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Abstract. We propose a novel approach to locate errors in complex
counterexample of safety property. Our approach measures the distance
between two state transition traces with difference of their control flow.
With respect to this distance metrics, our approach search for a wit-
ness as near as possible to the counterexample. Then we can obtain the
set of control flow predicates with difference assignment in witness and
counterexample. Run this witness-searching algorithm iteratively, we can
then obtain a predicate list with priority. A predicate with higher prior-
ity means that this predicate is more likely the actual error. Experiment
result shows that our approach is highly accurate.1

1 Introduction

Today, model checking is one of the most important formal verification ap-
proaches. It is widely employed to verify software and hardware system. One
of its major advantages in comparison to such method as theorem proving is the
production of a counterexample, which explains how the system violates some
assertion.

However, It is a tedious task to understand the complex counterexamples
generated by model checking complex hardware system. Therefore, how to auto-
matically extract useful information to aid the understanding of counterexample,
is an area of active research.

Many researchers [1,2,4,9] engage in locating errors in counterexample. They
first search for a witness as similar as possible to a counterexample. Starting
from the difference between them, actual error can then be located by perform
a breath-first source code checking.

However, these approaches suffer from a serious problem called ”multiple
nearest witnesses”(MNW). Under certain circumstance, there are multiple near-
est witnesses. Distance between counterexample and these witnesses are of the
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same, and only one of them contains the actual error. Then the first nearest wit-
ness may be far from the actual error. Thus, they need to perform a very deep
breath first code checking and traverse a large fraction of the code, before they
found the actual error. In this way, MNW significantly decrease the accuracy of
error locating.

At the same time, if they meet with a node with large number of fan-in
in breath-first code checking, they will also need to traverse a large number of
nodes. This will also significant decrease the accuracy of error locating.

To overcome these problems, we propose a novel error locating approach that
based on iteratively witness searching, to improve the accuracy of error locating.
We measure the distance between two state transition traces with difference
between assignments to their control flow predicates. With this distance metrics,
we search for a witness as similar as possible to a counterexample. Then the
predicates that take on different assignment can be appended to the tail of a
prioritized list. Run this witness-searching algorithm iteratively, we can then
obtain a prioritized list of predicates. A predicate with higher priority is more
likely the actual error.

The main advantage of our technique is: We use the prioritized predicate list
as the result of error locating, no need to perform breath-first code checking.
Thus, avoid the impaction of MNW and wide fan-in node.

We implement our algorithm in NuSMV[12]. Moreover, it is straightforward
to implement our algorithm for other language such as verilog. The experiment
result shows that our approach is much more accurate than that of [2].

The remainder of the paper is organized as follows. Section 2 presents back-
ground material. Section 3 describes the impaction of MNW and wide fan-in
node. Section 4 presents the algorithm that locates error in counterexample.
Section 5 present experiment result of our approach and compare it to that of
[2]. Section 6 reviews related works. Section 7 concludes with a note on future
work.

2 Preliminaries

2.1 Counterfactual, Distance Metrics, and Causal Dependence

A common intuition to error explanation and error localization is that: successful
executions that closely resemble a faulty run can shed considerable light on
the cause of the error [1,2,4,9]. David Lewis [6] proposes a theory of causality
based on counterfactual, which provides a justification for this intuition. Lewis
holds that a cause is something that makes a difference: if the cause c had not
been, the effect e would not have been. Lewis equates causality to an evaluation
based on distance metrics between possible worlds. We present the definition of
counterfactual and causal dependence below:

Definition 1 (Counterfactual). Assume A and C hold in world W, then coun-
terfactual A�→C hold in world W w.r.t distance metrics d iff there exist a W’
such that:
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1. A and C hold in world W’;
2. For all world W”, if A hold and C not hold, then d(W,W’) < d(W,W”).

Definition 2 (Causal Dependence). If predicate c and e both hold in world
W, then e causally depends on c in world W iff ¬c �→ ¬e.

We express ”e causal depends on c in world w” as following formula:

c(w) ∧ e(w) ∧ ∃w′(¬c(w′) ∧ ¬e(w′) ∧ ∀w”((¬c(w”) ∧ e(w”)) ⇒
(d(w, w′) < d(w, w”)))) (1)

And c(w) means that predicate c is true in world w. e(w) means that predicate
e is true in world w. Formula (1) means that e causally depend on c iff an
execution that remove both c and e are nearer to origin execution , than any
executions that remove c only.

