
A Fast Counterexample Minimization Approach with Refutation Analysis
and Incremental SAT

Abstract－ It is a hotly research topic to eliminate irrelevant
variables from counterexample, to make it easier to be
understood. BFL algorithm is the most effective
Counterexample minimization algorithm compared to all other
approaches, but its run time overhead is very large due to one
call to SAT solver per candidate variable to be eliminated. So
we propose a faster counterexample minimization algorithm
based on refutation analysis and incremental SAT. First, for
every UNSAT instance of BFL, we perform refutation analysis
to extract the set of variables that lead to UNSAT, all variables
not belong to this set can be eliminated simultaneously. In this
way, we can eliminate many variables with only one call to SAT
solver. At the same time, we employ incremental SAT approach
to share learned clauses between similar instances of BFL, to
prevent overlapped state space from being searched repeatedly.
Theoretic analysis and experiment result shows that, our
approach can be 1 to 2 orders of magnitude faster than BFL,
and still retain the minimization ability of BFL.1

I. INTRODUCTION
Model checking technology is widely employed to verify

software and hardware system. One of its major advantages
in comparison to such method as theorem proving is the
production of a counterexample, which explains how the
system violates some assertion.

However, it is a tedious task to understand the complex
counterexamples generated by model checker. Therefore,
how to automatically extract useful information to aid the
understanding of counterexample, is an area of active
research[1][2].

If we can extract a subset of variables that are sufficient to
lead to counterexample, then these variables can express a
large number of counterexamples, not just the individual one
generated by model checker. In the remainder of this paper,
we call this variable subset as minimization set, and call the
process that extract minimization set as counterexample
minimization.

1

K Ravi[1] proposes a counterexample minimization
algorithm called Brute Force Lifting algorithm (BFL). For
every free variable v, BFL constructs a SAT instance SAT(v),
to determine if v can prevent the counterexample. If SAT(v)
is UNSAT, then v is irrelevant to counterexample, and can be
eliminated. K Ravi compares BFL with other
counterexample minimization approaches, and concludes
that BFL is the most efficient one, it can often eliminate up
to 70% free variables. However, the time complexity of BFL
is much more higher than other existing approaches due to
the following reasons:
1 It need one call to SAT solver per candidate variable to

be eliminated;
2 It can’t share learned clause between similar SAT

instances, so overlapped state space may be searched
repeatedly.

Accordingly, the key to reduce time overhead of BFL are:
1 Eliminate multiple variables after every call to SAT

solver;
2 Share learned clauses between similar SAT instances, to

avoid searching overlapped state space repeatedly.
Therefore, we propose a faster counterexample

minimization approach in this paper, which employ
refutation analysis for all UNSAT instances to extract all
relevant variables and eliminate all irrelevant variables. At
the same time, our approach employs incremental SAT to
share learned clauses between similar instances.

We implement our algorithm based on zchaff [5] and
NuSMV[4], and perform experiment on ISCAS89
benchmark suite[6]. Experiment result shows that, our
approach can be 1 to 2 orders of magnitude faster than BFL
algorithm and with minor lost in its minimization ability.
The remainder of this paper is organized as follows. Section
II presents background material. Section III presents the
refutation analysis algorithm. Section IV presents the
incremental SAT approach. Section V present experiment
result of our approach and compare it to that of BFL [1].
Section VI reviews related works. Section VII concludes
with a note on future work.

II. PRELIMINARIES
A. Bounded Model Checking

We first define the Kripke structure:

Definition 1 Kripke structure is a tuple M=(S, I, W, T, A,
L), with a finite set of states S, the set of initial states I⊆S,
the input variable set W, transition relation between states

Shengyu Shen
School of Computer

Science, National
University of Defense

Technology
ChangSha, China 410073
Tel : +86 0731 4576143
Fax : +86 0731 4511529

Ying Qin
School of Computer

Science, National
University of Defense

Technology
ChangSha, China 410073
Tel : +86 0731 4573681
Fax : +86 0731 4511529

SiKun Li
School of Computer

Science, National
University of Defense

Technology
ChangSha, China 410073
Tel : +86 0731 4575981
Fax : +86 0731 4511529

 451

5C-4s

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

T:S×W×S→{0,1}, and the labeling of the states L:S→2A with
atomic propositions set A.

