bibliograhic coupling analysis. A clustering and searching method for finding groups of 

papers that tend to cite the same references. This technique groups papers by topic. 

o Author co-citation analysis.  A method of mapping a field by finding groups of 

reference authors that tend to be cited in papers together.  

o Journal co-citation analysis.   A method of finding groups of related journals that tend 

to be cited together.  This technique is used to find base reference archives.   

o Braam-Moed-vanRaan (BMV) co-citation/co-word analysis.  A method to relate 

groups of references that are cited in papers together to groups of terms.  

• Latent variable and modal analysis techniques 

o Latent semantic indexing.  A dummy entity technique where term occurrences are 

expressed in relation to dummy concepts.  

o Hubs and authorities analysis.  A search method, originally developed for searching on 

the World Wide Web, For finding groups of authorities (references that tend to be cited 

together by hubs) and authorities (papers that tend to cite the same authorities.)  

• Feature vectors 

o Author identities and author images.  A technique for characterizing individual 

reference authors and paper authors. This technique finds “schools of thought.” 

• Network pruning techniques 
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o Pathfinder analysis. A method of link pruning used to visualize network structure.  

 
The discussion to follow will center on showing that these techniques can be expressed in terms of 

occurrence and co-occurrence matrices and showing that the algorithms associated with each of these 

methods can be expressed simply in terms of the mathematical treatment proposed here.   

13.2 Co-citation analysis 

Co-citation analysis is the most widely used method to map knowledge in a collection of papers.  This is 

done by clustering or mapping references in a collection of papers based on co-citation counts.  Most 

common applications use a citation threshold to select references that have been heavily cited.  Using a 

reduced co-citation matrix, applications such as multidimensional scaling (MDS), pathfinder maps, and 

agglomerative hierarchical clustering are used to find the structure of relations among references.  Clusters  

of references mapped this way constitute groups of exemplar references  or base references, references that 

are used as knowledge symbols by authors publishing papers within a specialty.  If such highly cited 

references are considered exemplars, then these groups of references that are highly cited together can be 

thought of as exemplars that are part of common Kuhnian paradigms.  (Morris, 2004; Small, 1978) 

 
Using the mathematical treatment proposed here, co-citation clustering can be presented as: 

 
]);[(];[ prfrgr CG =  (111) 

 
where gr represents base reference groups, and f(C[r,p]) is a clustering function such as hierarchical 

agglomerative clustering or c-means clustering. Small (1997), for example, describes a co-citation 

clustering technique based on hierarchical agglomerative clustering with single linkage where a maximum 

is enforced on the number of cluster members.  This membership matrix can be used to relate base 

reference groups to other entities or entity groups in the collection of papers.  See, for example, the co-

citation/co-word technique discussed in Chapter 13.7.    

13.3 Bibliographic coupling analysis 

Clustering of papers using bibliographic coupling was introduced by Kessler (1963).  As previously noted, 

bibliographic coupling occurs between pairs of papers and is the count of the number of references that are 

cited by both papers.  It is assumed that pairs of papers that cite many common references cover similar 

research topics.  From this assumption, it can be inferred that groups of papers that are clustered based on 

bibliographic coupling are papers that cover the same research topic.  This is the assumption used by the 

ISI in their Web of Science product to find papers that are related to a paper selected by the user. 

 

Bibliographic coupling is a static metric, as shown in Chapter 7.4, the bibliographic coupling count 

between a pair of papers never changes.  Morris, Yen et al  (2003) exploit this characteristic to use 
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bibliographic coupling to cluster papers into research fronts that are displayed in timelines to visualize 

temporal events in the literature of a specialty.  These events include trends, discoveries, obsolescence, and 

topic fission.  Research fronts formed through bibliographic can coupling be visualized in a crossmap 

format, that shows relations of research fronts to other entity groups within the collection of papers (Morris 

& Yen, 2004).  For a better description of timelines and crossmaps, see Chapter  6. 

 

13.4 Discussion of research fronts and exemplar reference groups 

The concept of a research front is important when studying literatures.  There is a need to classify papers by 

both topics and by currency.  The term research front was originally defined by Price (1965).  Price’s 

model of literature was of papers citing papers, that is, a graph theoretic model as in Chapter 8, with no 

distinction between papers and references.  Price defined a research front as the “growing epidermis” of 

papers and the papers in the immediate past that they cite. Price used a cited paper to citing paper matrix 

(an adjacency matrix O[cp;p] as defined in Chapter 8.) An example of such a matrix, taken from a 

collection of papers on the topic of angiogenesis is shown in Figure 43.  Note the dashed line drawn about 

50 papers above the diagonal of the matrix. Assuming some paper i as the latest paper published, Price 

considered the research front at that instant to be paper i and the 50 papers or so that preceded it.  On the 

adjacency matrix of Figure 43, this defines  the research front at paper i as  the papers in the  triangular area 

that trails it.  The importance of the concept of the research front is that it attempts to identify what is 

current in the literature, in effect, “high-grading” the papers in the literature and providing a simple model 

of current and obsolete literature.  This model of research fronts is difficult to apply practically, and has 

been superceded by other definitions   

 
Figure 43. Example of a research front as defined by Price, on an paper adjacency matrix from a 
collection of papers on the topic of angiogenesis. The research front consists of the 50 papers 
immediately preceding the most current paper published. 
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Garfield (1994) defined research fronts as “co-citation clusters and the papers that cite them.” This is a 

useful operational definition. Assume a collection of papers where papers are clustered into groups using 

bibliographic coupling, and references are clustered into groups using co-citation.  These groups form the 

occurrence matrix O[gp;gr]. Figure 44 shows an example of this type of matrix, taken from a collection of 

papers on the topic of MEMS RF switches. References correspond to columns in this matrix and papers 

correspond to rows.  A group of 4 clustered references is identified at the top of the figure.  A dashed box is 

drawn around the columns for this group of references.  Groups of papers that cite the references are noted 

by arrows on the right.  By the Garfield definition, the group of 4 references and the papers that cite them 

constitute a research front. A problem with this definition is that it mixes references and papers.  

References are concept symbols (Small, 1978) or represent knowledge sources and can be ranked in 

importance by the number of citations they receive.  Papers are simple research reports and cannot be 

ranked.   

 

 
Figure 44. Crossmap of paper groups (clustered using bibliographic coupling) by reference 
groups (clustered using co-citation) from a collection of papers on the topic of MEMS RF 
switches.  Under Garfield’s definition a reference front is a group of references, such as the 4 
references shown, and the papers citing them, such as the papers in groups identified using 
arrows on the right. Persson defines an intellectual base as a co-citation cluster of references 
(such as the column of 4 references highlighted) and a research front as the papers that cite the 
co-citation cluster, such as the citing papers in the paper groups noted on the right.   
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Persson (1994) separates the references from the papers when defining research fronts.  Assuming a group 

of references clustered using co-citation, a research front is defined as the papers that cite that group, which 

is defined as the intellectual base of the research front.  Examining Figure 44 again, considering the same 

group of 4 references as before, the column of 4 references represents the intellectual base of a research 

front, while the papers that cite those references, indicated by the arrows on the right, comprise the 

associated research front.  This separation allows consideration of the research front’s papers as simple 

reports covering a topic, while allowing separate consideration of the intellectual base references as 

knowledge sources and concept symbols.  Note, however, that papers themselves are not grouped.  There is 

the problem of establishing research front membership for emerging specialties and sub-topics.   In this 

case the heavily cited references are not well established and the co-citation clusters are changing rapidly as 

exemplar references accrete in the specialty (Morris, 2004)   

 

Morris, Yen, et al (2003) use a definition of research front similar to Persson’s.  In this case however, 

research fronts are defined as groups of papers clustered by bibliographic coupling. Base documents of 

research fronts are defined as the references that are cited by 40% or more of the papers in a research front. 

In a second paper, Morris and Yen (2003) introduced an entity-relationship model of collections of journal 

papers and proposed research fronts as papers clustered by bibliographic coupling and base reference 

groups as references grouped by co-citation, as shown in Figure 45.  Using bibliographic coupling to group 

papers into research fronts introduces temporal stability into research fronts because links between papers 

are static and do not cumulate (Morris, Yen et al., 2003)  Clusters of papers found using bibliographic 

coupling should be more robust than when using Persson’s definition because they are gathered using links 

among themselves rather than gathering papers that are indirectly related by citing co-citation clusters of 

references.  There is a great deal of overlap of research fronts and the base reference groups they cite.  

However, the crossmapping technique introduced by Morris and Yen (2004), and explained in Chapter 12.3 

is useful for visualizing these overlapping relations between research fronts and base reference groups, and 

adds considerable insight into the analysis of collections of journal papers.  

 

Research fronts are unique in their importance to the analysis of a specialty through a collection of journal 

papers. In a broad sense, research fronts are more than just groups of papers clustered by topic.  The 

authors of the papers in the research front tend to cite the same references and are therefore drawing on the 

same base knowledge for conducting their research.  This implies a focus by the group of authors, not only 

on the topic, but on the paradigm supporting the topic.  As such, the papers in the group may be thought of 

as reporting on research that is concerned with the same Kuhnian puzzle, because the researchers all cite 

the same exemplar references.  Given the importance of research fronts as representative of puzzles and 

sub-specialties within the specialty covered by the collection of papers, it is very useful to map the relations 

of the research fronts to other groups of entities within the collection.   Many different matrices can be 
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formed to relate groups of entities in the paper collection using the crossmapping technique discussed in 

Chapter 12.3. 

 

 
 

Figure 45. Crossmap of paper groups (clustered using bibliographic coupling) by reference 
groups (clustered using co-citation) from a collection of papers on the topic of MEMS RF 
switches.  Under Morris and Yen’s  definition, a reference front is a group of papers, such as the 
papers in the three groups of highlighted rows, while a base reference group is a co-citation 
cluster such as the 4 references highlighted in columns. The crossmap shows the 
correspondence between research fronts and base reference groups as clumps of circles, as can 
be seen at the intersection of the highlighted rows and columns.   
 

13.5 Author co-citation analysis   

Author co-citation analysis was originally introduced by White and Griffith (1981) as a way of mapping the 

structure of a scientific field.  The author co-citation count of a pair of authors is the number of papers that 

cite both authors.  Highly cited reference authors, similar to references, can be thought of as concept 

symbols of base knowledge, but on a more general level since well-cited authors tend to have many papers 

on a broad array of topics. A good description of a group of heavily co-cited reference authors then, would 

be a school of thought, as this implies a group of like minded individuals who provide specialized 
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knowledge to a general audience.   Assuming that the heavy citation of reference authors gives evidence of 

their position as authorities in the specialty, this leads to the interpretation that groups of heavily cited 

reference authors correspond to groups of experts in the specialty.   

 

The most common method for author co-citation,  summarized by McCain (1990) uses a reference author 

co-citation matrix.  As described by McCain, the co-citation matrix is built directly from queries to Dialog, 

an online database service2, and does not entail building a collection of papers.  This method does not 

produce feature vectors for the reference authors as described in Chapter 10.  Rather, the rows of the co-

citation matrix itself are used as feature vectors for clustering and mapping.  There is some question about 

what values to put along the diagonal of the co-citation matrix.  McCain discusses the technical problems 

associated with finding values for the diagonal, but states that usually some scaled value of the number 

papers citing each author is placed on the diagonal.  The co-citation matrix is squared to find values for 

computation of similarities.   White (2003a) advocates the use of correlation coefficient similarity, other 

researchers (Ahlgren, Jarneving, & Rousseau, 2003) advocate the use of cosine similarity.  The resulting 

similarity measure between two reference authors is not a direct measure of the number of times the 

reference authors are cited together.  The pattern of the number of co-citations with other reference authors 

is the feature vector of this technique, and so the similarity is based on the similarity of that pattern between 

pairs of reference authors.   

 

When dealing with a collection of papers, author co-citation analysis is relatively straightforward compared 

to author co-citation of data acquired through Dialog queries.  For a collection of papers, the paper to 

reference author matrix is built from the paper to reference and reference to reference author matrices.   

 

];[];[];[ arrrparp OOO ⋅=  (112) 

 

This results in a non-binary paper to reference author matrix.  The co-occurrence matrix can be calculated 

in two ways. The first method first converts all the non-zero elements of the paper to reference author 

matrix O[p;r] to unity  before the matrix multiplication: 

 

]);[max()1],;[min(];[ arpparpar OOC ⋅=  (113) 

 

This counts the number of papers in which each pair of reference authors appears together.   This can also 

be expressed in terms of a link weight function as: 

 

                                                           
2 Thomson-Dialog, 11000 Regency Parkway, Suite 10, Cary, North Carolina, 27516. 
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( ) )1],;[min()1],;[min(];[],;[f2 arpoparoarpoparo kjikkjik ⋅=  (114) 

 

and the path combining function f1 is a summation: 

 

( )∑
=

=
np

k
kjik arpoparo

1
21 ];[],;[ff  (115) 

 

The second method to count co-occurrences is by the overlap method: 

 

( )];[],;[];[ arpparOVLpar OOC =  (116) 

 

Analysis of the reference author co-citation matrix C[ar;p] is straightforward and similar to analysis of co-

citation discussed in Chapter 13.2.  Crossmapping techniques can be easily applied to show the relation of 

reference author groups as schools of thought to the research fronts within the collection of papers.  

 

13.6 Journal co-citation analysis   

As discussed by White and McCain (1989), most of the investigations of journals focuses on analyzing 

information flow among journals based on a “cross citation” matrix.  This is a matrix of paper journals to 

reference journals where the elements (i,j) count the number of citations from papers in paper journal i to 

references containing reference journal j.  This type of analysis is called journal network analysis in 

(McCain, 1991) and is facilitated by the wide availability of cross-citation matrices from ISI’s Journal 

Citation Reports.  In a collection of papers this cross-citation matrix is easily calculated from the 

occurrence matrices:  

 

],[],[],[];[ jrrrppjpjrjp OOOO ⋅⋅=  (117) 

 

An example of journal network analysis was conducted by Doreian (1988), where he showed that the 

journal positions of individual journals in the discipline of Geography,  derived from clustering based on 

patterns in the cross-citation matrix, closely matched journal roles, which are classifications of journals 

made by subject matter experts.  Starting in the early 1990’s, it became possible, using Dialog queries, to 

extract counts of the number of times that pairs of references journals are cited in individual papers.  This 

allows journal co-citation analysis, an analysis method very similar to author co-citation analysis discussed 

in Chapter 13.5. McCain (1991), introduces this technique.  Further examples of journal co-citation 

analysis can be found in Ding, Gobinda, Chowdury, and Foo (2000), and McCain (1998).   
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Similar to the discussion on author co-citation analysis, this type of analysis can be carried out using rows 

of the paper to reference journal matrix as feature vectors or using rows of the journal co-citation matrix as 

features.  The journal co-citation matrix can be calculated from: 

 

( ) ( )1],,[min1],,[min],[ jrppjrpjr OOC ⋅=  (118) 

 

using the min function to convert from a non-binary paper to reference journal matrix to a binary paper to 

reference journal matrix. This can be calculated as a link weight function, similar to Equation (115) and 

(116) for author co-citation analysis.  The reference journal co-citation matrix can also be calculated using 

the overlap function: 

 

( )],[],,[],[ jrppjrOVLpjr OOC =  (119) 

 

Groups of reference journals that are clustered using journal co-citation are journals that are supplying base 

knowledge to common papers.  Assuming such papers represent research topics or Kuhnian puzzles, then 

these groups of reference journals can be considered base knowledge libraries, or base knowledge archives. 

