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Abstract  

Inspired by the hypothesis that diversity of research might decline as a result of new science policy measures 
(e.g., evaluation-based funding), we seek to explore bibliometric methods to analyse the structure of research 
landscapes. The task is to make quantitative changes in the diversity of research landscapes measurable and 
therefore comparable in time series as well as between different countries.  

1. Introduction  

We are currently observing an increasing interest in the diversity of science, which is considered to be 
under threat by science policy’s search for excellence. The dominant strategy for achieving excellence 
is to concentrate funding on the best performers. This strategy implies that fewer units will be funded 
in each field, which is likely to diminish diversity (Adams [1]).1 At a more subtle level, diversity is 
threatened by the adaptive behavior of scientists. Whenever science policy increases punishment for 
failure, e.g. via reduced funding, researchers are likely to choose projects that are safe in that they are 
approved of by the scientific community and have a high probability of success. Such safe projects 
follow the mainstream of a field and use approaches that are known to yield results.  
 These arguments, albeit persuasive, lack empirical foundation. No convincing measurement of 
research diversity has so far been provided. Empirical studies on the impact of the British Research 
Assessment Exercise (RAE) on the diversity of economic research report that in the opinions of 
researchers there is a homogenisation (Harley [2]). These opinions, while suggestive, cannot be 
regarded as reliable evidence for two reasons. Firstly, perceptions of a changing diversity depend on 
scientists’ individual scientific perspectives and their opinions about science policy. They may 
therefore be biased. Secondly, quality and marginality of a scientific enterprise are often inseparable. 
Nonconformist approaches might be perceived as bad science by the majority. Conversely, scientists 
might rationalise insufficient recognition of their work as being due to the specificity rather than 
quality of their work.  
                                                     
1 Cf. also J. Molas-Gallart, A. Salter, Diversity and excellence: considerations on research policy, IPTS Report, 2002, Vol: 
66. Available online:  http://www.jrc.es/pages/iptsreport/vol66/english/ITP1E666.html 



 In order to test the ‘homogenisation thesis’ described above, we need measures of diversity that do 
not depend on the perception of scientists. Bibliometric indicators can be used to construct these 
measures because they are unobtrusive and objective, i.e. they neither affect the behaviour they 
measure nor depend on scientists’ opinions about the attribute that is measured. To our knowledge, the 
first one to propose a bibliometric approach to measuring diversity was Hariolf Grupp [3]. We follow 
the proposal by Jonathan Adams (University of Leeds) at the 8th Science and Technology Indicators 
Conference in Leiden 2004 to use the concept of diversity developed in ecological research as a 
starting point for the analysis of the diversity of science. However, because of the inseparability of 
marginality and quality we are reluctant to use impact indicators in the measurement of diversity, as he 
has proposed.   
 This paper reports the results of a feasibility study that uses measures of diversity commonly used in 
biodiversity research and applies standard techniques (co-citation cluster analysis) to a field that shows 
relatively clear natural boundaries, namely Electrochemistry. The aim of this study is to establish if 
co-citation clusters and the publications citing these clusters can be identified with reasonable 
efficiency using ISI’s Science Citation Index on CD-Rom, and how time horizons must be defined in 
an analysis of the dynamics of diversity. In addition to the results presented we briefly discuss other 
methods to detect structures of research fields. 

2. Approach 

2.1. The concept of diversity  

The concept of ‘diversity’ has rarely been used in science studies and has not yet been defined with 
sufficient rigour. In order to investigate the political concerns described in the introduction, we apply 
the concept to scientific fields, which we regard as consisting of several approaches. Approaches may 
be concerned with the application of a specific method, the investigation of a specific object, the 
application of a specific theory, or any combination of the previous. They may be complementary 
(indifferent or symbiotic), or they may contradict each other. 
 We would intuitively consider a scientific field that consists of more approaches as being more 
diverse. The political concerns address precisely this question. Does the number of different 
approaches in scientific fields reduce because scientists respond to science policy interventions by 
switching to the mainstream? 
 In order to proceed from the intuitive understanding of diversity to a more definitive and measurable 
understanding we can draw on the research on biodiversity. In this research, the concept of diversity is 
usually linked to “the variety and abundance of species in a defined unit of study” (Magurran [4], see 
also Gaston [5]). From this follows that biodiversity is characterised by two basic measures. The 
oldest and most intuitive measure of biological diversity is simply the number of species in the unit of 
study or “species richness” (Magurran [4]). The ‘evenness’ of a unit describes the variability of 
species abundance. These measures can be combined in a ‘diversity index’, i.e. in “a single statistic 
that incorporates information on richness and evenness” (Magurran [4]). Among the various diversity 
measures, the Shannon index is one of the most enduring (Magurran [4]).  
 For the purpose of this study, we identify the approaches in a scientific field as ‘research fronts’, i.e. 
as a group of papers that refers to the same co-citation cluster. These research fronts can be regarded 
as ‘species’ in the units we analyse (the fields at the international and national levels). Research 
articles belonging to a research front can be regarded as the individuals belonging to a species. 
 Applying the ideas of biodiversity research, we will consider two measures of diversity, namely 
‘species richness’, i.e. the number of research fronts, as the simplest measure of diversity, and the 
Shannon index (entropy) as a synthetic measure of ‘research front richness’ and ‘evenness’.  
 Since we want to explore the suitability of bibliometric indicators for measuring the diversity of a 
country’s research base as it develops over time, and since a country’s research base is an inseparable 