Bounded Model Checking (BMC)[3] is a model checking
technology that consider only limited length path. We call
this length as the bound of path. We denote the state of the
i-th and (i+1)-th cycle as Si and Si+1, and transition relation
between them as Ti(Si,Wi,Si+1), with input variable set of i-th
cycle denoted by Wi.

Let the safety assertion under verification be ASSERT, the
goal of BMC is to find a state S that violate ASSERT, that is
to say, ¬ASSERT∈L(S). Lets denote ¬ASSERT as P.

Let P at i-th cycle as Pi ,then BMC problem can be
expressed as:

),,(10ki0 +<≤<≤
∧∧∧¬∧∧= iiiikiki SWSTPPIF (1)

Reduce equation (1) into SAT instance, and solve it with
SAT solver, then a counterexample can be found if it exists.

B. BFL Algorithm and its Shortcoming

BFL algorithm proposed by K Ravi[1] can eliminate much
more free variables than all existing algorithm, often up to
70% free variables can be eliminated.

We give some terminology below:

Definition 2: Assume the bound of counterexample is k, and
denote the set of free variables as UU ki iWIFree

<≤
=

0
.

The assignment to variable v in counterexample is denoted
by Assign(v), the assignment to variable set V in
counterexample is denoted by Assign(V)={Assign(v)|v∈V}.

Obviously, the set Free includes input variables at all
cycles and initial state variables.

For a free variable v∈Free, v is an irrelevant variable if
and only if the following statement hold true: “no matter
what value do v take on, it can’t prevent the counterexample
from happen. That is to say, it can’t prevent Pk of equation
(1) from equal to 1“. Formal definition of irrelevant variable
is given below:

Definition 3 Irrelevant Variable: for v∈Free, v is an
irrelevant variable iff:
¬ ∃c∈{0,1}.[[M]]k ∧ (v⇐c) ∧A∧¬Pk (2)

where A=(Free−{v}⇐ Assign(Free−{v}))
and [[M]]k=∧0≤i<kTi(Si,Wi,Si+1)

Convert equation (2) into SAT instance, then v is
irrelevant variable iff this SAT instance is Unsatisfiable.

Thus, the BFL algorithm that extracts minimization set
from counterexample is show below:

Algorithm 1:BFL Algorithm
1 F″ =[[M]]k ∧ ¬Pk
2 foreach v∈Free

a) F’=F″∧(Free−{v}⇐Assign(Free−{v}))
b) if(SAT_Solve(F′)==UNSAT)

i. Free= Free−{v}
3 Free is the minimization set

To make it more distinct, we give the following 2
definitions:

Definition 4 Model Clause Set: all clauses generated from
F″ in step 2a) of algorithm 1.

Definition 5 Assignment Clause Set: all clauses generated
from (Free−{v} ⇐ Assign(Free−{v})) in step 2a) of
algorithm 1.

We call the former as model clause set, because F″
represent inverted model checking problem of equation (1).
We call the latter as assignment clause set because they are
used for assigning to all variables their value in
counterexample, except v. For every v’ ∈ Free−{v}, its
assignment clause contain only one literal. If Assign(v’)==1,
then assignment clause of v’ is {v’}, otherwise it is {¬v’}.
SAT solver will assign these values to them by BCP when
solving this instance.

III. COUNTEREXAMPLE MINIMIZATION WITH
REFUTATION ANALYSIS

In this section, we first describe the overall algorithm flow
in subsection A, and then describe the most important part –
refutation analysis in subsection B. We will prove its
correctness in subsection C.

A. Overall algorithm flow

BFL algorithm can eliminate much more variables than all
existing algorithm, but its time overhead is too high.
Therefore, it is very important to reduce its timing overhead.

Overall flow of our algorithm is show by algorithm 2:

Algorithm 2 BFL algorithm with refutation analysis
1 F″=[[M]]k ∧ ¬Pk
2 foreach v∈Free

a) F’=F″∧(Free−{v}⇐Assign(Free−{v}))
b) if(SAT_Solve(F’)==UNSAT)

i. R”=Refutation_Analysis()
ii. Free=Free ∩R”

3 Free is the minimization set

Compare it to algorithm 1, step 2b) of algorithm 2 are
newly inserted steps, which is highlighted with bold font. In
step 2b)i, we perform refutation analysis to extract the
variables set R” that lead to UNSAT. And then in step 2b)ii,
we eliminate all variable not belong to R”.

B. Refutation Analysis

As stated by last subsection, we perform refutation
analysis to extract the variable set R” that lead to UNSAT.