 

13.7 Braam-Moed-vanRaan (BMV) co-citation co-word analysis 

The method of Braam, Moed and van Raan (1991) uses clustering of references and their relations to terms 

to analyze collections of journal papers.  Figure 46 shows a diagram of the BMV analysis method.  The 

method first clusters references into  base reference groups  based on co-citation.  The papers in the 

collection are assigned to overlapping groups based on the base reference groups they cite.  After this, word 

profile groups, consisting of overlapping groups of terms, are formed based on the frequency of terms in 

the paper groups.   This allows relating terms to base reference clusters and assists in labeling base 

reference groups and searching the paper collection.  Assuming that the list of co-citation clusters is in the 

membership matrix G[gr,r], then the relations from the base reference clusters to terms can be found using: 

 

][][][][][ t,gtp,tr,pgr,rgr;t GOOGO ⋅⋅⋅=  (120) 

 

The cascade of relations is noted along the bottom of Figure 46.   In this figure, four separate bipartite 

graphs are noted, with the matrices that represent those graphs shown in the equation below. The base 

reference group to reference membership matrix G[gr;r] is produced by clustering references by co-

citation,  while the term to word profile group membership matrix G[t;gt] is compiled indirectly by 

compiling lists of words in groups of central papers, that is, groups of papers that cite references in only 

one base reference group. 
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Figure 46. Diagram of the BMV analysis method which relates groups of references to groups of 
terms (word profile groups). 
 
 

13.8 Latent semantic analysis 

Latent Semantic Analysis (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990), also commonly 

known as Latent Semantic Indexing, is a latent variable technique that uses singular value decomposition to 

relate both papers and terms to abstract “concepts.”   This computationally expensive technique is designed 

to help disambiguate synonyms, groups of terms that have the same meaning, and polynyms, groups of 

meanings associated with the same term.  Mathematically the technique is easily described as a matrix 

equation: 

 

];[];[];[];[ pcccctpt OOOO ⋅⋅=  (121) 

 

The term to paper matrix, O[t;p], is decomposed, using singular value decomposition (SVD), into the 

product of O[t;c], the term to concept matrix, O[c;c], a diagonal matrix of singular values, (analogous to 

scale parameters), and O[c;p], the concept to paper matrix.  The singular values in O[c;c] are ranked by the 

ability of their corresponding concepts to explain variance in the co-occurrence matrix C[t;p].  In order to 

avoid overfitting of terms to concepts, and to allow fast execution of queries, the number of concepts, nc, is 

selected to be much less than nt, the number of terms, with nc, usually fixed at about 300 or so (Deerwester 

et al., 1990).  The reduction is accomplished by applying a threshold to the singular values.  The product of 
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the three matrices on the right side of Equation (102) is an approximation to the term to paper matrix O[t;p] 

in the least squares sense.  Note that matrices O[t;c] and O[c;p] are not strictly occurrence matrices as 

defined in Chapter 4.1, and both contain negative as well as positive elements.  

 

Given some query vector, Q[t], that is expressed as a term vector, a query concept vector X can be 

calculated (Berry, Dumais, & O'Brien, 1995) as: 

 

];[];[][][ cccttc OOQX ⋅⋅=  (122) 

 

This vector can be compared, usually using the cosine measure, to columns of the  concept to paper matrix, 

O[c;p], to obtain a ranked list of papers associated with the query’s concepts.  Similarly, example papers 

can be used to find associated terms and papers that use the same concepts as the example paper.  

 

Updating the SVD, that is, recalculating the three matrices on the left side of Equation (102) when new 

papers are added is problematic and computationally expensive (Berry et al., 1995).   There is no reason 

that the LSA technique cannot be applied to other occurrence matrices in the collection of papers.   For 

example, SVD decomposition of the reference to paper matrix would allow identification of synonymous 

references and polynymous meanings of references.    

 

13.9 Hubs and authorities 

The hubs and authorities technique is designed for web search engines (Kleinberg, 1999).  Assuming a 

bipartite network consisting of citing and cited entities, authorities are cited entities that receive many 

citations and are co-cited often with other authorities.  Hubs are citing entities that have many outgoing 

citations that tend to cite the same entities that are cited by other hubs.  Highly cited entities not widely 

cited by hubs are not authorities, while citing entities with many outgoing citations that do not consistently 

cite authorities are not hubs.  

 

Kleinberg’s algorithm for identifying hubs and authorities is an iterative technique that measures the 

amount of “authority” of all cited entities and measures the “hubness” of all citing entities.  Assume for 

explanatory purposes that the citing entities are papers and that the cited entities are references.  The 

occurrence matrix is O[p;r] is of dimension np by nr.   Now assume an nr by 1 vector X[r] such the xi[r] is 

equal to the magnitude of the “authority” of reference i.  The sum of squares of the elements of X is 

normalized to be equal to unity.  Also assume an np by 1 vector Y[p] such that yi[p] is equal to the 

magnitude of the “hubness” of paper i. The sum of the squares of the elements of Y is also normalized to be 

equal to unity.  Kleinberg’s algorithm is:   
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Iterate i: 
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Next i 

 

Kleinberg has shown that after many iterations X[r] will asymptotically approach the vector of the 

eigenvalues of C[r;p], the co-citation matrix, while Y[p] will approach the vector of the eigenvalues of 

C[p;r], the bibliographic coupling matrix.  For collections of web pages, Kleinberg reports that 

convergence occurs quickly, with as few as 20 iterations. A threshold can be applied to the elements of X 

and Y to distinguish authorities among the references and hubs among the papers respectively.   

 

Although this algorithm has been applied to collections of web pages, it is possible to conjecture on the 

interpretation of hubs and authorities when the technique is applied to collections of papers. Authorities can 

be interpreted as exemplar references in the specialty, since they correspond to references that are 
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consistently cited in groups. Hubs should correspond to review papers, since the cite a large number of 

exemplar references in a specialty.  Another interpretation of hub papers could be that they correspond to 

“puzzle-solving” papers, i.e., papers working within  the Kuhnian paradigm of the specialty, and citing a 

“standard” set of “authorities”, i.e., exemplar references in a sub-specialty. 

 

13.10 Author identities and author images   

The concept of author identity and author image was introduced by White (White, 2001). Given a paper 

author, that author’s identity is the list of reference authors that are cited by that author.  In the 

mathematical treatment presented here, for paper author i, the author’s identity is the feature vector 

Oi[ap,ar].  that is, row i of the paper author to reference author matrix.  Given a reference author j the 

author’s image is the list of reference authors that reference author j has been co-cited with.  This can be 

represented as Ci[ar,ap], which is row i (or column i) on the reference author co-citation by paper author 

matrix.  The author identity characterizes a paper author by the pattern of reference authors the paper 

author cites.  This identifies the author by the school of thought upon which his/her work is based.  The 

author image characterizes a reference author by the pattern of reference authors with which he/she tends to 

be co-cited.  This identifies the school of thought to which the reference author belongs. 

 

The concept of author images and identities can be generalized to the other two types of feature vectors in a 

paper author to reference author matrix.  Figure 47 shows an example paper author to reference author 

matrix and its associated co-occurrence matrices.  Given a paper author i, as noted in the figure, the vector 

highlighted in blue represents the author identity, which has been redesignated as reference author identity 

of a paper author.  A second paper author feature vector, row i in the paper author coupling matrix, 

C[ap;ar], is designated as paper author identity of a paper author.  This is the list of paper authors that 

tend to cite the same reference authors as paper author i.    Given a reference author j, the author image, 

designated reference author image of a reference author, is column j (or row j) of the reference author co-

citation matrix C[ar;ap]. A second reference author feature vector, designated paper author image of a 

reference author, is column j of the paper author to reference author matrix O[ap,ar], which is, of course a 

row of the reference author to paper author matrix O[ar,ap].  This vector is a list of the paper authors that 

have cited reference author j.  Given these 4 feature vectors, there are four ways to characterize a physical 

author in terms of other physical authors: 

• paper author image: the authors who cite the author of interest. These are the authors that draw 

upon the author of interest for base knowledge, an author’s knowledge sinks.  
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• reference author image: the authors who are cited together with the author of interest. These are 

the authors supplying base knowledge to the same authors as the author of interest, an author’s 

knowledge co-sources.  

• reference  author identity: the authors that the author of interest cites. These are the authors that 

the author of interest draws upon for knowledge, an author’s knowledge sources. 

• paper author identity: the authors that cite the same authors as the author of interest.  These are 

the authors that use the same knowledge sources as the author of interest, an author’s knowledge 

co-sinks.  

 
 

Figure 47.  Generalization of author images and identities for reference authors and paper 
authors related by a paper author to reference author matrix.   
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13.11 Pathfinder networks   

Pathfinder network analysis is a link pruning technique used to visualize structure in networks 

(Schvaneveldt, Durso, & Dearholt, 1989). This type of analysis was applied by Chen (1998) to visualizing 

collections of papers.  As originally proposed (Schvaneveldt, Dearholt, & Durso, 1988), the method 

expresses link weights in networks as distances whose magnitude is proportional to the weakness of the 

connection between those nodes.  In this sense, two identical nodes are connected by a link of weight zero, 

while for two totally unrelated nodes the link weight is infinity.  This is opposite of the convention adopted 

in this report, that is, the definition given in Chapter 3.1, where link weights are proportional to the strength 

of the connection between nodes those links connect.  To maintain uniformity, the discussion of pathfinder 

analysis will be adapted here to links defined as having weight proportional to strength of connection, in 

accordance with the definition used throughout this report. Assume a weighted, undirected graph whose 

link weights are given by a co-occurrence matrix C[x1;x2]. A similarity matrix can also be used for this 

analysis. A pfnet, P, of this network is a pruning where the “weak” links in the network are dropped.  This 

allows visualization of the dominant structure of the network and the principle channels of communications 

among the nodes.  The pruning algorithm has parameters r  and q, and can be summarized as follows: 

 

• Save the original co-occurrence matrix, C[x1;x2], as C1.   

• A second matrix Cq is computed by using the inverse Minkowski metric, with parameter r, to 

measure the weight cq
ij of each of the possible paths from node i to node j that are of path length q 

or less. The matrix element cq
ij of Cq is the weight of the maximum weight path from node i to 

node j, and can be considered the “path of least resistance” between those nodes. The inverse 

Minkowski metric is used for path weight calculations 

• The pfnet, a pruned matrix P, is computed by comparing Cq to C1.   If cq
ij is less than c1

ij then pij = 

0, otherwise pij = c1
ij.  

 

The effect of the pruning is that all links in the network that are “short-circuited” by a path of greater  

weight are dropped from the network.  This pruning produces a “backbone” structure that, when visualized, 

helps to understand the structure of the network. Because of the need to find all the possible paths in the 

network of path length q  or less, in practice the actual computation of the pathfinder network is somewhat 

complicated and computationally intensive.  In matrix terms a straightforward way to compute the matrix 

Cq is to iteratively apply cascaded bipartite network link weight calculations.  

 

As discussed in Chapter 3.2 define a link weight function where: 
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and  
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This defines a path weight function PATHW: 
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Using the path weight function, the pathfinder network algorithm is solved iteratively: 

 
   Initialize P = C1  

   for m = 1 to q-1: 
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   repeat 

 

After iteration, the matrix P is the adjacency matrix of the pfnet.  The algorithm is easily programmed and 

is readily adaptable to sparse matrix techniques for rapid calculation.  Note that for the case of r equal 

infinity, then the path weight function of Equation (130) reverts to: 
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Pathfinder analysis can be applied to any similarity matrix in a collection of journal papers.  For example, 

Chen, Cribbin, et al,  (2002) used pathfinder analysis to study graphs of references based on similarity 

derived from co-citation.  White (2003b), similarly used pathfinder analysis to examine networks of 

reference authors using similarity based on author co-citation counts.   
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14. SOFTWARE TOOLKIT 

14.1 Introduction 

This chapter discusses the software toolkit developed for analysis and visualization of data from collections 

of papers and patents.  The creation of this software was motivated by the need for a visualization tool for 

exploring and mapping collections of papers according to research subtopics.  Importantly, the software has 

provided a testbed for experimentation in data storage, analysis, and visualization techniques when dealing 

with collections of papers.  

 

The toolkit was first conceived as a means for analysis and visualization of collections of patents and of 

papers gathered from abstract services. An early version of the software was reported in the literature by 

Morris, DeYong, Wu, Salman and Yemenu.  (2002).  In that version of the toolkit, called DIVA, for 

Database Information Visualization and Analysis,  visualization was done using two-dimensional multi-

dimensional scaling (MDS) maps, which were produced using VxOrd, a utility of Sandia’s VxInsight 

software (Boyack, Wylie, & Davidson, 2002). Alternately, mapping was performed using a method based 

on self-organizing map (SOM) neural networks (Morris, Wu, & Yen, 2001).  In this early version of the 

software, the data structures were built around the visualizations, with no realization of the cascaded 

bipartite structures that have been discussed in this report.  

 

In its current version, the toolkit incorporates the matrix-based data structures that are explained in 

Chapters 4  and 5.  Additionally, the software incorporates the visualization techniques described in 

Chapter 12 and allows many of those visualizations to be realized as web pages for dissemination to groups 

of subject matter experts.  The software can produce interactive timeline webpages that allow remote 

subject matter experts to execute database queries to produce useful summary data of clusters in the 

collection.  

 

The software is mostly operated through a graphical user interface (GUI).   It is built around six sets of 

routines: 

 

• Main GUI routines: these main routines maintain the data structure and provide a user interface. 

• Data input routines: these routines load tables from the paper collection database into matrices in 

MATLAB variable space. 
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• Clustering routines: these routines cluster entities based on co-occurrence. 

• Mapping routines: these routines produce timelines, crossmaps and usage maps and allow users 

to interact with those visualizations. 

• Plotting routines: these routines allow plotting of several types of distributions taken from the 

collection. 

• Report generating routines: these routines produce reports on groups of entities derived through 

clustering. 

 

Discussions of the toolkit will start with a description of the main GUI and its features, a description given 

in the context of conducting a case study for some practical purpose such as technology forecasting.  

14.2 General use of toolkit software 

Figure 48 shows a diagram of a typical sequence of tasks that a user follows to perform a study of a 

specialty through its journal literature. The user typically executes a series of queries in an iterative fashion 

to build a collection of papers that covers the specialty of interest. These queries will produce a series of 

text files that contain a sequential collection of records corresponding to the data from individual papers. 

These text records are pulled into an MS ACCESS database using a Visual Basic program module in the 

database. Once the records are in the database, the data is loaded into MATLAB matrix variables through 

an ODBC link. At this point the toolkit software can be used to cluster various entities such as papers, 

references, and paper authors using similarities calculated through co-occurrence counts, as discussed in 

Chapter 11.  At this point the user will produce several visualizations and interactively explore them in 

order to seek information about the specialty.  The user may print out those visualizations for inclusion in a 

report, or may post the visualizations on a project website for use of subject matter experts.  The user can 

also plot indicators of the state of the specialty, usually plots of distributions as discussed in Chapter 6.  The 

user may also produce text reports that can be presented in tabular form to subject matter experts.   