part of international science, relative measures are needed that relate the national diversity to the 
diversity of the international scientific field. Assessing the diversity of a research field thus requires 
the delineation of fields at both the international and the national level. The field level is important 
because diversity is assumed to affect the production of knowledge, which takes place in smaller 
collectivities (international scientific specialties). However, field delineation is one of the most 
difficult tasks, and is currently regarded as unsolved in bibliometrics (van Raan [6]). The major 
methodological problem is that due to the overlap of fields and the skewed distribution of participation 
by scientists, bibliometric indicators don’t produce visible boundaries (Noyons & van Raan [7]).  
 Therefore, new methods for delineating fields need to be explored. However, the delineation of 
fields does not produce a major obstacle in this project. Since we are looking for a relative measure of 
diversity, any error in field delineation that affects the international level and the national level in the 
same way will not distort the measurement of diversity. Adverse effects can be expected only in the 
extent to which part of a country’s research is not at all published in journals that can be identified as 
belonging to a field at the international level. Since our study was focused on the feasibility of 
diversity measures, we selected a field that shows relatively clear natural boundaries, namely 
Electrochemistry. By choosing such a field, the issue of delineation can be circumvented, and the 
suitability of measures of diversity can be explored. 
 A second task that follows from our approach is the identification of ‘species’, i.e. research fronts, 
which need to be applied at both international and national levels. A first candidate for this 
measurement is co-citation analysis, with highly cited and highly co-cited papers being defined as a set 
of scientific works to which research orients over a longer period of time and which therefore can be 
assumed to constitute a distinct approach or perspective. The number of distinguishable co-citation 
clusters can be assumed to be an indicator of diversity at the level of international fields, and the 
number of those clusters to which a national sub-field contributes can be assumed to be a measure of 
national diversity. Both measures have to be constructed in such a way that diversity can be measured 
in a short period of time, thus enabling a dynamic analysis of the development of diversity over time.  

2.2.  Database  

We built a database with all 4522 records (articles, reviews etc.) from 14 journals in Electrochemistry 
from the SCI 1998. The Electrochemistry journals were selected from three sources: (1) Leydesdorff’s 
cluster analysis of SCI journals,2 (2) a search in Web of Science (WoS) with string electroch* or 
elektroch*,3 and (3) the ISI journal list.4 The three lists were then matched with the SCI 1998. The 
records were drawn from CD-ROM edition of SCI 1998. The journals selected and their record 
numbers can be seen in Table 1. We found 4257 articles, 62 letters, and no notes in this dataset, all 
together there were 4319 so-called research papers, of which 110 were without references. 

2.3. Methods 

We first performed a co-citation cluster analysis by means of a single linkage cluster routine, which is 
scalable for large datasets and can be applied in combination with any proximity measure. We 
constituted so-called research fronts by projecting the co-citation clusters to the current level. After 
that we measured the distribution of research fronts by the Shannon entropy formula and calculated 
the contributions of six countries to this distribution and then measured the diversity of these 
countries’ research landscapes. 
                                                     
2 http://users.fmg.uva.nl/lleydesdorff/jcr01/c55.htm, retrieved 2004-12-9 
3 http://isi1.isiknowledge.com, retrieved 2004-12-9 
4 http://sunweb.isinet.com/cgi-bin/jrnlst/jlresults.cgi? PC=K&SC=HQ, retrieved 2004-12-9 