For a SAT instance F’, we denote its model clause set by
F”, and its assignment clause set by A. After SAT solver
finished running, denote its learned clause set as C.

If result of F’ is UNSAT, then there must be a conflict
clause at decision level 0, we denote it by c. Because the
decision level is 0, so there are no decided variables, any
variables can only take on their value by implication.

Staring from clause c, we can traverse the implicate graph
in reverse direction, to obtain the set of origin clauses S that
lead to conflict.

We denote the assignment clauses in S by S∩A, then the
set of variable that lead to UNSAT is R”={v|
{v}∈S∩A}∪{v| {¬v}∈S∩A}.

Now we present the refutation analysis algorithm below,
the correctness proof will be given in next subsection.

 Algorithm 3 Refutation Analysis
1 set S=φ;
2 queue Q=φ;

 452

3 foreach literal l∈c
a) push antecedent clause of l into Q

4 while(Q is not empty)
b) cls=pop first clause from Q
c) if(cls is a unit clause)

i. S=S+{cls}
ii. If(cls is a learned unit clause) return R=Free-{v}

d) else
i. foreach literal l∈cls

1. assume ante is antecedent clause of l
2. if(ante has not being visited)

a) push ante into Q
b) mark ante as visited

5 R”={v|{v}∈S∩A}∪{v|{¬v}∈S∩A} are variables lead to
UNSAT

There is a special case in step 4b)ii, when cls is a learned
unit clause, we can’t backtrack further because the SAT
solver has not record the clauses involved in resolution to
construct cls. In this case, we abandon the effort to extract
R”, and simply return R”=Free-{v}. This means that we can
eliminate only one variable v in this case.

Fortunately, we have not met with this special case in
experiments. I suspect that this is because of the 1UIP
conflict learning mechanism, which never generate learned
unit clause.

C. Correctness Proof

We prove the correctness of algorithm 2 and 3 with
following theorem:

Theorem 1: F”∧∧cls∈Scls is an Unsatisfiable clause subset
of F’

Proof: it is obvious that F”∧∧cls∈Scls is a clause subset of F’,
so we only need to prove that it is Unsatisfiable.

Assume C’⊆C is the set of learned clauses met with by
algorithm 3 while traversing implication graph. Thus,
F”∧∧cls∈Scls∧∧cls∈C’cls is Unsatisfiable. Then if we can
remove ∧cls∈C’cls from it, and still retain its unsatisfiability?

For every learned clause cls∈C’, assume NU(cls) and
U(cls) are non-unit clauses set and unit clauses set that
involved in resolution to construct cls.

It is obvious that NU(cls)∈F”. And according to [8], unit
clauses never involve in resolution, so U(cls) is empty set.
So we can remove ∧cls∈C’cls from F”∧∧cls∈Scls∧∧cls∈C’cls,
and still retain its unsatisfiability

Thus this theorem is proven. �

Theorem 2: F”∧∧v’∈R”(v⇐Assign(v’)) is an Unsatisfiable
clause subset of F’

Proof: it is obvious that F”∧∧v’∈R”(v⇐Assign(v’)) is an
clause subset of F’. Thus we only need to prove that
F”∧∧v’∈R”(v⇐Assign(v’)) is Unsatisfiable.

According to algorithm 3, ∧v’∈R”(v⇐Assign(v’)) is equal to
∧cls∈S∩Acls. So we only need to prove that F”∧∧cls∈S∩Acls is
Unsatisfiable.

According to theorem 1, F”∧∧cls∈Scls is Unsatisfiable,
which can be rewritten as F”∧∧cls∈S∩Acls∧∧ cls∈S-A-F”cls.

Lets discuss it in two aspects:
1 If S-A-F” is empty set, then F”∧∧cls∈S∩Acls is

Unsatisfiable
2 Otherwise, S-A-F” isn’t empty set. In this case,

algorithm 3 will meet with a learned unit clause.

According to step 4b)ii of algorithm 3, it will abandon
the effort to extract R”, and eliminate only one variable
v. In the case, F”∧∧cls∈S∩Acls is Unsatisfiable

Thus this theorem is proven. �

D. Complexity Analysis

We know that the space overhead of refutation analysis
mainly reside in set S and queue Q. Lets analyze as below:

 We add a tag to each clause in clause database of SAT
solver, to indicate that if this clause belongs to set S.
Therefore, space overhead of S is linear to size of clause
database.