 

Usually, the user is looking to identify key entities in the collection, e.g., highly productive authors, or 

highly cited references. The user also desires to cluster entities into meaningful groups. For example, 

papers should be clustered in groups by topic, references can be clustered into groups that tend to be cited 

together, paper authors can be clustered to show teams of collaborators. It is also desired to show the 

relation of groups to one another, for example, using a dendrogram, or additionally, the user may want to 

show the overlapping relationships of groups of two different entity-types.    

 

The remainder of this chapter will describe the collections of routines in the toolbox software that are used 

to facilitate the performance of the tasks shown in Figure 48.  
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Figure 48.  Diagram of typical sequence of steps when conducting a case study to investigate a specialty 
through exploration of its literature. 

 

14.3 Database tables 

Web of Science source files. Data is acquired in the form of collections of papers or patents. For brevity, 

this report will concentrate on collections of papers gathered from ISI’s Web of Science product, but this 

discussion can be easily generalized to cover patents. Assuming a Web of Science collection, the data is 

assumed to be topic-specific concerning some scientific specialty, and is gathered either by executing 

queries on search terms or by finding sets of papers that cite seed references.  Seed references are important 

references in the specialty that are assumed to be cited by most papers in the specialty.  In actual practice, 

the acquisition of a collection of papers that covers a specialty well is an iterative process that starts with 

executing a well-constructed set of queries, finding the appropriate seed references from the resulting 

gathered set of papers, and then collecting additional papers that cite those seed references.  

 

The data, when downloaded, is in the form of records that correspond to journal papers.  Each record 

contains the following information:  

 

• Paper title 

• Paper authors 

• Journal name 

• Journal volume 

• Journal issue 

• Journal page number 
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• Journal year 

• Abstract 

• Author index terms  

• ISI generated index terms  

• Cited references 

 

Each of the cited references contains the following information: 

 

• Reference first author name 

• Reference year 

• Reference journal 

• Reference volume 

• Reference first page  

 

If references correspond to books, the reference information consists of the first author, book title and year.  

Other types of references, such as films, web pages, and electronic archives, appear to be handled on an ad 

hoc basis. Table 5 shows an example record from a Web of Science file. 

 

Database loading routine:  An MS VBA (Visual Basic Applications) program, running as a module in a 

template MS ACCESS database is used to load the data from Web of Science tagged files into MS 

ACCESS database tables.  The program, READ_DATA,  is approximately 500 lines in length. It creates 

and populates 6 tables: 1) the working table of papers and their attributes, 2) citation table, 3) paper author 

table, 4) abstract table, 5) institution table, and 6) reference key table. The routine can read multiple input 

files, discards duplicate records, and produces a log file for auditing purposes.  

 

Basic database structure. The basic structure of a database holding a report-based information structure is 

a series of relational tables. Some of these tables hold the index keys and simple attributes of the entities.  

Other tables list the associations between entities themselves.   

 

Index tables. Index tables contain a list of all entities of a particular entity-type and their index keys.  For 

example an index table of journal papers will contain an entry for each paper in the collection.  Index tables 

additionally will contain attributes that are associated with each entity in the table.  For example an index 

table of journal papers may contain the title and date of publication of each paper in the table as attributes.   

 

Index tables may also contain associations to entities of other entity-types if only one entity of that entity-

type can be associated with the table’s index entity.  For example, journal papers can only be associated 
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with one publishing journal, and so the association of each paper with its publishing journal can be listed in 

the index table for papers. The following index tables are often used by the toolkit: 

 

• Working_table. The working table is the basic table of records in the database.  Each record in this 

table contains a paper ID number which is used to associate all other data in the database. The 

table also contains the title, paper journal, volume, issue, page number, and date of publication. 

• Cite_keys table. This table contains a list of references and their keys, their associated reference 

journal and reference author, and reference year.  

• Other index tables. Author_keys, ref_author_keys, and id_keys, are simple index tables for paper 

authors, reference authors, and index terms respectively.  

 

Table 5. Example record in ISI tagged file format. 
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Link tables. Link tables are used to list the associations between entities drawn from a pair of entity-types 

in the collection.  In other words, link tables are a list of the links in one of the collection’s bipartite 

networks. Link tables are in “normal form,” that is, there is only one entry for each link, even though an 

entity may have links to several entities of that particular entity-type. Links are often links of association 

only.  This requires only that a table entry for each link contain the index keys of the entities that are 

associated. For example, a table entry of “55, 39” may denote that paper 55 is associated with author 39. 

Such links are unweighted.  Other types of links may have weights associated with them.  For example, 

links between papers and linguistic terms may be weighted by the count of the number of times that the 

terms occur in the paper.  So, for example, an entry of  “20, 45, 6” could denote that paper 20 contains 6 

occurrences of term 45. The following tables are often created and used by the toolkit: 

 

• Author table. This table contains a list of paper authors and their associated papers.  Each record 

associates an author with a paper. For each paper there is a record for each author of the paper.  

• Citation table. This table contains a list of papers and the references they cite. Each record 

associates a reference with a paper.  For each paper there is one record for each reference cited by 

the paper. 

• Index terms. This table contains a list of papers and their associated index terms.  Each record 

associates an index term with a paper.  For each paper there is one record for each index term 

associated with the paper.  

• Abstracts: This table contains the abstracts of each paper. These are stored line by line. 

• Institution: This table holds the author institutions associated with each paper. Because of the 

difficulties of disambiguating different version of institution addresses and also because it is not 

possible to match institutions to specific authors in multiple author papers, this table is seldom 

used.  

 

14.4 DIVA main GUI 

Assume that the purpose of a study is to investigate a specialty, and that a collection of papers is gathered 

from ISI’s Web of Science product and loaded into an MS ACCESS database. It is at this point that the user 

starts using the toolkit and will work from the main GUI (graphical user interface) shown in Figure 49.  

 

The main GUI contains four sections: 

• Map section: this section allows display of maps in several formats.  Dotmaps are either two 

dimensional MDS maps or timelines.  These dotmaps can be presented in a density format as 

surface landscape maps or as contour maps. 

• Connections section: this section allows display of links on dotmaps. Links are stored as 

similarity matrices or as directed adjacency matrices.  It is possible to display directed and 
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undirected links to and from a group of papers, and additionally, the dependent or precedent links 

through citations can be displayed. 

• Clusters section: this section allows manipulating groups of papers that are highlighted on the 

map. Groups are identified by queries or by highlighting them by dragging a mouse pointer on a 

map.   

• Time section: this section allows altering the display of papers on the map to show their 

publication date.  This can be done by varying the color of dots on the map as a function of 

publication date, or it can also be used to highlight specific time intervals.  These features are 

useful for showing time relations of papers on MDS maps.  

 

 

Figure 49. DIVA main GUI. 

 

The main GUI also contains 8 drop down menus along the top of the GUI as shown in Table 6. The project 

menu is used for general project management: setting up new projects before loading data, saving projects, 

loading projects and setting up the links to the project database.  The similarity menu is used for loading the 

adjacency matrix of papers linked by citation. The map menu is used to make two dimensional MDS maps.  

The query menu is used to execute queries and highlight them on maps that are being displayed.  The 

matrix menu is used to load data from the database in the form of occurrence matrices.  The co-occurrence 

menu is used for clustering entities into groups by co-occurrence and making crossmaps of those maps of 

groups from pairs of entity-types.  The reports menu is used to produce written reports in rich text format 

of the characteristics of groups of different entity-types.  Finally, there is the misc plots  menu for making 

plots of distributions within the collection. 
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Table 6. Menu items for the main GUI of the toolkit. 

MAIN MENU SUBMENUS 
Project:   

• New project 
• Open project 
• Save project 
• Save project as 
• Set database link 
• Convert patent set 

Similarity: 
   

• Read adjacency matrix 
from database 

Map:   

• Make SOM 2D 
ordination 

• PFNET GUI 

Query:  

• Highlight dots from query 

Matrix:  

• Load paper to 
reference matrix 

• Bib to DIVA 
• Load paper to paper 

author matrix 
• Load paper to 

reference author 
matrix 

• Load DE terms 
matrix 

• Load assignee 
matrix 

Co-occurrence:   

• Use bibliographic 
coupling default 

• Use co-citation default 
• Use paper author co-

occurrence default 
• Use author co-citation 

default 
• Make crossmaps 

Reports:   

• Research fronts 
• Co-citation clusters 
• Authors/inventors 
• Institutions 

Misc Plots: 

• Cites per paper distribution 
• Co-citation distribution 
• Bibliographic coupling 

distribution 
• Bibliographic coupling 

clustering distribution 
• Reference frequency 

distribution 

 

 

 

14.5 Data input routines 

As discussed in Chapter 5, the data in this software is stored as matrices in memory. These are stored as 

sparse matrices to take advantage of MATLAB’s many sparse matrix routines.  Table 7 shows a list of the 

input routines of DIVA that are used to bring data from the database into the memory.  

 

In a typical case study, after gathering the data from the Web of Science and loading it into a database, the 

first analysis is done by constructing a paper to reference matrix.  This is used to cluster papers using 

bibliographic coupling and to cluster references using co-citation. These two types of analyses allow some 

exploration of the data collection to assess how well the collection covers the specialty and also whether the 

collection has enough coherence to be able to map its structure.  In many cases, especially in non-technical 

fields, there is not enough interconnection of entities in the collection to cluster those entities into definite 

groups. After loading the paper to reference matrix and performing initial exploration of the paper 

collection, it is useful to load the paper to paper author matrix and the paper to reference author matrix. 

This allows analysis of author teams by clustering paper authors by co-authorship and assessing experts 

using author co-citation analysis.  
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Table 7.  List of data input routines. 

ROUTINE DESCRIPTION 
ASSIGNEE_MATRIX: Routine to build patent-assignee matrix 
GET_A_P_R Gets the paper-reference correspondence list 
ID_MATRIX Loads paper to paper id term matrix into DIVA  
MAKE_R_YP_MATRIX Make reference by citing paper year matrix 
MAKE_R_YR_MATRIX Make reference by reference year matrix 
P_AP_MATRIX Loads paper to paper author matrix into DIVA  
P_AR_MATRIX Get paper to ref author matrix 
p_de_MATRIX Loads paper to paper de term matrix into DIVA  
P_JR_MATRIX Get paper to ref journal matrix 
P_PJ_MATRIX Loads paper to paper journal matrix  
P_TERM1_MATRIX Routine to get 1 word terms from database 
R_YR_MATRIX Make reference by reference year matrix 
REF_MATRIX Gets paper-ref matrix from dbase 
REF_MATRIX_BY_PAPER Put an occurrence matrix in lower triangular form 
 

14.6 Clustering routines 

Table 8 shows a list of clustering routines in the software. The software is built around a single clustering 

routine, COOCCUR,  which takes a matrix, calculates similarities using a specified similarity metric, 

performs clustering using hierarchical clustering with Ward’s method linkage, and stores the results in a 

standardized  data structure for clustering results.   The selection of primary and relative entities, and other 

parameters for clustering are selected using a GUI, shown in Figure 50.  

 

Table 8.  Clustering routines. 

ROUTINE DESCRIPTION 
COOCCUR Routine to cluster row items from matrix 
COOCUR_GUI M-file for coocur_gui.fig 
LINKAGE_SIM MATLAB clustering routine modified to use similarity  
PUT_CLUSTERS_AUT Put author clusters in the database 
PUT_CLUSTERS_BIB Put bib coupling clusters in the database 
PUT_CLUSTERS_COC Put co-citation clusters in the database 
PUT_CLUSTERS_WORD1 Puts 1 word term clusters in the database 
SEMINAL Get a list of indexes of key papers 
 

On this GUI two sets of radio buttons are used to select the primary and relative entity-types.  As shown, 

there are 16 possible combinations of primary and relative entity-types, of which 12 are valid. However, 

only four pairs of entity-types are recognized by the GUI, all other combinations are ignored.  These pairs 

are shown in Table 9.  
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Figure 50. GUI used for setting up and performing clustering.  

 

The clustering parameters are entered on the right side of the GUI.  There are parameters for the number of 

clusters, the type of similarity metric, and the output variable for the cluster structure.  The occurrence 

threshold is used for entities that can occur more than once in the collection, such as references, paper 

authors and reference authors. This threshold is used to eliminate primary entities that are poorly linked.  

This can be used to limit clustering to highly cited references or reference authors, or highly productive 

paper authors, and greatly reduces noise in the clustering.  The co-occurrence threshold is used to remove 

primary entities that do not have many links to other like entities in the collection.  The use of this threshold 

greatly reduces noise in clustering and helps produce coherent clusters with entities that are well related to 

one another.  The similarity threshold eliminates primary entities that do not have some minimum 

similarity link to at least one other entity.  Similar to the occurrence threshold, the similarity threshold 

reduces noise in clustering by eliminating poorly linked entities.  

 

Table 9. Primary to relative entity-type pairs recognized by the clustering GUI. 

Primary entity-type Relative entity-type Purpose 
paper reference Cluster papers using bibliographic coupling 
reference paper Cluster references using co-citation 
paper authors  papers Cluster paper authors by coauthorship 
reference authors papers Cluster reference authors by author co-citation 
 

Two “keeper” parameters are available on this GUI.  These are provided as a way of including papers in the 

collections that correspond to highly cited references.  These papers often occur early in the collection, and 

as such, usually have poor bibliographic coupling linkage to other papers in the collection. The citation 
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threshold parameters force the routine to keep papers that don’t meet the occurrence and co-occurrence 

thresholds but whose corresponding references are well-cited.  Alternately, the user can supply a variable 

name to a vector carrying the indexes of keeper papers that must be retained even if they don’t meet the 

occurrence and co-occurrence thresholds.    

 

After clustering, the results are placed into a structure for later use by mapping routines, particularly, 

routines for dendrogram seriation.  This structure contains seven fields: 

 

• Call: this is a substructure which lists the values of the parameters used for clustering. This field is 

useful for auditing purposes. 

• Z: this field contains the full cluster tree in the format produced by MATLAB’s hierarchical 

agglomerative clustering routine. 

• Cluster: this field contains the cluster number of each of the clustered entities. 

• Members: this field contains a list of the entities that were clustered. Entities that were discarded 

using thresholds are not included in this list. 

• Sim: this field contains the similarity matrix for the clustered entities. This matrix is used by the 

dendrogram seriation routine. 

• Z1: this field contains the truncated cluster tree used to find the user requested number of clusters. 

This tree is used to produce dendrograms when required. 

• Order: this field contains the serial order of the clusters on the dendrogram. This order is 

manipulated by the dendrogram seriation routine. 

 

Note that there are also routines in this group for performing similarity calculations using the overlap 

function or the inverse Minkowski function as discussed in Chapter 3. 

14.7 Mapping routines 

Table 10 gives a list of the mapping routines developed in the software. These routines can be divided into 

those routines for interactive exploration, and those used to create web pages.  Maps can be divided into 

timelines and crossmaps. 