Table 1:  Numbers of records in SCI 1998 of 14 journals in Electrochemistry and numbers of their research 
papers (SCI document types article, letter, note) 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We chose the well-known Salton’s Cosine as similarity measure to normalise the raw co-citation 
counts in order to balance highly cited papers and less highly cited papers. As purported in the recent 
debate in JASIST, the other standard measure for interval scaled data, the often used Pearson’s r, 
implies certain theoretical problems. Since it measures the amount to which a linear function exists 
between two variables, it should only be applied to datasets that are normally distributed, whereas 
bibliometric data are skewed. Apart from this formal objection, it can be argued that it is more 
adequate to measure similarity by normalising the exact co-citation count than measuring the existence 
of a linear relationship.  
 Leydesdorff & Bensman [8] showed that the logarithmic transformation, which is often suggested to 
make the data conform to the requirement of normality, reduces the variance and therefore must be 
considered as inappropriate for any classificatory purpose. Besides, Ahlgren et al. [9] showed that 
Pearson’s r behaves in an inadequate manner in the case of adding zeros – which means a situation in 
which another dataset is added to an existing dataset with no correlations between them. 
 We started with a combination of an integer citation threshold, a fractional citation threshold and the 
cosine-normalised co-citation threshold. However, it was impossible to achieve an adequate coverage 
using three thresholds. Former studies like the one of van Raan [10] and the studies performed by 
Small & Sweeney [11] that use such a combination of thresholds only cluster a small amount of highly 
cited and co-cited papers, whereas we considered it to be problematic to statistically evaluate such 
small data distributions especially when applied to a field level. 
 So we affixed the citation count at c > 1 and focused on the co-citation threshold, that was gradually 
increased. Peaks in the increase of the number of clusters and in the parallel decrease of the coverage 

JOURNAL RECORDS RESEARCH PAPERS 

Bioelectrochemistry and Bioenergetics 129 122 

Chemical Vapor Deposition 51 37 

Corrosion Science 151 146 

Electroanalysis 245 236 

Electroanalytical Chemistry 4 0 

Electrochimica Acta  551 536 

Journal of Applied Electrochemistry 147 144 

Journal of Electroanalytical Chemistry 706 693 

Journal of Power Sources 446 437 

Journal of the Electrochemical Society 735 711 

Plating and Surface Finishing 217 136 

Russian Journal of Electrochemistry 239 228 

Sensors and Actuators B - Chemical 333 331 

Solid State Ionics 568 562 

Sum 4522 4319 



were used to fix a cluster distribution. The co-citation clusters were projected onto the current level of 
the SCI 1998 edition. We chose to set the very simple condition that articles have to cite at least one 
reference from a co-citation cluster. Every article that is part of a research front is bibliographically 
coupled with at least one other article in that research front. 
 Additionally, we contribute to a high coverage with our decision to include research fronts of those 
references that have been cited at least two times but haven’t been clustered at the chosen co-citation 
threshold. This was done in order to reflect more adequately the current research landscape – we 
wanted to complement those research fronts whose development reaches back in time by those which 
evolve in the present and therefore can’t be reflected in co-citation clusters. So, essentially we use a 
combination of co-citation and bibliographic coupling. 

 Our approach allows overlapping research fronts. As Jarneving [12] mentions, one can regard the 
research fronts that are not disjoint as bibliographically coupled on a higher level, but in order to 
measure the diversity of the field it is not possible to incorporate group memberships on different 
levels. If we simply counted articles several times when they are part of several research fronts (as 
Jarneving does), the proportion of articles in research fronts to the total amount and to the ones that are 
not in research fronts would be biased. So, we decided to assign these overlapping articles fractionally 
to the research fronts. This means, that if an article cites two clusters, the value of 1/2 would be 
assigned to both research fronts, respectively.  

 To measure the diversity of the research landscape of electrochemistry on a global level the number 
of research fronts was counted, and the entropy formula was applied to the distribution of research 
fronts and the small amount of residual articles. The latter are not part of research fronts because they 
are not bibliographically coupled, as none of their references are cited more than one time. We 
consider them as singular works that don’t have any connections to other research fields. We compare 
the entropy H = − Σ pi log pi, where pi = ni / n and n = Σ ni, to the maximum entropy Hmax =  log n, 
which corresponds to the case of  n unclustered entities (ni = 1, for all i ).   