2.2 Pseudo Boolean SAT

Pseudo Boolean SAT(PBS)[14] introduce two types of new constrain into SAT:

1. Pseudo Boolean constraints of the form:
∑

cixi ≤ n, with n, ci ∈ N and
xi ∈ B;

2. Pseudo Boolean optimization goal of the form min(
∑

cixi) and
max(

∑
cixi);

PBS can efficiently handle these two types of constraints alongside CNF
constraints. We use PBS to search for most similar witness.

2.3 Bounded Model Checking, Witness, and Counterexample

Bounded model checking(BMC)[16] is a technique to find bounded-length coun-
terexamples to LTL properties. Recently, BMC has been applied with great
success by formulating it as a SAT instance and solving it with efficient SAT
solvers such as zchaff[20].

General discussion of BMC is fairly complex. So we refer the reader to A.
Biere ’s excellent paper[16] for detail of BMC. For simplicity, we only discuss
invariant properties here.

Given a system with a boolean formula I representing the initial states, a
boolean formula Ti(Xi, Wi, Xi+1) representing the i-step transition relation, and
an invariant with a boolean formula Pk representing the failure states at step k.
the length-k BMC problem is posed as a SAT instance in the following manner:

F = I ∧ Pk ∧
∧

0≤i<k

Ti(Xi, Wi, Xi+1)

For state transition path π with length k,if formula f always hold on it, then
we denote it by π |=k f .

We give our own definition of witness and counterexample below:
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Definition 3 (Bounded Witness). For LTL formula f and bound k, if state
transition trace π |=k f , then we call π the bounded witness of f.

Definition 4 (Counterexample). For LTL formula f and bound k, if state
transition trace π |=k ¬f , then we call π the counterexample of f.

For Definition 3, when the bound k can be deduced from the context, we
omit it and just call it witness.

3 Multiple Nearest Witnesses Effect

Shen[1,2] and A.Groce[4,9] describe error locating approach based on nearest
witness searching. For counterexample C, they search for only one nearest witness
W. Then starting from the difference ∆ between W and C, they perform breath-
first code checking to locate the actual error.

However, when we analysis experiment result of [2], we found that nearest
witness is not unique. For counterexample C, assume the set of all nearest witness
is {Wi|0 ≤ i ≤ n − 1}. And difference between Wi and C is ∆i,distance between
Wi and C is |∆i|. Assume the actual error e belong to only one arbitrary ∆i,
and the witness obtain by [2] is Wj . In most case, i 	= j, that means e /∈ ∆i.
So algorithm of [1,2,4,9] need to perform breath-first code checking to locate the
actual error.

Under certain circumstance, ∆i is far from actual error e. Thus, the breath-
first code checking must search very deeply into the code.

At the same time, if we meet with a node with large number of fan-in in
breath-first code checking, we will also need to traverse a large fraction of the
code.

Until now, this section is full of bad news. But we have a good news now.
While analysis the result of [2], we found that: although the witness Wj obtain
by [2] does not always contain actual error e, but after running witness searching
algorithm iteratively for no more than 4 times, we can always find the actual
error in ∆j .

So we propose the iteratively witness searching algorithm in Sect 4. This
algorithm performs fairly well in practice, and improves significantly compared
to our previous work [1,2].

4 Iteratively Witness Searching Algorithm

We first introduce the overall algorithm flow in Sect 4.1, and then describe every
steps of this algorithm in detail.
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System Spec Formula f

Predicate Extract

BMC

counterexample

Predicate filtering

Witness searching

Generating basic counterexample

Error Locating

Witness Blocking

Fig. 1. Overall flow of our error locating algorithm

4.1 Overall Algorithm Flow

As shown in Figure 1, this algorithm contain 2 phase:

1. Generation of Basic Counterexample: This phase corresponds to tra-
ditional bounded model checking (BMC). Before performing BMC, we need
to extract predicates first. For every control branch, we generate a pred-
icate. This predicate takes on value 1 at its corresponding control branch
only. When BMC generate the basic counterexample, it will also assign arbi-
trary value to these predicates. With these predicates and their assignment,
we can construct the control flow of counterexample.