 

For timelines, a useful routine is FREQMOD, which makes the size of the dots on the map proportional to 

the number of times a paper’s corresponding reference has been cited. The routine MAKEDENDRO 

constructs a dendrogram for denoting cluster relations on the map. Another routine, TSPDENDRO, 

performs dendrogram seriation according to the method of Morris, Asnake, and Yen (2003).  The routine 

TMAP is the main routine for drawing timelines, while the routine MAP_CMD contains the interactive 

map exploration functions.  Examples of timelines are shown elsewhere in this report in Figures 36, 37, and 

66. These functions include the ability to identify groups of papers on the timeline by drawing a box around 



 

 117

them with a mouse. which allows listing the papers in a selected group, listing a frequency table of selected 

references in a group, and drawing links between selected papers on the map. 

 

Table 10. List of mapping routines used in the software. 

ROUTINE DESCRIPTION 
BIB_LABELS Put bib coupling cluster labels on a current figure 
CLEAN_AR_NAMES Disambiguate reference author names 
COMBINE_ALIAS Disambiguate p_ar matrix 
CROSSHAIR Put crosshairs on a crossmap 
DELETEMAP Sets deleted map pointer to 0 
FIG2HTML Converts figure coordinates to html image coordinates 
FREQMOD Make map circles proportional to cited frequency 
GCMAP Get the current tf map 
GETBOX Gets a box on current fig 
HISTORIOGRAM Puts connection matrix of historiogram in project 
MAKE_TIMELINE_HTML Make timeline webpage 
MAKE_XMAP_P_AP_HTML Make html crossmap for paper to paper author 
MAKE_XMAP_P_AR_HTML Make html crossmap for paper to ref author 
MAKE_XMAP_P_R_HTML Make html crossmap for paper to references 
MAKE_XMAP_YP_AR_HTML Make html reference author usage map 
MAKE_XMAP_YP_R_HTML Make html usage map for references 
MAKEDENDRO Makes the set of lines for a dendrogram 
MAP_CMD Function which draws a map 
ORDERDENDRO Find order for a dendrogram plot. 
RECLUSTER Apply a new threshold to hierarchically clustered data 
REDSIM Reduces a similarity matrix  
STUBZ Function to convert tree to a shorter tree 
SUBTREES Finds the start and ending leaves of dendrogram subtree 
TMAP Make timeline plot 
TRANSZ Translate output of LINKAGE into another format. 
TSPORDER Seriate a dendrogram using simulated annealing algorithm 
XMAP Plot frame crossmap 
XMAPDOT_ASSIGNEE Make patent to assignee crossmap 
XMAPDOT_ID Make paper to ID terms crossmap 
XMAPDOT_ONEWORD Make paper to one word terms crossmap 
XMAPDOT_P_AP Make crossmap paper to paper author 
XMAPDOT_P_AR Make crossmap paper to ref author 
XMAPDOT_REF Make paper to reference crossmap 
XMAPDOT_REF_PAT Make a patent to ref patent xmap 
XMAPDOT_YP_AR Make ref author usage plot 
XMAPDOT_YP_R Make reference usage xmap 
XMAPDOT_YR_R Make reference year timeline 
 

Most of the other routines in this group are concerned with the construction of crossmaps.  The crossmap 

routines work with clusters from a pair of entity-types.  A correspondence function is used to measure the 

relation of clusters of one entity-type to clusters of the other entity-type (Morris & Yen, 2004).  The 

MAKEDENDRO routine is used to place dendrograms on the x and y axis of crossmaps.  Crossmaps of 

different types are very similar in appearance, examples of several types are shown in this report as noted in 

the list to follow.  The following crossmaps can be implemented: 
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• Papers to references (See Figure 40 and Figure 67) 

• Paper to paper author (See Figure 42) 

• Paper to reference author (See Figure 41 and Figure 69) 

• Paper to index term (See Figure 72) 

• Patent to patent assignee (not shown) 

• Paper to one-word abstract terms (not shown) 

• Patent to reference patent (not shown) 

 

In addition, the crossmapping routines are used to produce usage plots of reference usage and reference 

author usage as described in Section 12.2 and demonstrated in Figures 38, 39, 68, 70, and 71.  

 

Another important set of routines in this group are concerned with producing web page graphics that can be 

posted and explored by subject matter experts.  The most important of these routines is 

MAKE_TIMELINE_HTML, which builds a timeline webpage and adds links to make database calls to get 

summary information about specific clusters of papers.  Figure 51 shows a timeline as posted on a 

webpage. The papers are ranked by the number of citations that their corresponding references receive and 

the ranking of the top 20 papers is placed next to their corresponding symbols on the map.  When the user 

clicks on these numbers, a hyperlink is invoked which executes an ASP program on the server that retrieves 

summary data about the paper from the database and displays that data on a separate web page for the user.  

Additionally, the ranked papers are listed in rank order below the timeline map. In Figure 51, the first four 

listed papers are visible below the map.  A very useful feature of this web-based map is the hot links on the 

right of the map that provide summaries of paper clusters in a separate browser window.  Note in Figure 51 

that for every horizontal track corresponding to a paper cluster there are 6 hotlinks labeled ‘P’, ‘R’, ‘AP’, 

‘AR’, ‘JP’, and ’JR.’  Clicking on one of these links will execute an ASP program on the server which will 

execute a query to the database that produces a summary table in a separate browser window: 

 

• P: produces a list of papers in the cluster. 

• R: produces a table of references cited in the cluster, ranked by the number of citations received. 

• AP: produces a table of paper authors of papers in the clusters, ranked by the number of papers 

authored.  

• AR: produces a table of reference authors in the cluster, ranked by the number of citations 

received.  

• JP: produces a table of paper journals in the cluster, ranked by the number of papers the journal 

has in the cluster. 

• JR: produces a table of reference journals in the cluster, ranked by the number of citation 

received. 
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This feature is quite useful for making the results of analysis available to subject matter experts, and allows 

those experts to explore the collection to label the clusters by topic, and identify important entities in the 

collection.   Web page versions of crossmaps can also be produced.   

 

 
Figure 51. A web-based implementation of a timeline. 

 

14.8 Plotting routines 

Plotting routines, listed in Table 11. are used to plot network metrics from the collection of papers.  These 

fall into three categories, dyadic distributions, co-occurrence distributions, and clustering coefficient 

distributions. 

 

For dyadic distributions, CITES_PER_PAPER plots the reference per paper distribution, while REF_DIST 

plots the paper per reference distribution of the collection.  These two routines are easily adapted to plotting 
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other dyadic distributions in the collection,  but such routines were never added because they are seldom 

needed.  Note that one very useful routine is MAKE_CITE_DIST, a routine that performs maximum 

likelihood expectation estimation of a zeta (power-law) distribution on a table of frequencies.  This routine 

uses a table described by Goldstein, Morris & Yen (2004) to find the MLE estimate and plots the paper per 

reference frequencies along with the fitted zeta distribution.  Additionally, expected 5% and 95% 

percentiles are plotted to give users an idea of the expected scatter of points in the plot. Figure 52 shows an 

example of a plot of a zeta distribution fit to paper per reference frequencies from a collection of papers. 

 

Table 11. List of routines for plotting distributions. 

ROUTINE DESCRIPTION 
AUTHOR_PAPER_CLCOF_DIST Plot co-author clustering coefficient distribution 
BIB_COOC_DIST Plot the bibliographic coupling distribution 
CITES_PER_PAPER Plot reference per paper distribution 
CLUST_COEFF Computes clustering coefficient distribution 
HIGHLIGHT Plot group dots on all dotmaps 
MAKE_CITE_DIST Routine to estimate a zeta distribution  
PAPER_REF_CLCOF_DIST Plot bib coupling clustering coeff distribution 
PAPER_REF_COOC_DIST Plot bib coupling distribution 
PLOT_PR Plot a diagram of the paper reference matrix 
PLOT_RANK_AP Plots map of paper authors, y as dendrogram, x as log of rank 
PLOT_RANK_AR Plot reference authors, y as dendrogram, x as log of rank 
REF_COOC_DIST Plot co-citation distribution 
REF_DIST Plot paper per reference distribution 
REF_DIST_COMP Comparison plot of two paper per reference distributions 
REF_DIST_COMP_CUM Plot comparison of two cumulative paper per reference distributions 

 

 
Figure 52.  Example of plot of MLE fit of papers per reference using MAKE_CITE_DIST routine. 
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Several routines are available to plot co-occurrence distributions. Most important among these are 

BIB_COOC_DIST, for plotting bibliographic coupling per paper pair distribution, and REF_COOC_DIST, 

for plotting the co-citation per reference pair distribution.   Still other routines are available to plot 

clustering coefficient distributions. For example, AUTHOR_PAPER_CLCOF_DIST plots the clustering 

coefficient distribution of paper authors linked by coauthorship, and PAPER_REF_CLCOF_DIST plots the 

clustering coefficient distribution of papers linked by bibliographic coupling.  

 

14.9 Report routines 

Routines for producing reports, shown in Table 12, are focused on producing summary information of 

clusters of entities within the collection of papers.  Two types of reports have been found to be useful.  

These are summary  reports of research fronts, that is, papers clustered by bibliographic coupling, and 

summary reports of co-citation clusters, that is, references clustered by co-citation.  Routines that produce 

similar reports for clustered entities in collections of patents have also been written.  

 

Table 12. List of routines for producing reports. 

ROUTINE DESCRIPTION 
DBASE_SELECT Call dialog box to select current database 
DEBLANK Remove trailing blanks. 
PRBIBV2 Prints a report on bib coupling clusters 
PRCOCV1 Print a report on co-citation clusters 
PRINTABSTRACTSV3 Print bib coupling cluster report with abstracts 
PRINTPAT Print patent bib coupling cluster report 
PRPAT_REF Print patent co-citation cluster report 
 

Table 13 shows an example of a report for research fronts. This is the summary report of a cluster labeled 

Cluster 7.   It starts with a list of the papers in the cluster.  This is followed by summary tables: 1) 

references, 2) paper authors, 3) reference authors, 4) paper journals, and 5) index terms. The report, or 

sections of this report can be printed out to allow experts to manually browse clusters in the collection.   

 

Table 14 shows an example of a report on co-citation clusters, showing the information presented on one 

co-citation cluster. This information consists of a list of the references in the clusters.  Also, for each 

research front, the number of citations to references in the cluster is reported along with the ratio of 

citations to references divided by the number of papers in the research front. This information helps the 

user to label the co-citation cluster by topic by associating the cluster with the label of the research front 

whose papers cite it the most.  This technique was used by Chen and Morris (2003) to label co-citation 

clusters on Pathfinder maps of a collection of papers on the subject of botulinum toxin.  
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Table 13. Example of a report on a research front. 
--------------------- CLUSTER 7 SUMMARY--------------------- 
 
 
Cluster 7, 8 papers  
 
The endless gallery: Visualizing authors'' citation images in the humanities.   White, 
H; Lin, X; Buzydlowski, J; P ASIST ANNU MEET,  , vol 38, is null, page 182, 2001 
 
Mining a Web Citation Database for author co-citation analysis.   He, YL; Hui, SC; 
INFORM PROCESS MANAGE,  , vol 38, is 4, page 491, 2002 
 
Fitting the jigsaw of citation: Information visualization in domain analysis.   Chen, 
CM; Paul, RJ; O''Keefe, B; J AM SOC INF SCI TECHNOL,  , vol 52, is 4, page 315, 2001 
 
Bibliometric Information Retrieval System (BIRS): A Web search interface utilizing 
bibliometric research results.   Ding, Y; Chowdhury, GG; Foo, S; Qian, WZ; J AMER SOC 
INFORM SCI,  , vol 51, is 13, page 1190, 2000 
 
A new technique for building maps of large scientific domains based on the cocitation 
of classes and categories.   Moya-Anegon, F; Vargas-Quesada, B; Herrero-Solana, V; 
Chinchilla-Rodriguez, Z; Corera-Alvarez, E; Munoz-Fernandez, FJ; SCIENTOMETRICS,  , 
vol 61, is 1, page 129, 2004 
 
User-controlled mapping of significant literatures.   White, HD; Lin, X; Buzydlowski, 
JW; Chen, CM; PROC NAT ACAD SCI USA,  , vol 101, is null, page 5297, 2004 
 
Term co-occurrence analysis as an interface for digital libraries.   Buzydlowski, JW; 
White, HD; Lin, X; LECT NOTE COMPUT SCI,  , vol 2539, is null, page 133, 2002 
 
Information visualization, human-computer interaction, and cognitive psychology: 
Domain visualizations.   Boyack, KW; Wylie, BN; Davidson, GS; LECT NOTE COMPUT SCI,  , 
vol 2539, is null, page 145, 2002 
 
 
freq  %  REFERENCE  
----------------------------------------------  
   7  87  CHEN CM, 1999, INFORM PROCESS MANAG, V35, P401 
   6  75  WHITE HD, 1998, J AM SOC INFORM SCI, V49, P327 
   5  62  WHITE HD, 1997, ANNU REV INFORM SCI, V32, P99 
   4  50  SMALL H, 1999, J AM SOC INFORM SCI, V50, P799 
   3  37  MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433 
   3  37  BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233 
   3  37  KAMADA T, 1989, INFORM PROCESS LETT, V31, P7 
   3  37  LIN X, 1997, J AM SOC INFORM SCI, V48, P40 
   3  37  NOYONS ECM, 1999, J AM SOC INFORM SCI, V50, P115 
   3  37  WHITE HD, 1990, SCHOLARLY COMMUNICAT, P84 
   3  37  WHITE HD, 1981, J AM SOC INFORM SCI, V32, P163 
   3  37  SMALL H, 1973, J AM SOC INFORM SCI, V24, P265 
 
FREQ  %  PAPER AUTHOR  
----------------------------------------------  
   3  37  Lin, X 
   2  25  White, HD 
   2  25  Chen, CM 
   2  25  Buzydlowski, JW 
 
FREQ  %  REFERENCE AUTHOR  
----------------------------------------------  
  28 350  WHITE HD 
  22 275  SMALL H 
  15 187  CHEN CM 
  10 125  DING Y 
  10 125  GARFIELD E 
   9 112  CHEN HC 
   8 100  LIN X 
   7  87  MCCAIN KW 
   6  75  CHEN C 
   4  50  FOWLER RH 
   4  50  BUZYDLOWSKI JW 
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   4  50  BRAAM RR 
   4  50  NOYONS ECM 
   3  37  HEARST MA 
   3  37  BOYACK KW 
   3  37  KAMADA T 
   3  37  NOWELL LT 
   3  37  WISE JA 
   3  37  BORNER K 
   3  37  SALTON G 
   3  37  SCHVANEVELDT RW 
   3  37  KOHONEN T 
 
 
FREQ  %  PAPER JOURNAL  
----------------------------------------------  
   2  25  LECT NOTE COMPUT SCI 
   1  12  SCIENTOMETRICS 
   1  12  PROC NAT ACAD SCI USA 
   1  12  P ASIST ANNU MEET 
   1  12  J AMER SOC INFORM SCI 
   1  12  J AM SOC INF SCI TECHNOL 
   1  12  INFORM PROCESS MANAGE 
 
 
FREQ  %  ID phrase  
----------------------------------------------  
   5  62  DIGITAL LIBRARIES 
   4  50  NETWORKS 
   3  37  SCIENCE 
   3  37  INTELLECTUAL STRUCTURE 
   2  25  PATHFINDER NETWORKS 
   2  25  INTERNET 
   2  25  INFORMATION-RETRIEVAL 
   2  25  CITATION 
   2  25  AUTHOR COCITATION 
 
 

Table 14. Example of a report on a co-citation cluster. 
---------------------CO-CITATION CLUSTER 3 SUMMARY--------------------- 
 
REFERENCE  
----------------------------------------------  
  BORGMAN CL, 2000, GUTENBERG GLOBAL INF 
  COVI LM, 1999, INFORM PROCESS MANAG, V35, P293 
  WHITE HD, 1998, J AM SOC INFORM SCI, V49, P327 
  WHITE HD, 1997, ANNU REV INFORM SCI, V32, P99 
  BORGMAN CL, 1996, SOCIAL ASPECTS DIGIT 
  GINSPARG P, 1994, COMPUTATION PHYSICS, V8, P390 
  GARFIELD E, 1979, CITATION INDEXING 
 
 
 
FREQ  Bib. Cluster  
----------------------------------------------  
  32   1 
  14   9 
  11   7 
   7   3 
   1   6 
   1   2 
 

 

The software toolkit covered in this chapter has evolved over a period of four years and served as the test 

bed for many experiments that led to the concepts that form the core of research reported here. It is quite 

adaptable to new ideas because its implementation in MATLAB allows new ideas to be tested with 
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minimum programming effort.  In addition, the sparse matrix routines of MATLAB make storage and 

execution efficient, allowing large paper collections to be analyzed.  