 We chose six countries – USA, Japan, France, United Kingdom, Germany and Russia – and 
calculated the contributions of these six countries to the whole set of electrochemical papers in 1998 
and the contributions to the research fronts respectively. We assigned an article to a country according 
to the nationality of at least one of its authors. To these distributions forming the national research 
landscapes the entropy formula was applied again.  

 The processing of the data was done by means of perl scripts and in addition the network analysis 
tool Pajek was used for clustering and visualization of the cluster distributions. 

3. Results 

Table 2 shows the cluster distributions that form at different threshold levels. While the citation 
threshold remains stable at c > 1, the Salton-normalised co-citation threshold S is increased from S > 
0.1 to S > 0.9. 

 For co-citation thresholds beneath 0.6 the single linkage clustering produces cluster distributions that 
are massively dominated by one macro cluster. However, we seek to determine a cluster distribution, 
which is comparatively the most appropriate one.  

 Between S > 0.4 and S > 0.5, there is a massive decrease in the amount of references that are 
clustered, whereas at the same time a lot of small clusters emerge. Due to the fact that 0.5 is the result 
of the normalization of the co-citation count 1 of two articles whose simple citation counts are both 
two – which is a very common combination – a lot of co-citation connections drop out at level > 0.5. 
So we choose the cluster distributions right before that peak (> 0.4 and ≥ 0.5) as a basis for calculating 
the research fronts. We also calculate the entropy for these cluster distributions, based on the total 
amount of all references that are cited at least twice, as indicator for the equivalent entropy values at 
the research fronts level. Fig. 1 shows entropy values of reference cluster distributions for different 
levels. Note the leaps between value 0.4 and 0.41 and between ≥ 0.5 (lower value) and > 0.5. 



Figure 1: Entropy values of reference cluster distributions for different thresholds  

 
 
Table 2: Distributions of co-citation clusters 

CO-CITATION 

LEVEL 

NUMBER OF 

CLUSTERS 

REFERENCES 

IN CLUSTERS 

BIGGEST 

CLUSTER 

SINGLE 

REFERENCES 

Hc 

 

Hc/Hc max 

 

> 0.1 18 12723 12 644 29 0.078 0.01 

> 0.2 18 12723 12 644 29 0.078 0.01 

> 0.3 20 12705 12 618 47 0.098 0.01 

> 0.4 31 12544 12 421 208 0.256 0.03 

≥ 0.5 126 11867 11413 885 1.037 0.11 

> 0.5 990 8960 2630 3792 6.536 0.69 

> 0.6 1262 8209 144 4543 7.841 0.83 

> 0.7 1379 7385 73 1379 8.230 0.87 

> 0.8 1435 6198 48 1435 8.626 0.91 

> 0.9 1226 3869 25 1226 9.088 0.96 



Figure 2: Size-frequency distribution of research fronts at the co-citation level S > 0.4 and S ≥ 0.5, respectively. 

 
For  S > 0.4 we get  239 research fronts which comprise 3865 articles (89% of the total number of 
4319 articles); the entropy of this distribution is 2.284 and Hr/Hr max = 0.32.  

 For  S ≥ 0.5  the number of articles in research fronts is the same, but they are now dispersed over 
1011 research fronts, H = 4.096 and Hr/Hr max = 0.49.  

 In comparison to the cluster distributions the macro cluster that emerges at the level of research 
fronts is smaller in relation to the total number of clustered references. Whereas it then comprised 
nearly the whole number of clustered references, the macro cluster at the research fronts’ level consists 
of 58 % (≥ 0.5) and 81% (> 0.4) respectively. Figures 2 and 3 show that – apart from the macro cluster 
– the research front log-size distribution is rather symmetric. 

 As there are a lot more research fronts at the level ≥ 0.5, the amount of very small entities is also 
larger, as Figure 2 shows. We consider the distribution to be too fragmented to give a plausible 
representation of a single field. So, we prefer to continue with the research fronts distribution at the 
threshold S > 0.4, to which the contributions of six countries are calculated. 
Table 3: Distributions of research fronts of six countries  

  ALL ARTICLES  

OF THE COUNTRY 

NUMBER OF  

RESEARCH FRONTS 

ARTICLES IN 

RESEARCH FRONTS 

Hr 

 

USA 763 114 670 2.061 

Germany 393 80 345 1.901 

Russia 320 48 271 1.899 

Japan 658 105 597 1.866 

France 356 81 333 1.737 

UK 245 56 226 1.568 

 
 The USA being the country with the biggest output on research articles also has the most diverse 
research landscape according to both measures. The table shows that apart from the first rank, the two 
measures lead to different judgements of the diversities. For example, Japan has the second largest 
number of articles and ranks second according to its number of research fronts, but ranks only fourth 



in the diversity measurement with the Shannon index, while Russia has the smallest number of 
research fronts but ranks third according to the Shannon index 