2. Error Locating: In this phase, we run following three steps iteratively:
a) Witness Searching: searching for a witness Wi as similar as possible

to basic counterexample, and obtain the set of predicates ∆i that take
on different value in counterexample and witness.

b) Predicate Filtering: Eliminating all predicates irrelevant to violation
of LTL formula f from ∆i.

c) Witness Blocking: Preventing Wi from being generated again by fu-
ture iterations.

The iteration in the 2nd phase is the major difference between our approach
and that of [1,2,4,9].

4.2 Predicate Extraction

In Predicate Extraction, we generate predicates for every control branch. This
predicate takes on value 1 at its corresponding control branch only, and value
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A:=
  case
    condition0 : data0;
    condition1 : data1;
    condition2 : data2;
  esac

predicate0:=
  case
    condition0 : 1;
    condition1 : 0;
    condition2 : 0;
  esac

predicate1:=
  case
    condition0 : 0;
    condition1 : 1;
    condition2 : 0;
  esac

predicate2:=
  case
    condition0 : 0;
    condition1 : 0;
    condition2 : 1;
  esac

a)  NuSMV assignment b) 1st predicate c) 2nd predicate d) 3rd predicate

Fig. 2. NuSMV conditional assignment and all extracted predicates

0 at other control branch. Because we implement our algorithm on NuSMV, so
we present example with syntax of NuSMV in Figure 2. It is straightforward to
extend Predicate Extraction to other language.

The conditional assignment statement of Figure 2a contains three control
branches. We insert one predicate for each control branch, as shown in Figure
2b∼2d. Every predicate can take on value 1 at corresponding branch only, as
shown in rectangles.

4.3 Witness Searching

After BMC generate basic counterexample π1, it will assign value to all con-
trol flow predicates extracted in last section. With these predicates and their
assignment, we can construct the control flow of basic counterexample.

In this section, we will present the algorithm that search for nearest witness.
Before that, we must first define Predicate Distance Metrics.

Definition 5 (Predicate Distance). Assume that state transition trace π1
and π2 contain a common predicate set TAG={tag0 ,tag1 ,. . .,tagn }. And as-
signment to TAG in π1 is {tag0 =a0 ,tag1 =a1 ,. . .,tagn =an}. Assignment to
TAG in π2 is {tag0 =b0 ,tag1 =b1 ,. . .,tagn =bn}. Then define distance between
π1 and π2 as:

d(π1, π2) =
n∑

i=0

∆(i)

with ∆(i) =
{

0 ai = bi

1 ai 	= bi

With above definition of distance metrics, we define nearest witness as:

Definition 6 (Nearest Witness). Assume π1 is basic counterexample of LTL
formula f, its bound is k. π2 is nearest witness of π1 iff:

1. π2 is counterexample of π2 |=k ¬f , this means that π2 doesn’t violate formula
f within bound k;

2. d(π1, π2)≥1;
3. For any π2’ that satisfy entry 1 and 2, d(π1, π2)≤d(π1, π2’);
4. For any counterexample π3 of formula f, d(π2,π3)≥1.
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We will now present our witness-searching algorithm with above definition:

Algorithm 1 Nearest Witness Searching Algorithm

1. Run NuSMV command gen ltlspec bmc onepb to generate CNF for assertion
¬f and bound k;

2. According to entry 2 of Definition 6, Encode d(π1,π2)≥1 with PBS inequal-
ity;

3. According to entry 3 of Definition 6, Encode minimization of d(π1,π2) with
optimization goal of PBS;

4. Solve above three constraints with PBS to obtain π2. This will ensure that
π2 is compliant to entry 1, 2 and 3 of Definition 6;

5. Run NuSMV command gen ltlspec bmc onepb to generate CNF for assertion
f and bound k;

6. According to entry 4 of Definition 6, encode d(π2,π3)≤0 with PBS inequality;
7. Solve above two constrains with PBS, and make sure it is UNSATISFIABLE.