 

Other collections of routines have been developed for other research efforts concerning collections of 

papers. A collection of routines was written to produce pathfinder maps of references, label them using co-

citation clustering analysis, and post interactive pathfinder maps as webpages.  Another collection of 

routines allows analysis and production of summary data from many collections of papers simultaneously.  

These routines have uncovered patterns of distributions within collections of papers that were previously 

not reported in the literature. For example, the discovery that the reference per paper distribution tends to 

be a lognormal distribution was exploited by Morris (2004) to build a comprehensive model of the 

manifestation of the birth of emerging specialties in journal literature .  Additionally, the discovery that the 

paper authors per paper distribution tends to follow a 1-shifted Poisson distribution was exploited by 

Goldstein, Morris and Yen (in print) to build a comprehensive model of the manifestation of research work 

teams in journal literature.  
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15. CASE STUDY: ANTHRAX RESEARCH 

15.1 Introduction 

The objective of presenting this case study is to illustrate the application of the concepts introduced in this 

report and to show how those concepts allow the extraction of useful information about research in a 

specialty from the structure of the network of entities in its journal literature. Chapter 2 of this report 

showed that a collection of journal papers can be modeled as entities of different entity-types linked in a 

cascaded bipartite network structure. 

 

The pattern of these linkages are a manifestation of research processes in the specialty.  These processes 

include the social structure of the researchers in the specialty, topics of research, collaboration groups, 

research paradigms, exemplars, experts, and schools of thought. It is the purpose of this chapter to show 

that patterns of links can be extracted and the underlying research processes that produced them can be 

detected with some reliability.  

 

The example presented here is on the topic of anthrax research  and covers a period of about 60 years. An 

initial study on anthrax research was used by Morris, Yen, Wu and Asnake (2003) to show the use of 

bibliographic coupling to form research fronts of papers.  Research fronts were defined as groups of papers 

that tend to cite common references. Such groups of papers tend to cover a common research sub-topic in 

the specialty.  Morris, et al, showed that timelines of research fronts can be used to visualize structure and 

dynamic changes in a research specialty.  The collection of papers on anthrax studied by Morris, et al, was 

updated and the analysis of that collection is presented here.  

 

15.2 Background of anthrax research 

This section contains an update of the background summary on anthrax research presented in Morris, et al 

(2003). Anthrax research makes an excellent benchmark for testing the ability to visualize temporal 

changes in research fronts as they appear in the scientific literature.  A great deal of anthrax research has 

been performed in the past 20 years; it is well documented, and is well covered by the Science Citation 

Index.  A review paper exists (Bhatnagar & Batra, 2001) that names and discusses many key papers in 

anthrax research in the past 20 years. Modern anthrax research begins in 1946, when anthrax protective 

antigen was discovered. Early research ranges from 1946 to about 1975 and covers toxin research, 
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vaccines, inhalational anthrax and medical treatment. After a hiatus of research in the 1970’s several 

research fronts emerged with varied growth characteristics.  Vaccine and gene sequencing research fronts 

have proceeded steadily for 15 to 20 years, for example, while research on anthrax toxins shows a pattern 

of rapid growth and specialization.  The topic of anthrax bioterrorism emerged since 1999 in response to 

perceived threats, and the Fall, 2001 bioterror attacks through the U. S. postal services have produced a 

shock to the specialty that generated great interest in anthrax research and produced new research fronts 

dealing with aspects of anthrax bioterrorism. 

   

The next three paragraphs give a short summary of anthrax and anthrax research  which will aid the readers 

in understanding information presented in this case study.   Most of this summary is derived from 

Bhatnagar and Batra (2001).  Anthrax research has a very long and significant history, and was the disease 

used by Koch, a contemporary of Pasteur in the late 19th century, to prove the original “germ theory.”  

Anthrax was originally thought to cause death by blocking of capillaries, but experiments by Smith and 

Keppie in the 1950’s showed that it kills through the actions of a toxin.  The anthrax toxin consists of three 

parts, protective antigen (PA), lethal factor (LF), and edema factor (EF). Gladstone reported on anthrax 

protective antigen for the first time in 1946, Smith and Keppie reported that anthrax kills with a toxin in 

1954,  Beall reported that anthrax uses a three part toxin in 1962, while Leppla reported in detail on lethal 

factor and edema factor in a seminal paper in 1982.  A seminal paper on the efficacy of a human anthrax 

vaccine was published by Brachman in 1962 and the vaccine itself became available in 1970.   

 

Because of extensive vaccination of animals, and safer handling methods in factories and mills processing 

animal products, human anthrax became very rare by the 1970’s.  Also in 1972, the Biological Weapons 

Convention, endorsed by over 140 nations, prohibited the development of biological warfare agents such as 

anthrax.  Anthrax research slowed down considerably through the 1970’s.  However, in 1979, a large 

human anthrax epidemic occurred in Sverdlovsk, a city in the Soviet Union, as a result of the accidental 

release of anthrax spores from a military biological facility.  This event propelled the funding of a new 

wave of anthrax research starting in the 1980’s (Turnbull, 1991).  This later research has produced a great 

deal of progress and has resulted in the development of several new sub-specialties in anthrax research 

dealing with toxin research, anthrax genetics, anthrax detection, anthrax bioterror, vaccines, and more.  

 
As a disease, anthrax spores enter the host and are taken up by macrophages, amoeboid cells that attack 

foreign matter in the host, and are transported to nearby lymph nodes. Spores are protected from the 

macrophages by a capsule, an external covering.  The bacteria germinate and after release from the 

macrophages the bacilli multiply in the lymph system and eventually enter the blood stream.  Friedlander 

first reported the importance of macrophages in the spread of the infection in a seminal paper in 1986.   

 

In the bloodstream the bacilli secrete the three-part toxin that eventually kills the host.  When attacking 

cells, protective antigen bonds to a receptor protein on the host cell surface where it cleaves to become the 
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protein PA63 and then forms a portal into the cell through which lethal factor and edema factor pass to do 

their damage inside the cell.  Anthrax treatment usually fails if delayed because, while it is possible to kill 

off the bacilli with antibiotics, the toxin that was produced before treatment remains to kill off the host. 

 

15.3 Acquisition and storage of data. 

The first acquisition of papers on anthrax research was conducted on December 12, 2001, using ISI’s Web 

of Science (WOS) product, and following the following procedure: 

 
• Using a keyword search on the term “anthrax”, 821 papers were acquired, limiting the search to 

papers available from WOS from 1980 and later. 

• A frequency table of references was constructed from these 821 papers, and a list of the top 50 

cited references was constructed. Any paper corresponding to a reference in this list that was not 

in the collection was acquired from WOS if available.  This brought the collection to 833 papers. 

 
These 833 papers were used for the original study by Morris, et al.  The collection was updated on February 

25, 2003, using the search term “anthrax OR anthracis”  to find all WOS papers available from 1945 

forward. When this collection was combined with the previous collection, the anthrax collection totaled 

2472 papers.   Figure 53 diagrammatically lists the number of entities and links in the collection.   
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Figure 53. Diagram showing the number of entities and links in the anthrax collection. 
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The data was loaded into five tables in an MS Access database in the following tables: 

 

• A table for papers and paper attributes. 

• An author table whose records correspond to links from paper authors to papers 

• A citation table whose records correspond to links from papers to references 

• A reference table which holds reference keys, links to reference authors, reference journals and 

reference year. 

• A terms tables holding links between terms and papers.  

 

The data was loaded into MATLAB into the following matrices: 

 

• O[p;r]: paper to reference matrix 

• O[p;ap]: paper to paper author matrix 

• O[p;ar]: paper to reference author matrix 

• O[p,t]: paper to term matrix 

• O[p, jp]: paper to paper journal matrix 

 

An initial exploratory analysis of the data was done by clustering papers on bibliographic coupling,  using a 

threshold of 5 common references per paper. Examination of these clusters showed that the papers 

generally fell into coherent research topics and did not show any off-topic clusters of papers that needed to 

be discarded.   Initial timeline mapping of the papers indicated that the data fell into two distinct periods: 1) 

early research from 1945 to 1975, and 2) current research from 1976 to the present. Early research fell into 

three categories: toxin research, medical treatment, and vaccine research. Current research, through 

increased specialization, includes several topics: toxin research, vaccines, gene sequencing, strain 

identification, and bioterrorism.  Detailed discussion of the final timeline appears in Section 15.5. 

 

15.4 Exploratory data analysis 

Figure 54 shows the reference per paper distribution for papers from 1945 to 1975.  This approximates a 

lognormal distribution with a mode of about 10.3 and a mean of 12.7 references per paper.  However, as 

shown in Figure 55, in the period from 1976 to 2003, the mean increases to about 30 references per paper.  

This increase probably represents the results of four processes: 1) the body of knowledge concerning 

anthrax increased over time, forcing authors to increase the number of references made in each paper to 

orient the reader about the position of the paper in the specialty, 2) the social conventions regarding citation 

of references changed over time; scientists now tend to cite more references than in previous years, 3) the 

increased specialization of anthrax research caused scientists to use journals whose editorial standards for 
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citing encourage larger numbers of references per paper, or 4) the journal coverage of the Science Citation 

Index over the years is biased in later years to journals with higher average references per paper.    

 
 

Figure 54. Reference per paper distribution for the period from 1945 to 1975. 
 

 
 

Figure 55. Reference per paper distribution for the period 1976 to 2003. 

 

Figure 56 shows a plot of papers per reference for papers from 1945 to 1975.  This distribution 

approximates a zeta (power-law) distribution with an exponent of 2.65.  Figure 57 shows the paper per 

reference distribution for the period 1976 to 2003.  This distribution also approximates a zeta distribution 

except that there is distortion in the tail showing that there are more heavily cited references than would be 

predicted by the zeta distribution.  This shows that, compared to the earlier period, there are more 

‘exemplar’ references in the collection, representing a greater consensus on the base knowledge in the 

specialty that authors cite to establish background knowledge for their papers (Hargens, 2000).   
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Figure 56. Paper per reference distribution for the period 1945 to 1975. 
 

 
Figure 57. Paper per reference distribution for the period 1976 to 2003. 
 

 
 

Figure 58. Paper author per paper distribution for the period 1945 to 1976. 
 



 

 131

Figure 58 shows the paper authors per paper distribution for the period 1945 to 1975.  A fitted 1-shifted 

Poisson distribution is also shown. There is a good general fit of the data to a 1-shifted Poisson  

distribution.  The mean authors per paper is 2.2.   

 

Figure 59 shows the paper author per paper distribution of the period 1976 to 2003.  The fitted 1-shifted 

Poisson distribution is plotted.  This distribution indicates an inflated number of single author papers, 

which indicates that the two processes are driving the author per paper distribution. One process 

approximates a 1-shifted  Poisson distribution while a second process produces only single author papers.  

Thus, the distribution is analogous to a zero-inflated Poisson distribution (Lambert, 1992).  Note that in this 

period the mean authors per paper has risen to 3.4. This indicates the size of research teams increased over 

the first period, probably a result of better funding in the second period (Beaver, 1978). 

 
 

Figure 59. Paper author per paper distribution for the period 1976 to 2003. 
 

Figure 60 shows the paper per author distribution for the period 1945 to 1975.  In accordance with Lotka’s 

Law (Lotka, 1926), the distribution follows well a zeta distribution. The estimated zeta distribution 

exponent is 2.35.  This indicates a well defined group of core researchers in the specialty. Figure 61 shows 

the same plot for the period 1976 to 2003. In this case, the distribution also well approximates a zeta 

distribution.  Note that the fitted exponent is 2.6.  This indicates that the later period has a slightly larger set 

of core researchers than earlier. 

 

Figure 62 shows the number of papers as a function of paper year. Papers per year is fairly constant through 

the 1950’s and 1960’s with a lean period in the early 1970’s. From the early 1980’s, there is slow growth.  

In 2001 the growth becomes dramatic, doubling the number of papers from 2000 to 2001, and doubling the 

number yet again in 2002.   This exponential growth was in response to dramatic discoveries in toxin 

research, interest in vaccines and , in 2002, intense interest focused on the bioterrorism postal attacks.  
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Figure 60. Paper per paper author distribution for the period 1945 to 1975. 
 

 
 

Figure 61. Paper per paper author distribution for the period 1976 to 2003. 
 

 
 
Figure 62. Paper per paper year plot of the anthrax collection. 
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Figure 63. Diagram of the paper to reference matrix for the anthrax collection. 
 

Figure 63 shows a diagram of the paper to reference matrix for this collection.  This is a very interesting 

diagram which shows marked changes in the dynamics of the collection in response to events in the 

specialty.  Initial research from 1945 to 1975 is from paper 1 to paper 800.   References appearing during 

this period are heavily cited, judging from the density of dots in the diagram.  A change in the specialty 

occurs at about paper  750 or so.  A new group of references appears and the citations to previous 

references thins considerably.  The rate of appearance of new references accelerates. This change in the 

specialty was probably in response to large increases in government funding of anthrax research in the late 

1980’s in response to bioterrorism threats.  Another shock to the specialty occurred in the fall of 2001 with 

the occurrence of the postal bioterror attacks. This is noted in the diagram. This contributes to the great 

volume of papers published in 2002.  After the attacks, a large number of papers appear that do not cite 

many previous references.  This produces an empty horizontal band in the matrix.  At the same time, a 

small number of references appears that become heavily cited, indicating the creation of a new set of 

exemplar references corresponding to new research fronts.  Figure 64 shows a plot of the number of 

references as a function of the number of papers.  In this diagram the beginning of each year is marked as a 

vertical line.  Note that the change in the first initial increase occurs about 1990, while the second event 

occurs in 2001 and corresponds to the postal attacks. 