4. Discussion 

This first attempt to measure the diversity of a scientific field has yielded both methodological and 
conceptual results. Firstly, several methodological points can be made. The single linkage cluster 
algorithm has proven to us to yield rather unsatisfying results. In all likelihood conditions the 
dominating macro cluster is a result of the chaining tendency of single linkage. As possible subsets 
that evolve from a common source cannot be identified by this algorithm as long as the source concept 
is still co-cited with more recent articles, single linkage clustering tends to produce large clusters that 
might conceal relevant substructures. In former studies that included the use of single linkage (Small 
& Sweeney [11]; van Raan [10], Jarneving [12]) maximal or minimal sizes are applied to level the 
extremely skewed distributions, but we consider this problematic as it is impossible to justify concrete 
size limitations on a theoretical basis.  

 The process of projecting the co-citation clusters to the current level actually flattens the distribution 
– the size of the macro cluster to the number of all clustered items is decreased in proportion to the 
cluster distribution – and by means of the additional application of bibliographic coupling the number 
of clusters is increased, too. But nevertheless, single linkage clustering should not be applied as a basic 
method, anymore. 

 We consider it to be a promising option to completely replace the co-citation method by 
bibliographic coupling. Jarneving [12] works out that structural differences scarcely exist between 
research fronts that are based on co-citation and those that are based on bibliographic coupling. 
Nevertheless, the process of projecting the co-citation clusters onto the current level imposes 
methodical difficulties in dealing with overlapping research fronts which can be circumvented by 
using bibliographic coupling as a single procedure. 

  As for alternative cluster algorithms we believe that the cluster definition of complete linkage is too 
strict to be feasible for citation data. An adequate model must imply uncitedness of relevant articles. 
The agglomerative-hierarchical average linkage can be applied well in combination with the cosine 
measure and is less strict than complete linkage, but more effective than single linkage. Radicchi et al. 
[13] and Newman [14] proposed interesting new graph analytical algorithms that are scalable 
especially for large datasets. Both are inspired by the Girvan-Newman-algorithm.  

 There is also possibly room for improvement in the constitution of the dataset. We could constitute 
the dataset by a search of title words of articles instead of first defining the journals that make up a 
field and then selecting all articles published in these journals. This approach may be more exact as 
according to Bradford’s Law of Scattering, articles relevant to a certain field are not strictly confined 
to the journals of that field.    

 A second set of problems refers to the interpretation of the measures of diversity applied. The 
discrepancies between the two measures – number of research fronts and Shannon index – clearly 
demonstrate that great care is required in the definition and measurement of diversity. The number of 
research fronts is easier to interpret but neglects the distribution of research effort across research 
fronts. The Shannon index includes this information. However, the respective contributions of the 
number of research fronts and the distribution of articles across research fronts is difficult to evaluate.  

 Furthermore, diversity and size of a research profile do not seem to correlate directly when diversity 
is measured by the Shannon index, while the link is somewhat stronger when diversity is measured by 
the number of research fronts.  
 Finally, since the ultimate aim of measuring the diversity of research is to compare either the 
diversity of national fields or the diversity of one country’s field at different points in time, it is 
essential to assess the differences between numbers of research fronts respectively Hi or H(ti). Table 3 



cannot yet be interpreted in a policy context because it is not possible to establish which of the two 
measures (if any) is valid, and which of the differences are significant.  

5. Conclusions 

In order to measure the diversity of a country’s research, fields must be delineated at the international 
and national levels, approaches within fields must be identified, and the distribution of research efforts 
across approaches must be measured. The feasibility study has demonstrated that a bibliometric 
approach to research diversity can solve these problems and is therefore a promising instrument for 
studies of scientific diversity. The limits of single linkage co-citation clustering that have been 
revealed warrant the search for alternative methods.  Another problem that will return to the agenda 
when fields with less clear natural boundaries are going to be investigated is the methodology of field 
delineation. Finally, the study has demonstrated that a better understanding of measures of research 
diversity is necessary, which includes the test of other measures of diversity proposed in the 
biodiversity literature. Since the possibility of an unobtrusive objective measurement of diversity has 
been confirmed in principle, all these tasks appear to be worthwhile. 
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