This will ensure that π2 is compliant to entry 4 of Definition 6;

With π2 obtain in above algorithm, the set of predicates that take on different
value in counterexample π1 and witness π2 is denoted by:

Error = {tagi|tagi ∈ TAG and ∆(i) 	= 0} (2)

Theorem 1 show that at least one predicate in Error is the cause of ¬f.

Theorem 1. ¬f causally depend on δ(π1) =
∨

tagi∈Error(tagi == ai).

Proof. First,in basic counterexample π1, for all tagi ∈ Error, tagi == ai always
hold. so δ(π1) is true in π1.

Because π1 is a counterexample, so ¬f(π1) is true.
With above conclusion, and replace ∃w’ of (1) with π2, we can reduce (1)

into following formula:

¬δ(π2) ∧ f(π2) ∧ ∀w”((¬δ(w”) ∧ ¬f(w”))
⇒ (d(π1, π2) < d(π1, w”))) (3)

Because for all tagi ∈ Error,∆(i) 	= 0 hold, so obviously ¬δ(π2) is true.
At the same time, because π2 is a witness, so f(π2) is true.
Then we can reduce (3) into following formula:

∀w”((¬δ(w”) ∧ ¬f(w”)) ⇒ (d(π1, π2) < d(π1, w”))) (4)

Prove by contradiction, assume (4) is false, then there exist a w” such that
the following formula hold:

(¬δ(w”) ∧ ¬f(w”)) ∧ (d(π1, π2) ≥ d(π1, w”)) (5)

Because ¬f (w”) and f(π2) both hold, according to entry 4 of Definition 6,
we can deduce that w” and π2 has different assignment to TAG, discuss in two
possible case:
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1. There exist a tag∈Error, such that tag(w”)	=tag(π2), then
tag(w”)==tag(π1) must hold, which contradict with ¬δ(w”);

2. There exist a tag/∈Error, such that tag(w”)	=tag(π2), then tag(w”)	=tag(π1)
and ¬δ(w”) must both hold, this will lead to d(π1,π2)<d(π1,w”), which
contradict with d(π1,π2)≥d(π1,w”).

Therefore, Formula (5) doesn’t hold, and then ¬f must causally depend on
predicate δ(π1) =

∨
tagi∈Error(tagi == ai)

4.4 Predicate Filtering

In Error given by (2), many predicate are irrelevant to the violation of LTL for-
mula f. They are the byproduct of constructing witness π2. We need to perform
a Dynamic Cone of Influence Algorithm to eliminate them from Error.

Let’s first present the definition of Dynamic Dependence Set.

Definition 7 (Dynamic Dependence Set). Assume the conditional assign-
ment statement of variable A is shown in Figure 2a, its i-th condition formula
is Ci , and its i-th data formula is Di , then i-th dynamic dependence set of
variable A is

Dep(A,i)={x|x is a state variable and x is sub-formula of
∧

0≤n≤i−1 ¬Cn or
Ci or Di}

With above definition, we eliminate irrelevant variable with following algo-
rithm.
Algorithm 2 Dynamic Cone of Influence Algorithm

DCOI {
N1:= {all variables of formula f at time frame k }
do{

N1:=DCOIRecur(N1 )
Node:=Node ∪ N1

}until N1==φ
Node is the Dynamic Cone of Influence of formula f

}
DCOIRecur(C ) {

Node:=φ
for each vi∈C {

if (variable vi is not a primary input) {
let the n-th branch predicate of vi is 1 in π1
Node:=Node∪Dep(vi ,n)

}
}
return Node

}

Traditional Static Cone of Influence algorithm will generate a large node set,
which contain all nodes that are connected to formula f with data dependence
path.

Our Dynamic Cone of Influence Algorithm generate a much smaller node set,
which contain only nodes that ACTUALLY affect f in counterexample π1. As
shown in algorithm 2, the bold line state that only Dep(vi ,n) can be added
into Node set.
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Now, assume current iteration is the n-th iteration, after Predicate Filtering,
the set of predicates that are relevant to violation of formula f is:

Rn = {p|p ∈ Error, and ∃n ∈ Node,

such that p is a control predicate of variable n} (6)

After iteratively running the whole algorithm multiple times, we obtain mul-
tiple Rn . Then the union of them ∪Rn form a prioritized list. If n<m, p ∈ Rn

and q ∈ Rm, then priority of p is higher than q. A predicate with higher priority
means that it is more likely the actual error.