 

Finally, Figure 65 shows a plot of the paper per paper journal distribution. which well approximates a zeta 

distribution with an exponent of 1.9.  This is in accordance with Bradford’s Law (White & McCain, 1989), 

which predicts a set of core journals for a specialty. 
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Figure 64. Number of references as a function of the number of papers in the anthrax collection, 
with vertical lines showing the start of each year. 
 

 
 
Figure 65. Paper per paper journal distribution for the anthrax collection. 
 

15.5 Research front timeline 

The paper to reference matrix consists of 2472 papers having 46221 links to 25007 references.  Using a co-

occurrence threshold of 5 common references, 987 papers were clustered into 35 research fronts.  Figure 66 

shows a research front timeline for the anthrax collection. The figure is rotated 90 degrees for a better fit on 

the page. Looking at the left, the identifying numbers for each research front are printed in a column to the 

right of the clustering dendrogram.  The papers in each research front are plotted by time in horizontal 

tracks, with the research front labels on the right side of the plot.  Research front labels were found by 

manually searching the papers in each research front for themes. The circles on the plot correspond to 

papers and the size of each circle is proportional to the number of times that the paper was cited. Each 

circle is shaded red in proportion to the number of times its corresponding paper has been cited in the last 

year of the collection (February 2002 to February 2003).   
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Figure 66. Research front timeline for the anthrax case study.  
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It is easy to see from the timeline that the collection falls into two distinct sections 1) research from 1945 to 

about 1975, and 2) research from 1976 to 2003. It seems probable that the great surge in the number of 

research papers starting in the 1990’s is tied to government funding of research in response to bioterrorism 

threats. The research fronts can be classified as follows: 

 

• Early research (1945 to 1975) 

o Research fronts 7 and 8 are the earliest research and cover early immunity studies and 

Smith and Keppie’s seminal  guinea pig experiments that showed that anthrax kills with a 

toxin.   

o Research fronts 19 and 18 cover vaccine. 

o Research front 29 deals with medical treatment of inhalational anthrax and may be tied to 

funding of bioweapons research in the 1960’s. The work picks up again in the 1990’s, an 

event that may be tied to government funding of research on bioterrorism in the late 

1980’s.  The key papers in this research front are currently being heavily cited in 

response to the postal  bioterror attacks and resulting intense interest in treating 

inhalational anthrax. 

o Research fronts 15 and 22 are papers that discuss identification of anthrax and 

discrimination of anthrax strains.  

o Research front 13 consists of papers on medical case studies. This research front 

continues up to the 1990’s, with a dry spell during the late 1950’s and 1960’s. It is finally 

superceded around 1985 by research front 6. 

o Research fronts 27 and 26 are papers that continue Smith and Keppie’s experiment on the 

anthrax toxin. These papers establish the knowledge on the 3 part anthrax toxin until they 

are superceded by the seminal work of Leppla in 1982 and Freidlander in 1988.  

 

• Current research (1976 to 2003) 

o Research fronts 25 to 33 generally cover the topic of anthrax toxin research. These 

include research on the three parts of the toxin: protective antigen, edema factor, and 

lethal factor.  

o Research fronts 24 and 23 cover research on using protective antigen to inject materials 

into cells to induce immunity to AIDS and other diseases. 

o Research fronts 32 to 35 cover general anthrax research in the 1980’s, anthrax gene 

sequencing, and the anthrax capsule. 

o Research fronts 12 and 11 cover current research in anthrax vaccines. 

o Research fronts 34 and 28 are miscellaneous topics. Clostridium is a bacteria that 

produces botulism toxin and is related to anthrax through bioterrorism research, adenylyl 

cyclase toxin is closely related to edema factor research. 
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o Research fronts 9 to 3 cover research on various methods of sensing anthrax and 

classifying anthrax by strains. 

o Research fronts 30 to 14 and 25 are bioterrorism related. Research front 30 covered 

general bioterror research until the postal terror attacks. The postal attacks induced four 

other research fronts: 1) Research front 1 on incidence management, 2) Research front 2 

on treatment of the disease, 3) Research front 14 covering the postal attacks themselves, 

and finally 4) a series of reviews on anthrax toxin research which was clustered at the top 

of the figure into the research fronts covering toxin research.  

 

15.6 Analysis of references 

The paper to reference matrix consists of 2472 papers having 46221 links to 25007 references.  An 

occurrence threshold of 40 was used, which yielded 70 highly cited references that were clustered down to 

single references. Figure 67 shows a crossmap of research fronts to references. References are mapped as 

columns in the crossmap, with a dendrogram at the top of the figure and reference labels at the bottom of 

the figure. Research fronts are mapped as rows on the crossmap, with clustering dendrogram on the left and 

research front labels on the right. Given research front i, and reference j, the size of the circle on the map at 

row i, and column j, is proportional to the percentage of papers in research front i that cite reference j.  

 

In this map it is easy to see the overlapping correspondence of reference clusters to research fronts: 

 

• At the bottom left of the map note a series of references that are key references for anthrax 

bioterrorism. This group of references starts with reference number 71 and ends with reference 

number 34 as seen at the top of the map. Reference 71, Jernigan 2001, is a notable  reference that 

reports on 10 cases of inhalation anthrax from the postal bioterror attack.  Inglesby, 1999, 

reference 3, is a policy paper on anthrax bioterrorism.  

• At the far left are a series of four references: Sambrook 1989, Ash 1991, Keim 2000, and Keim 

1997, that are key references for methods of detecting anthrax and discriminating among strains.  

• At the top of the map a series of 23 references comprise the key references on the topic of toxin 

research.  This group starts with reference 14 on the left and ends with reference 68 on the right. 

There is a great deal of overlap in the correspondence of these references to different research 

fronts in toxin research ( research front 25 at top down to research front 33. )  The key references 

for all of toxin research are Leppla 1982 and Friedlander 1986, references 15 and 7 respectively. 

Another important reference is Duesbery 1998, reference 14, corresponding to a paper that 

explained the mechanism by which anthrax lethal factor kills cells.  
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Figure 67. Research front to reference crossmap for the anthrax collection.  
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• In the center of the map, references from 6 on the left to 50 on the right, correspond to papers 

published in the 1980’s and 1990’s in anthrax before a lot of specialization occurred.  These are 

cited from many research fronts, but particularly from research fronts on vaccines and anthrax 

genetic sequencing.  

• Center right on the map a series of references (from 45 on the left to 58 on the right) are key 

references for current vaccine research. Among these is Brachman 1962, which is reference 52, 

which corresponds to a report on efficacy of the anthrax vaccine that is commonly used today. 

• On the right of the plot are references that were used by papers in research fronts for early 

anthrax research from 1945 to 1975.  The group of 5 references at the extreme right corresponds 

to the earliest research, and includes Smith and Keppie’s original study that showed that anthrax 

kills with a toxin, Smith 1954, reference 61.   Immediately to the left of this group are references, 

from reference 36 on the left to reference 54 on the right, used by papers in the research front 

from the 1950’s that established that the anthrax toxin has three parts.  

 

Figure 68 shows a map of reference usage for the anthrax collection.  In this plot the references arrayed on 

the x axis are identical to those from the research front to reference crossmap, Figure 67. In this plot the 

rows correspond to paper years and the columns correspond to references.  Given year i and reference j, the 

size of a circle at row i and column j on the map is proportional to the number of times that reference j was 

cited in year i.   The main purpose of this map is to show obsolescence of references.  Because of the small 

volume of papers in the early research period from 1946 to 1975, the size of the circles in this period are 

magnified 4 times over the sizes in the later period.  The following features are visible on this map: 

 

• on the extreme right the series of references from 62 on the left to 43 on the right have become 

obsolete.  They cease to be cited around 1968, a year which may have corresponded to cuts in 

funding of anthrax research. These references are not cited much even after anthrax research 

picks up again in the late 1980’s and early 1990’s.  

• Two references from early research, Stanley 1962 and Beall 1962, references 36 and 26, 

correspond to papers that characterize anthrax lethal factor toxin. As shown on the plot, these 

references are still current and being cited to the present day. 

• Reference 34, Ross 1957, corresponds to a paper on how inhalational anthrax develops in the 

lungs. After a long period of no citation that started about 1966, this reference is being cited 

heavily since the postal bioterror attacks because of the current intense interest on treating 

inhalational anthrax that resulted from those attacks. 
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Figure 68. Reference usage plot for the anthrax case study. 
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• Note that it is easy to see the emergence and use of key references on the detection of anthrax and 

discrimination of strains of anthrax. These are the references on the extreme left (starting with 

reference 29 on the left to reference 49 on the right), and the initial reference in this group is Ash 

1991 (reference 69).  

• Note the two seminal references for toxin research are in the center of the plot. These are Leppla 

1982 and Friedlander 1986, reference 7 and 15 respectively.  Leppla corresponds to a key paper 

on edema factor, while Friedlander announces the discovery of the role of macrophages in the 

spread of the disease within a host.  While the Leppla paper appears in 1982, it does not start to 

be heavily cited until 1988, a 6 year delay.   The year 1988 may be a year in which government 

funding of anthrax research was increased dramatically in response to bioterror threats. 

• Finally, note the great number of citations received by key bioterror references in the year 2002.  

These are to the left of the plot, from reference 71 on the left to reference 34 on the right.  This 

heavy number of citations reflects the intense interest in anthrax bioterror after the postal attacks 

in late 2001.  

 

15.7 Analysis of reference authors 

The reference author matrix consists of 2472 papers having 38721 links to 16563 reference authors.  The 

paper to reference author matrix was treated as unweighted, i.e., all the link weights were set to unity.  An 

occurrence threshold of 40 was used, which yielded 88 highly cited authors that were clustered down to 

single authors. Figure 69 shows the research front to reference author crossmap.  The following features 

can be seen on this map: 

 

• The reference authors corresponding to early research from 1946 to 1975 have fallen on the 

extreme left of the plot, in the section with author 68 on the left to author 26 on the right. Within 

this section of the map, there is a group of authors  (from author 78 on the left to author 30 on the 

right) that are cited from research fronts on immunity research. A second group of authors, from 

author 60 on the left to author 26 on the right, are cited from the research front on toxin research. 

• Moving right, there is a group of authors, from author 58 on the left, to author 71 on the right, that 

are cited heavily from the research front on anthrax detection. 

• Moving right, a group of reference authors from author 77 on the left to author 6 on the right are 

cited heavily from vaccine research fronts.  a subset of these authors from author 2 on the left to 

author 6 on the right appear to be heavily cited from the most current vaccine research fronts. 
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Figure 69. Research front to reference author crossmap for the anthrax collection.  
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Figure 70. Reference author usage plot for the anthrax case study. 
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• Research fronts in toxin research cite a series of authors to the right center in the plot, starting with 

reference 47 on the left to reference 79 on the right.  Note the prominence of both Friedlander and 

Leppla in this group.  Friedlander and Leppla get overlapping use from other research fronts as 

well, particularly from vaccines and bioterror research fronts.  

• Authors representing bioterror topics appear on the extreme right, from author 70 on the left to 

author 63 on the right. Note the heavy overlap of authors, from 79 on the left to 62 on the right, 

authors being used by research fronts on both the inhalation anthrax research front but from the 

bioterrorism research front as well.  

 

Figure 70 shows a usage plot of reference authors which has the following features:   

 

• On the right is the section corresponding to reference authors for early research from 1946 to 

1976.  Many of these authors remain well cited even in 2002.  

• Note that most of the reference authors in current vaccine research and current toxin research 

begin to be cited in 1988, again suggesting that the volume of papers on anthrax topics 

increased dramatically as a function of increased funding in that year.  

• Bioterror reference authors receive massive references in 2002, showing response of the 

specialty to the bioterror postal attacks.  

 

15.8 Analysis of paper authors 

The paper to paper author matrix has 2472 papers linked to 4493 authors through 7815 authorships. Using 

an occurrence threshold of 8 yielded 83 authors which were clustered down to single authors. Note 

however, that because of the large number of papers in each research front, the research front to paper 

author crossmap did not yield much information and is not shown.   In general, this type of crossmap can 

yield better results on smaller collections that are more homogeneous and do not have such large numbers 

of authors.   

 

Figure 71 shows a paper author usage plot. In this map it is possible to see which researchers are active and 

which researchers are no longer working in the specialty.  At the top of this plot is a clustering dendrogram 

for the paper authors. The dendrogram seriation routine used for making this dendrogram tends to put  the 

most distinct clusters to the extreme left and right while placing authors that publish many single authored 

papers in the center columns.  Thus, the most distinct groups of paper authors are easy to distinguish on the 

left and right on the plot. The following features can be distinguished on this plot: 
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Figure 71. Paper author usage plot for the anthrax case study. 
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• Two groups of authors can be seen that were active in early research from 1945 to 1975 that are no 

longer active.  On the left, Lincoln, Klein, Mahlandt and Walker form a team which started 

activity in 1961 and ended activity in 1968, publishing papers on early toxin research and 

immunology studies. On the right are authors Smith, Stanley, Harrissmith and Keppie, who 

performed the original toxin research that identified the three part toxin in the 1950’s. These 

authors became active in 1953 and ceased activity in 1963. Several authors in the center of the plot 

became  active in the 1950’s and 1960’s. Wright (1951 – 1986) and Thorne (1950-1993) had very 

long publishing careers. 

• Note that the author “[Anon]” in the center of the plot is associated with reports from the Center 

for Disease Control and other government agencies. It would be convenient to add an option to the 

software to delete such artifacts. 

• There are some single authors among the author groups that are very active and have long 

histories.  Friedlander, Leppla, Turnbull, Collier, and Mock are examples noted on the plot. These 

authors all have publication histories that range back to at least the early 1980’s.   

 

15.9 Analysis of terms 

The terms used for this study are index terms that are machine-generated terms provided by the Web of 

Science. These terms are problematic because there appear to be numerous synonyms among them.  For 

example, ‘lethal factor’ and ‘toxin lethal factor’ are synonymous but separate terms in this collection.  Also, 

index terms are not provided for papers published before 1991.  Despite these problems, the analysis here is 

shown to demonstrate the usefulness of using terms to assist in validating labels for research fronts.  

 

The paper to term matrix has 2472 papers linked to 1581 terms through 4537 links. The terms per paper 

distribution (not shown) has a large spike at 10, indicating that the ISI algorithm used to generate terms 

limits the number of terms per paper to 10. The paper per term distribution (not shown) well approximates 

a zeta distribution with an exponent of 2.2. Using a co-occurrence threshold of 5 yielded 94 terms, which 

were clustered down to single terms.     

 

Figure 72 shows a research front to term crossplot for this collection. As in previously discussed 

crossmaps,  a dendrogram is  provided on the left of the map for research fronts, with research front labels 

on the right. The clustering dendrogram for terms is at the top of the map, while the terms themselves are 

shown at the bottom. Related terms are found by looking at subtrees on the dendrogram.  The following 

features can be seen on this map: 
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Figure 72. Research front to term crossmap for the anthrax case study. 
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• a series of terms appears on the far left, term 91 on the left to term 74 on the right, that appear to 

be terms about toxins produced by various species of bacteria.  These terms are associated with the 

‘clostridium’ research front.  Clostridium is the bacteria that produces ‘botulinum toxin’, a term in 

this group. This group of terms seems to indicate that the clostridium research front may be a 

group of papers discussing bacterial toxins in general.  

• a group of terms, from term 75 on the left to term  72 on the right, appear to be associated with 

research fronts covering toxin research.  However, because many of the terms are specialized, it is 

difficult to assess the usefulness of the terms in discriminating between topics of research fronts 

covering toxins. 

• a series of terms, from term 76 on the left to term 51 on the right, are terms associated with 

immunity and vaccines. These terms occur in a research front labeled ‘vaccine’ and confirm the 

validity of that label.   

• a series of terms, from term 89 on the left to term 12 on the right, are associated with expression 

and purification, and confirm the validity of the label for research front 17, labeled ‘toxin 

expression and purification.’  

• a series of terms at the extreme right, from term 73 on the left to term 62 on the right, are terms 

associated with warfare, terrorism, and public disasters. These terms are used in papers in the 

bioterrorism research fronts and help to confirm some of the labels in this group of research fronts.  

 

15.10 Discussion of postal bioterror attacks 

The postal bioterror attacks in Fall, 2001, caused a great shock in the specialty of anthrax research.  The 

previous study by Morris, et al, conducted on papers gathered on December 23, 2001, about two months 

after the attack, showed that 6 papers had already been published in reaction to those attacks.  Figure 73 

shows a timeline from that study that shows a research front on anthrax bioterrorism.  In this diagram the 

citation links between papers are shown on the timeline to papers cited heavily from the research front. Six 

papers that appeared after the bioterror attacks are shown and it is noted that these six papers mostly cited a 

paper by Dixon that covered the treatment of anthrax.  Previous to this, papers in the bioterror research 

front rarely cited Dixon.  This indicated that a research front on medical treatment of anthrax was about to 

emerge.   

 

Looking at Figure 73, which is based on papers gathered on February 25, 2003, about 14 months after the 

bioterror attacks, the response of the specialty to the postal attacks is evident.  There are three additional 

bioterror related research fronts in the specialty: 1) research front 1 dealing with bioterror incidence 

management, 2) research front 2 dealing with medical treatment of anthrax, and 3) research front 14 

dealing specifically with the postal attacks themselves.  Because of the great interest in anthrax research 
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that was generated after the attacks, a series of anthrax toxin research review papers was generated, which 

became research front 25 at the top of the timeline.   

 
Figure 73. A timeline from an earlier study showing the early effects of the postal bioterror 
attacks on the literature. 
 

As seen in the timeline of Figure 73, the prediction of a new research front was accurate.  There was, 

however, no anticipation that research fronts on incidence management, the postal attacks themselves, and 

anthrax toxin review would emerge. Looking at Figure 67 it can be seen that the paper by Dixon on 

medical treatment of anthrax is heavily cited from the new research front on medical treatment.  

 

This example shows the power of using visualization of data in collections of papers for early detection of 

emerging research topics.  While the new research front on medical treatment was predicted, there was no 

prediction of the emergence of other important research fronts on the postal attacks, incidence management 

and anthrax review.  The development of these other research fronts probably could have been detected by 

a program to monitor and analyze the literature periodically after the bioterror attacks. 
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15.11 Discussion  

This chapter has described a case study on anthrax research where the analysis and visualization techniques 

described in this report have been applied. Given a collection of papers on the topic of anthrax research, the 

following information was extracted: 

 

• Research fronts. A list of research fronts in the collection that comprise subspecialties of research 

within the anthrax research specialty.  The time relation of these research fronts was exposed 

through the timeline of Figure 66 and from this the active and inactive research fronts were 

identified and cataloged.  The ability to extract this information is important because it allows 

subject matter experts to quickly and easily explore a specialty and identify currently important 

subtopics and the literature associated with those subtopics. 

• Reference groups. The key references within the specialty were identified, clustered into related 

groups, and their overlapping relation to the specialty’s research fronts were shown.  The use of 

these references over time was visualized and the obsolete and current key reference groups were 

identified.  This information was extracted from the research front to reference crossmap, Figure 

67, and the reference usage timeline, Figure 68. This analysis is important because it allows 

subject matter experts to quickly identify the seminal references associated with important 

subtopics  in a specialty. Identification of these references allows the subject matter experts to 

monitor for new papers that cite these key references, and further allows them to educate 

themselves on the key elements of these subspecialties by reading the papers corresponding to 

such references.  Furthermore, the overlap of these reference groups with multiple research fronts 

allows subject matter experts to map how research fronts are related.  

• Reference author groups. As shown by Figure 69 and Figure 70, the key groups of reference 

authors in the specialty were identified, clustered into groups and their overlapping relations to 

research fronts in the specialty were shown. Similar to the information extracted about references, 

the temporal use of reference authors by research fronts was visualized, showing how groups of 

references authors, corresponding to “schools of thought” in the specialty, emerged, were used, 

and became obsolete.  Furthermore, this visualization and analysis shows which reference authors 

are currently being used.  The visualization shows experts in each research front as those authors 

that are well cited by the research fronts.  

• Paper author groups.  As shown in Figure 71, the visualization of paper author usage and 

clustering allows the identification of teams of researchers, helps to identify prolific authors and 

also shows which researchers are currently active in the specialty 

• Term groups. As shown in Figure 72, visualization of terms and groups of terms is very useful 

for labeling research fronts. 
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Not shown in this case study are examples of how subject matter experts could use interactive exploration 

tools provided with the software toolkit described in Chapter 14 to look for specific information in the 

collection of papers.   Nor is the use of the exploration tools provided in interactive web pages described.  

Additionally, subject matter experts would use written cluster reports generated by the toolkit to explore for 

specific information in the collection.  

 

Nevertheless, this case study illustrates that the theory and techniques introduced in this report can be used 

to extract a large amount of useful information about a research specialty from a collection of papers that 

cover that specialty.  Research subtopics, seminal papers, important experts, active research teams, and the 

relations among them are information that is produced that can be made available to subject matter experts 

to assess the state of the specialty and make recommendations to planners and research managers.  
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16. CONCLUSION 

16.1 Summary 

Motivation.  The original motivation for this research was to satisfy a need to explore the structure and 

dynamics of collections of papers for the purpose of briefing subject matter experts who participate in 

technology forecasting panels.   At that time the state of the art of techniques for analyzing collections of 

papers consisted of visualizing the papers on a two-dimensional map using multidimensional scaling 

(MDS), usually performed based on co-citation or Small’s similarity.  The conventional mental model of a 

collection of papers, as presented in both the bibliometrics literature and the complex networks literature, is 

of a large network of papers whose links are citations from one paper to another. In this mental picture 

there is no separation of papers from references, that is, references are pictured as papers that receive 

citations and are not considered as entities in and of themselves.  Further, as part of the current mental 

model, the other entities in the collection of papers, authors, journals and terms, when considered as 

networks at all, are considered as single entity-type networks linked by co-occurrence, e.g., a collaboration 

network of authors linked by the co-authorship of papers.   Another part of the current paradigm for 

analyzing collections of papers is the pervasive use of co-citation to find links directly between references, 

or indirectly between papers.  To support this assertion, consider a collection of 3103 papers that was 

gathered that included all papers from the journal Scientometrics and the papers that cite them. This 

collection generally  covers the field of bibliometrics and the highly cited references in this collection 

represent the exemplars to paradigms used within the specialty of bibliometrics. Within this collection, the 

6th most cited reference corresponds to Small’s discovery paper on co-citation (Small, 1973), the reference 

corresponding to Kessler’s discovery paper on bibliographic coupling (Kessler, 1963) ranks only 54th in 

number of citations received.   This indicates the predominance of co-citation as a metric for clustering 

over bibliographic coupling, which could serve as an alternative metric.   

 

An examination of the Scientometrics paper collection helps to reveal that the current paradigm for 

bibliometric analysis consists of the following concepts and accompanying exemplars: 

 

• Journal literature is considered a network of papers citing papers.  

• Co-citation is the preferred method of establishing links between papers, authors and journals for 

clustering and mapping. 

• MDS maps are the preferred method of visualizing papers, authors and journals. 
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Working within this paradigm, however, it is practically quite difficult to extract information that can be 

used directly for the original goal of briefing subject matter experts.  The information that subject matter 

experts would like to review before participating in a technology forecasting panel can be summarized in a 

few points: 

 

• identification of the key sub-topics in the specialty 

• identification of the seminal papers and key references  

• identification of experts in the specialty 

• identification of centers of excellence (key academic, commercial and government research 

organizations) 

• identification of outside fields contributing loan knowledge to the specialty 

• identification of outside fields borrowing loan knowledge from the specialty 

• identification of emerging sub-topics 

• identification of declining sub-topics 

 

There are many problems with extraction of the desired information about a specialty in the list above when 

using the current paradigm of bibliometrics.   The principal problem is that the current paradigm treats the 

different entity-types within a collection as separate networks: 1) citation networks of papers, 2) 

collaboration networks of paper authors, 3) author co-citation networks of reference authors, and 4) journal 

citation networks.  As shown by the work presented here, all of these networks are intimately connected 

and analysis of any one of them in isolation will inevitably fall short of providing the same amount of 

information that could be extracted if they are analyzed as a complex interconnected network.    

 

The main mental model in the current bibliometric paradigm, that journal literature is a network of papers 

citing other papers, has problems as a model for extracting useful information about a research specialty.   

This model denies that references are used as concept symbols, a crucial limitation to thinking about the 

underlying processes of literature growth. At best, the current paper citing papers mental model allows the 

historical tracing of ideas from paper to paper (Garfield et al., 2003), but this “genealogy of ideas” is 

information that is not particularly important for briefing subject matter experts.   

 

Fortunately, another element in the current bibliometric paradigm, co-citation clustering, so pervasive in 

current bibliometric practice, can be used to classify both papers and references to find current papers and 

key references to sub-topics within a specialty, information that is quite useful for subject matter experts.  

Co-citation clustering and author co-citation clustering are the two most practical and useful of bibliometric 

techniques being applied today to extract information from journal literature. However, there is little 

research effort being expended now to investigate the use of other co-occurrence metrics, such as 
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bibliographic coupling, or to investigate the symbolic representations, as discussed in Chapter 11.1, of co-

occurrence groups formed using different co-occurrence metrics.  

 

Another major problem with the current paradigms of bibliometrics is the over-reliance on MDS mapping 

as a visualization tool.  Experiences with using MDS maps for briefing subject matter experts have been 

uniformly discouraging.  MDS maps give a crude view of the structure of the network being mapped, while 

subject matter experts typically hold much better mental maps of their specialty.  A typical reaction of a 

subject matter expert to an MDS map is “Tell me something I don’t know.”  Not only this, but MDS maps 

typically contain a great number of artifacts, because two dimensional maps cannot preserve complex 

distance relations among the entities in their original complex many-dimensioned feature space.  Subject 

matter experts view these obvious (given their knowledge of the specialty) inaccuracies with suspicion and 

turn away from the map as uninformative, inaccurate, and not credible. 

 

Technical review of this research.  The work reported here was presented in a logical sequence to explain 

the proposed mathematical treatment and outline its extensions and applications: 

 

• An entity-relationship model was introduced that explicitly describes the types of entities in a 

collection of papers and the direct links between them. The correspondence between bibliometric 

entities and physical entities was explained. 

• A method of computing indirect links, based on modeling entities as cascaded bipartite networks 

and using generalized matrix arithmetic with link weight functions, was discussed. Dyadic links 

among entities in the collection was explained.  The concepts of like and unlike entities, and 

primary and relative entity-type were explained.  A concise mathematical notation, the dyad 

identifier, was introduced. The dyad identifier notation greatly facilitates the understanding of 

indirect links and co-occurrence links in the collection. 

• Given the model of the paper collection as a collection of bipartite networks, occurrence 

networks were introduced to mathematically list the links in individual bipartite networks.  The 

use of matrix multiplication to compute indirect links was discussed, and the use of membership 

matrices, which express entity group memberships, and equivalence matrices, which show 

correspondence of bibliometric entities to physical entities, was introduced. 

• Co-occurrence matrices were introduced to list co-occurrence links among like entities.   It was 

shown that the computation of co-occurrence matrices is equivalent to computing links in a 

cascade of bipartite networks and that link weight functions and generalized matrix arithmetic 

could be used accordingly for computing co-occurrence link weights.  

• Using occurrence and co-occurrence matrices as a foundation, it was shown that bibliometric 

distributions can be concisely expressed in terms of these matrices.  Dyadic distributions, 

expressing probability of occurrence of the number of associations of individual entities with 
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other entity-types, were introduced and shown to occur in two classes, fixed occurrence dyadic 

distributions, and cumulating occurrence dyadic distributions.  Co-occurrence distributions, 

expressing the probability of the number of co-occurring entities given a pair of like entities, 

were introduced.  Clustering coefficient distributions, which measure the amount of local 

clustering in a co-occurrence network of like entities, were also introduced. 

• A recursive model of occurrence matrix growth and co-occurrence matrix growth was described 

mathematically and its potential as a tool for modeling growth of the collection of papers was 

discussed. 

• The construction and use of graph theoretic matrices that describe the collection of papers as a 

paper to cited paper graph was discussed.  The derivation of four coupling metrics from the paper 

graph was discussed.  These coupling metrics are: 1) direct citation, 2) co-citation, 3) 

bibliographic coupling, and 4) longitudinal coupling.   

• The direct computation of similarity values from co-occurrence matrices was discussed.  These 

similarity values are used for clustering and visualization of entities for analysis of the paper 

collection.  Methods for fusing similarity values that were derived from two or more different co-

occurrence matrices was explained and Small’s similarity, a well-known metric for mapping 

papers from graph theoretic metrics, was explained and generalized. 

• The derivation of feature vectors that characterize entities in the pattern recognition sense was 

introduced.   Two types of feature vectors were discussed, 1) occurrence feature vectors, and 2) 

co-occurrence feature vectors, which are derived from rows of occurrence matrices and co-

occurrence matrices respectively. The idea of a characterizing pattern associated with a feature 

vectors was introduced and discussed. 

• Seriation, matrix shading and clustering were explained in the context of the proposed 

mathematical treatment.  It was shown that these operations can be thought of as performing 

permutations on an occurrence matrix to obtain approximations of a Robinson matrix. 

• The visualization of occurrence matrices as a means to understand static and dynamic structures 

of links within a collection of papers was discussed. Timelines, usage plots, and crossmaps were 

the three types of visualizations discussed.   Several example applications of these visualization 

techniques were exhibited, timelines showing birth of research fronts and knowledge borrowing, 

usage plots showing emergence of exemplar references and schools of thought, and crossmaps 

showing static structure of overlapping links among groups of entities in the collection. 

• It was shown that the proposed treatment could be used to efficiently describe many of the 

analysis methods presently being used in bibliometric analysis.  These methods include co-

occurrence clustering techniques such as co-citation analysis, latent variable techniques such as 

Latent Semantic Analysis, and network pruning techniques such as pathfinder analysis.  

• A software toolkit that applies the proposed mathematical treatment presented here was 

presented.  This software performs analysis and visualization of collections of journal papers and 
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patents for the purpose of extracting information about a specialty by analyzing a collection of 

journal papers covering that specialty.  The software has handled paper collections as large as 

15,000 papers and makes extensive use of MATLAB’s matrix functions and sparse matrix 

routines.  