4.5 Witness Blocking

To prevent the witness π2 of current iteration from being generated again, we
must add π2 as a blocking constrain into witness searching algorithm.

We use a blocking set MASK to record π2, and modify Algorithm 1 to prevent
π2 from being generated again. Entry 4 of Algorithm 1’ is this new blocking
constrain.
Algorithm 1’ Modified Nearest Witness Searching Algorithm

1. Run NuSMV command gen ltlspec bmc onepb to generate CNF for assertion
¬f and bound k;

2. According to entry 2 of Definition 6, Encode d(π1,π2)≥1 with PBS inequal-
ity;

3. According to entry 3 of Definition 6, Encode minimization of d(π1,π2) with
optimization goal of PBS;

4. For all witness π ∈ MASK, encoding d(π, π2)>0 with PBS inequal-
ity, such that they will not be generated by current iteration;

5. Solve above four constraints with PBS to obtain π2. This will ensure that
π2 is compliant to entry 1, 2 and 3 of Definition 6;

6. Run NuSMV command gen ltlspec bmc onepb to generate CNF for assertion
f and bound k;

7. According to entry 4 of Definition 6, encode d(π2,π3)≤0 with PBS inequality;
8. Solve above two constrains with PBS, and make sure it is UNSATISFIABLE.

This will ensure that π2 is compliant to entry 4 of Definition 6 ;

5 Experiment Result and Analysis

First, we briefly introduce two different score functions for evaluating error lo-
calization techniques in Sect 5.1. One for algorithm of [2] , another for algorithm
of this paper. Next, we present the experiment results and analysis in Sect 5.2
and 5.3.



Localizing Errors in Counterexample with Iteratively Witness Searching 465

5.1 Score Functions for Evaluating Error Localization Techniques

To compare different error locating technique, quantifiable metrics must be built.
We call these metrics as score function. Because our error locating result is
different from that of [1,2,4,9], so our score function is also different from that
of [1,2,4,9]. However, both functions are of the same meaning:

After locate the actual error under guidance of error locating result, how
much percentage of program statements have not being check. Obviously,
a higher score means more accurately error locating.

We first introduce score function of [1,2,4,9]:

Consider a breath-first search of the program dependence graph(PDG)
starting from the set of nodes in the potential error report R. Call R a
layer, BFS0 . Then define BFSn+1 as a set containing BFSn and all
nodes reachable in one direct step in the PDG from BFSn .let BFSk1
be the smallest layer containing at least one error node. Then the score
for algorithm of [2] is 1 − |BFSk1|

|PDG| .

We then describe score function of this paper:

Starting from the head of prioritized predicate list, we check each pred-
icate to determine if it is the actual error. Assume that the actual error
is contained in the result of the n-th iteration Rn ,then ∪1≤i≤nRi is the
minimal set of checked predicates that contain the actual error. Then
the score of our algorithm is 1 − |∪1≤i≤nRi|

|PDG| .

With above two score functions, we can then compare the result of this paper
and that of our previous work [2].

5.2 Experiment Result

The origin gigamax cache coherence protocol [17] is distributed with NuSMV[12].
We convert all its CTL assertions into LTL equivalent version such that we can
check it with BMC package of NuSMV. The property used to detect errors is: G
!(p0.writeable & p1.writeable). This means that it is not possible to make two
caches writeable at the same time.

We insert 10 errors into it. Five of them are data flow errors. The other five
are control flow errors.

The NuSMV source code contains 189 lines. After flatten there are 458 lines
and 41 conditional assignments.

All experiments are performed on Pentium 3 1GHz.
As shown in Table 1, we compare result of this paper and that of [2]. The

third column is the bound of basic counterexample N, so the total number of
conditional assignment statement is 41*N. The 4-th column is the size of smallest
layer containing at least one error node. The 5-th column is score of algorithm
of [2]. the 6-th column is the run time of [2].
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The number of iterations of our algorithm is shown in the 7-th column. Size
of the minimal set of checked predicates that contain the actual error, is shown
in the 8-th column. Score of our algorithm is shown in the 9-th column. the run
time of our algorithm is shown in 10-th column.