• A case study was presented, dealing with a collection of 2274 papers covering 60 years of 

anthrax research. Through analysis and visualization enabled by the proposed mathematical 

treatment, the growth and specialization of anthrax research through key discoveries was mapped 

and understood. The birth and obsolescence of sub-topics was mapped, papers were classified 

into groups by topic (research fronts.) Key references, experts, and active research teams were 

identified. Additionally, the overlapping correspondence of groups of related references, 

reference authors, and paper authors to the specialty’s research topics was visualized and the 

emergence and obsolescence of these groups over time was visualized. This case study clearly 

demonstrates the usefulness of the mathematical treatment proposed here.     

 

As listed above, the mathematical treatment is general, easily usable, and can potentially be exploited by a 

great number of analytical, statistical and visual techniques for extracting required information and 

knowledge from a collection of papers.  

 

16.2 Significance of this research  

It is important to review the significance of the research presented here, particularly in relation to current 

techniques for both bibliometric analysis and analysis of complex networks: 

 

Modeling of multiple entity-type networks.  In the context of both complex network analysis and 

bibliometric analysis, there are presently no useful techniques for modeling and simulating networks that 

contain more than one entity-type.  While there is some presentation of analysis techniques for bipartite 

networks (Dorogovtsev & Mendes, 2002), this analysis is not pursued in a general sense.  Recent work by 

Borner, Maru and Goldstone (2004) in bibliometrics presents a model of simultaneous evolution of 

networks of authors and papers. The model does not address the mathematical expression of the links 

between authors, papers and references, but rather focuses on the evolution of two distinct and separate 

networks, the author network and the paper network, as the result of some underlying process.  In contrast, 

the mathematical treatment here allows the simultaneous simulation of all entity-types in a collection of 

papers or complex network.  As an example Morris (2004) modeled and simulated the simultaneous growth 

of papers and references in a collection of papers, producing simulations that matched a large number of 

characteristics of actual paper collections: 1) the paper per reference distribution, 2) the reference per paper 

distribution, 3) the co-citation distribution, 4) the bibliographic coupling distribution, 5) the bibliographic 

coupling clustering distribution, and the temporal distribution of citation counts.  This model, using a 
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cumulative advantage process (Price, 1976; Simon, 1955) applied to the growth of a paper reference matrix 

as modeled in Chapter 7.2, was able to show the key role of highly cited exemplar references in the 

production of the dense network of links in co-citation networks of references and bibliographic coupling 

networks of papers.  That work, combined with the mathematical treatment proposed here, can easily be 

generalized to include general simulation of the all entity-types in the collection of papers simultaneously. 

 

Quantifying indirect links.  There is very little work presented in the complex networks literature or 

bibliometrics literature on computing the weights of links between entities.  Indeed, in most complex 

networks research, links are simply considered as unweighted.  Most research on complex networks is done 

statistically, principally modeling the distribution of the number of links per entity (Albert & Barabasi, 

2002).  There is very little work in the information retrieval and bibliometrics literature on quantifying 

indirect links, where most links are derived from simple co-occurrence counts. In fact, the concept of 

indirect links is probably not known in either of these fields.  The mathematical treatment proposed here 

provides a systematic, general, and easy to implement method of computing indirect links based on link 

weight functions and matrix arithmetic.  The calculation method is general enough to incorporate most or 

all of the candidate methods of link computation for indirect links: matrix multiplication, the overlap 

function, and the inverse Minkowski metric.  The method is easily implemented in software and is 

completely amenable to sparse matrix techniques developed for matrix multiplication.     

 

Characterizing growth of entities and links.  The matrix formulation of the growth of occurrence and co-

occurrence matrices is a possible basis for describing the general growth of complex networks that can be 

described by the entity-relationship model outlined in Chapter 2.  This model, along with the use of 

cascaded bipartite networks as described in Chapter 3, naturally leads to the general mathematical 

formulation of network growth using recursive matrix equations as described in Chapter 7.  This recursive 

formulation simply describes the growth of occurrence matrices in the network and further describes the 

resulting growth of co-occurrence matrices in a useful way that makes obvious the difference between 

static links and cumulating links in the network.  The recursive matrix equations introduced here allow 

direct efficient modeling and simulation of the growth of a complex multiple entity-type network.   The 

recursive formulation can be directly applied to network simulation and studies, as was done by Morris 

(2004) to model and simulate the manifestation of the growth of a specialty in its literature.  The recursive 

matrix growth model suggests methods for efficient storage and computational computer algorithms when 

analyzing large networks.   

 

Characterizing classes of distributions.  The characterizations of distributions discussed in Chapter 6 

provide a unique view of network distributions that has never been investigated. The efficient mathematical  

notation and nomenclature, the entity-relationship model, and the concepts of static and cumulating links, 

lead to a general and symmetric view of bibliometric distributions.  To date, research on distributions in 
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bibliometrics and complex networks has focused almost exclusively on power-law distributions (Albert & 

Barabasi, 2002; Fairthorne, 1969).  There has been some study of static occurrence distributions in the 

literature in the context of collaboration networks (Newman, Watts, & Strogatz, 2002).  Nevertheless, the 

mathematical treatment introduced here allows the efficient general description of dyadic distributions and 

allows classification of those distributions into static occurrence and cumulating occurrence distributions.  

The mathematical treatment further allows the general study of co-occurrence distributions and clustering 

coefficient distributions. As shown by Morris (2004), static dyadic distributions, almost totally neglected in 

the current research on bibliometrics and complex networks, must be modeled correctly in order to study 

and simulate growth of the networks in a collection of papers.  

 

Standardization of mathematical characterizations.  The simple dyad identifier notation introduced in 

this mathematical treatment greatly facilitates the modeling and analysis of collections of papers.  The 

number of bipartite networks, distributions, and co-occurrence networks in a collection of papers makes the 

description of the networks exceedingly cumbersome without an efficient notation.  The setup of 

calculations of indirect links using matrix arithmetic is reduced to triviality when dyad identifier notation is 

used. The concept of like and unlike entities, primary and relative entity-types, and most of all, the dyad 

identifier notation, makes description of the collection of papers very efficient and elegantly simple.  This 

contribution to network analysis will greatly facilitate communication of ideas and should encourage 

progress in research in complex networks. 

 

Calculation of similarities.  The treatment presented here standardizes the calculation of similarities from 

co-occurrence matrices as shown in Chapter 9. More importantly, the treatment presented here shows how 

to calculate similarities from links that are not based on simple co-occurrence counts, but generalized to 

links based on general link weight functions.  Additionally, the treatment facilitates the fusion of 

similarities from multiple types of links for analysis as shown in Chapter 9.2 and Chapter 9.3.  

 

Clustering, seriation and matrix shading.  It was shown in Chapter 11 that it is possible to show the 

results of clustering as permutation of  occurrence matrices  to approximate a Robinson matrix  that 

exposes structures in the links in a bipartite network.  It was shown that matrix shading, clustering and 

seriation are related in their effects on rearranging an occurrence matrix. The mathematic treatment 

introduced here consolidates understanding of matrix shading, seriation, and clustering of entities in the 

paper collection and facilitates the visualization of links among groups of entities in the collection.  This 

allows understanding of the relations among groups of like entities, but further allows analysis of relations 

among groups of unlike entities, an innovation in analysis not previously used to analyze collections of 

papers.  
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Introduction of useful visualization techniques.  To date, the prevailing paradigm of visualization of 

collections of papers has been the two dimensional MDS map.  Software to generate these maps is readily 

available in statistics programs such as SAS.  As discussed above, MDS maps are capable of visualizing 

crude structure, but often produce artifacts that mislead the analysts using them to wrong conclusions.  

They are also not capable of effectively communicating overlapping relations among groups of entities, and 

dynamic changes in the structure of links in the collection of papers.  The visualization methods introduced 

in Chapter 6, based on displaying the structure of occurrence matrices, are not focused on mapping entities, 

as MDS maps do, but are focused on mapping links between groups of entities. The visualization 

techniques introduced here produce efficient displays of complex and overlapping links between groups of 

entities, and also produce useful displays of trends and emerging events in the structure of links in the 

collection of papers. A wide variety of useful displays can be produced and related to the entity-

relationship model of the collection of papers. These displays can be easily related to each other and allow 

an analyst to see the complex network of links in the collection of papers from many interlocking 

perspectives.      

 

Incorporation of existing analysis into the proposed mathematic treatment. As shown in Chapter 13, 

the proposed mathematical treatment can be used to express a great number of existing analysis techniques 

presently being used to analyze collections of papers. Among these techniques are 1) co-occurrence 

clustering techniques such as co-citation analysis and author co-citation analysis, 2) latent variable and 

modal analysis techniques such as latent semantic analysis, factor analysis, and hub and authorities 

analysis, 3) feature vectors to characterize individual entities, and 4) network pruning techniques such as 

pathfinder analysis. The mathematical treatment proposed here allows existing bibliometric analysis 

techniques to be incorporated into the same mathematical framework for comparison and generalization.    

For example, it is easy to show, using the mathematical treatment introduced here, that latent semantic 

analysis can be easily applied to links between papers and references, or to the links between paper authors 

and reference authors.  This generalization of analysis techniques, facilitated by the mathematical 

treatment, provides many new, easily explored ideas for further research in the field.  

 

Simulation of cascaded bipartite networks. Using Yule models the mathematical treatment presented 

here allows a very general method of simulating growing cascaded bipartite networks such as collections 

of journal papers. Morris (2004) showed that a modified Yule model can accurately describe the growth of 

paper to reference networks in a specialty, while Goldstein, Morris, and Yen (in print) show that another 

type of modified Yule model can be used to simulate the manifestation of research teams in a specialty.  

Yule  models, though not discussed in this report, are well suited to growth models of cascaded bipartite 

networks because they model linear growth in the number of entities and preferential connection, two key 

characteristics of such networks.  
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16.3 Future Research 

The work here can be extended with the following research and applications: 

 

• Extension to other applications.  There are several data sources, similar to collections of papers 

that could be adapted to entity-relationship models and the mathematical treatment presented here.  

Specifically, three examples are: 

 

o Press clippings.  Press clippings are topic-specific reports culled from general press 

reports that are analogous to reports provided by a professional clipping service.  An 

example of a press clipping collection would be press reports on terrorist events.  Press 

reports must undergo an entity extraction processing step to build the report database in 

entity-relationship form.  

o Patents. These are issued by governments, and are documents describing inventions and 

granting exclusive rights to exploit those inventions.  Patent abstract data is readily 

available from a number of sources and is used to monitor technology for competitive 

intelligence, technology forecasting, and other business purposes.   

o Film databases.  Film databases, covering thousands of films, are available free from the 

Internet.   These records have been extensively studied in the complex networks literature 

and contain information on each film such as title, actors, director, producer, and release 

date.  The data is readily converted to an entity-relationship model for study using the 

mathematical treatment presented here.   

• Investigation of matrix growth equations.  The matrix growth equations introduced in Chapter 7 

are potentially useful to model modes of growth in a complex network and develop methods of 

monitoring for both trends and discontinuous events.  Further work to develop applications for the 

recursive formulation should be pursued.  

• Development of clustering algorithms Clustering algorithms are the weakest link in analysis of 

collections of papers and other complex networks.  This is especially true for co-occurrence 

networks based on cumulating links, where the distribution of co-occurrences is often highly 

skewed by the power-law distributions of occurrences with entities of the relative entity-type. 

There is a need to investigate methods of fusing information from many sources to obtain robust 

clusters of entities.  

• Interactive visualization techniques. Initial work has been conducted to provide an interactive 

interface to visualizations of Chapter 6 using Web based tools programming tools such as 

Javascript and ASP. For example, at samorris.ceat@okstate.edu/web/case_studies a number of 

case studies can be viewed that allow a subject matter expert to use timelines, usage maps, and 

crossmaps to access papers, references, paper authors, reference authors, and paper journals, and 

reference journals associated with specific research fronts.   Furthermore, animations of growth of 
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research fronts can be executed by the user.  These interactive visualizations should be explored to 

find the best method of allowing subject matter experts to explore a specialty through its literature. 

• Generalization to include complex network theory.  The entity-relationship model and the 

mathematical treatment here need to be generalized to work within the framework of current 

complex network theory research.  This promises to extend the current research in complex 

network theory to networks with an arbitrary number of entity-types, in contrast with the current 

complex network models that have only one or occasionally two entity-types.  

 

16.4 Concluding remarks  

The mathematical treatment introduced here provides an easily understood and easily implemented way of 

working with collections of papers as a complex network. The ability it gives of computing links between 

any arbitrarily selected entity-types greatly simplifies the analysis of collections of papers.   Much of 

existing theory on collections of papers: 1) similarity computations, 2) bibliometric distributions, 3) feature 

vectors, 4) clustering and seriation, and many other analysis techniques, readily fit into the framework of 

the mathematical treatment presented here.  Not only this, but once these techniques are adapted to the 

framework of the proposed mathematical treatment, there are many extensions to those techniques that 

become apparent and that warrant investigation as possibly useful.   Viewed this way, it appears the 

proposed mathematical technique may be able to function as a framework within which research on 

analysis of collections of papers and other multiple entity-type complex networks can be investigated.  
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A mathematical treatment is proposed for analysis of entities and relations among entities in complex networks 
consisting of cascaded bipartite networks. This treatment is applied to the case of collections of journal papers, 
in which entities are papers, references, paper authors, reference authors, paper journals, reference journals, 
institutions, terms, and term definitions.  An entity-relationship model is introduced that explicitly shows direct 
links between entity-types and possible useful indirect relations.  From this a matrix formulation and 
generalized matrix arithmetic are introduced that allow easy expression of relations between entities and 
calculation of weights of indirect links and co-occurrence links.  Occurrence matrices, equivalence matrices, 
membership matrices and co-occurrence matrices are described.  A dynamic model of growth describes 
recursive relations in occurrence and co-occurrence matrices as papers are added to the paper collection.  Graph 
theoretic matrices are introduced to allow information flow studies of networks of papers linked by their 
citations.  Similarity calculations and similarity fusion are explained.  Derivation of feature vectors for pattern 
recognition techniques is presented.  The relation of the proposed mathematical treatment to seriation, 
clustering, multidimensional scaling, and visualization techniques is discussed. It is shown that most existing 
bibliometric analysis techniques for dealing with collections of journal papers are easily expressed in terms of 
the proposed mathematical treatment: co-citation analysis, bibliographic coupling analysis, author co-citation 
analysis, journal co-citation analysis, Braam-Moed-vanRaan (BMV) co-citation/co-word analysis, latent 
semantic analysis, hubs and authorities, and multidimensional scaling. This report discusses an extensive 
software toolkit that was developed for this research for analyzing and visualizing entities and links in a 
collection of journal papers.  Additionally, an extensive case study is presented, analyzing and visualizing 60 
years of anthrax research.. When dealing with complex networks that consist of cascaded bipartite networks, the 
treatment presented here provides a general mathematical framework for all aspects of analysis of static 
network structure and network dynamic growth.  As such, it provides a basic paradigm for thinking about and 
modeling such networks: computing direct and indirect links, expressing and analyzing statistical distributions 
of network characteristics, describing network growth, deriving feature vectors, clustering, and visualizing 
network structure and growth.   
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