Table 1. Experiment result of this paper and that of [2]

error Bound of Result of [2] Result of this paper
Cex |BFSk1| Score(%) Time Num of Iter | ∪1≤i≤n Ri| Score(%) Time

Data D1 6 18 92.7 19.56 3 22 91
flow D2 4 6 96.3 16.72 2 6 96.3
error D3 5 2 99 25.13 1 2 99

D4 5 14 93.1 21.92 3 11 94.6
D5 5 7 96.5 14.25 2 3 98.5 100

Control R1 6 8 96.7 19.22 3 6 97.5
flow R2 5 24 88.3 22.86 3 17 91.7
error R3 6 24 90.2 23.37 2 11 95.5

R4 2 18 78 7.12 2 5 94
R5 5 26 87.3 17.71 2 8 96

5.3 Result Analysis

As shown by Table 1, all score of this paper is higher than 90%. This is signifi-
cantly higher than that of [2]. From Table 1, we can conclude that:

1. All errors that have been accurately located in [2] are also accurately located
in this paper.

2. All errors that are poorly located in [2], such as R2, R3, R4 and R5, are all
accurately located in this paper.

3. All actual error can be located within 3 iterations.

Our new algorithm improve the accuracy of error locating in two aspect:

1. We do not need to perform breath-first code checking any more, so we avoid
the impact of multiple nearest witness, which is describe in Sect 3 in detail;

2. We also avoid the impact of wide fan-in node.

6 Related Work

It is a tedious task to understand the complex counterexamples generated by
model checking complex hardware system. Therefore, how to automatically ex-
tract useful information to aid the understanding of counterexample, is an area
of active research.
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Research works in this field can be divided into 3 categories:

6.1 Counterexample Compaction

These works focus on making the counterexample more succinct.
T.Ball[5] search for all state graph transition edges that only belong to the

counterexample.
Jin,Ravi and Somenzi[3] propose a game-like explanation in which an adver-

sary try to force the system into error. They try to partition a counterexample
into two types of fragments: fate fragment that are unavoidable path leading
to violation of assertion, and free will fragment that can avoid the violation of
assertion.

K.Ravi[3] formulate the extraction of a succinct counterexample as the prob-
lem of finding a minimal assignment that, together with the boolean formula
describing the model, implies the violation of LTL formula.

6.2 Error Locating

Error Locating approach is a much more aggressive form of Counterexample
Compaction. They drop the completeness requirment, and try to find even more
succinct error locating results.

In [1], Shen propose the control predicate distance metrics for the first time,
and present a nearest witness-searching algorithm with this metrics.

In [2] , Shen integer predicate filtering into the framework of [1].
A.Groce[8] generate multiple similar successful and failing versions of a coun-

terexample, and analysis their difference.
A.Groce [4,9] define ”data flow distance” between two paths, and search for a

witness most similar to a counterexample, then analysis their difference to locate
actual error.

G.Fey[11] analysis the counterexample of equivalence checking, and gener-
ate multiple similar counterexample, then locate the actual error by analysis
commonness of these counterexample.

6.3 Annotate Counterexample with Proof

Several researchers also try to explain non-linear counterexample and witness
with annotated proof steps.

M.Chechik[13] generate proof for non-linear counterexample of ACTL, and
then extend their approach to deal with fairness condition.

D. Peled[15] generate proof for witness of LTL formula.
K. Namjoshi[19] concentrate on generating a proof of validity for a run of

global µ-calculus model checker.
Tan [18] extend Namjoshi’s work to local model checking.
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7 Conclusions

It is a tedious task to manually analysis counterexample of complex hardware
system. We have shown how to locate the bug in counterexample generated by
bounded model checker. Experiment result show that our approach is highly
accurate.

Our current implementation is based on NuSMV. However, our techniques
are quite general and we are porting it to Verilog.

To locate bug more accurate, we are considering using multiple assertions to
locate the bug instead of ”one assertion” debugging approach of this paper.

We are also considering locating bug in loop-like counterexample of liveness
property.

Finally, due to the computation complexity of PBS,it is infeasible to di-
rectly locate error in large-scale concrete model, so we are considering impose
abstract/refine approach into our witness searching algorithm.
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