 For queue Q, it may contain learned clauses. Because
conflict analysis algorithm of SAT solver also need to
perform similar implicate graph traversing, so space
overhead due to Q is not larger than that of SAT solver.

Next, let’s analyze the time complexity of our algorithm.
In algorithm 3, the most complex part is the if statement in

step 4c)i2. For every clause that has been in Q, this if
statement will be run once. Because the size of Q is much
smaller than clause database, so time overhead of algorithm
3 is much smaller than that of SAT solver.

In algorithm 2, one call to refutation analysis algorithm
will eliminate many irrelevant variables, thus prevent them
from calling SAT solver.

We will present the number of call to refutation analysis
and SAT solver in experiment result.

IV. Incremental SAT

From step 2a) of algorithm 2, we can deduce that model
clause set generated from F” is independent of the loop of
step 2. So we can add model clause set into clause database
before that loop. In this way, we do not need to add model
clause set into clause database repeatedly.

At the same time, we also do not need to add assignment
clause set into clause database in each iteration of the loop in
step 2 of algorithm 2. Assume that in two back-to-back
iterations, we need to process v1 and v2 in these two
iterations, so we only need to insert assignment clause of v1
in clause database after the first iteration, and delete
assignment clause of v2 before the second iteration.

Therefore, we modify algorithm 2 into the following
algorithm 4. All new steps are highlight with bold font.

Algorithm 4 BFL algorithm with refutation analysis and
Incremental SAT
1 F″=[[M]]k ∧ ¬Pk
2 Insert F″∧(Free⇐Assign(Free)) into clause database
3 Foreach v∈Free

a) Delete assignment clause of v from clause database
b) if(SAT_Solve(F’)==UNSAT)

i. R”=Refutation_Analysis()
ii. Free=Free ∩R”

iii. For all v’∈Free-R”, delete its assignment clause
from clause database

c) Else
i. Insert assignment clause of v into clause database

4 Free is the minimization set
Here the readers may doubt that: in step 3a) and 3b)iii,

when deleting assignment clauses, if we need to delete
relevant learned clauses?

 453

N. Een[7] conclude that: for a certain SAT instance, when
deleting a clause that contain only one literal, all learned
clause can be safely kept in clause database.

This statement improve performance in 2 aspects:
1 Learned clause can be share between similar instances
2 No need to waste time on deleting learned clauses.

V. Experiment Result

K Ravi [1] only presents the circuits that used to generate
counterexample, but has not presented the assertion used.
Therefore, we cannot compare our approach with his one
directly. So we implement his algorithm and ours in
zchaff[5], such that we can compare them with same circuits
and assertions.

We perform counterexample minimization with BFL [1]
and ours. The timeout limit is set to 20000 seconds.

Experiment result is presented in table 1. The first column
is the circuit used to generate counterexample. The second
column presents the length of counterexample. The third
column presents number of free variables.

The 4th column is the number of irrelevant free variables
eliminated by K Ravi’s BFL[1]. Divide this number with the
third column, we can then get the minimization rate in the
5-th column, run time of BFL is shown in 6-th column.

The 7-th column is the number of irrelevant free variables
eliminated by our approach. Divide this number with the
third column, we can then get the minimization rate in the
8-th column, run time of ours is shown in 9-th column. The
speedup compared to BFL is shown in last column.

In table 2, we present run time statistics of our algorithm:
The 1st column is the name of circuits. Their number of

variables and clause are presented in 2nd and 3rd column.
Their number of free variable are presented in 4th column,
the variable eliminated by refutation analysis in step 3b)ii of
algorithm 4 are presented in column 5. The numbers of
UNSAT instance are presented in the 6th column. The
numbers of SAT instance are presented in 7th column. The
peak size of Q and S are presented in last 2 columns.

TABLE I
 Experiment Result

Result of BFL[1] Result of our approach
Circuits CE

length
Free
Vars

Eliminated
Vars

Run time Eliminated
Vars

Run time Speedup

s1512 21 667 606 39.85 606 3.45 11.55
s1423 24 483 400 292.65 397 7.12 41.10
s3271 15 507 432 70.16 432 6.11 11.48
s3384 13 743 615 126.1 615 9.61 13.12
s3330 6 373 295 19.69 295 1.77 11.12
s5378 10 530 416 133.27 411 8.21 16.23
s9234 7 362 226 75.37 226 10.36 7.28
s13207 22 1352 1109 >20000 1093 153.92 >100
s38584 14 1621 1069 >20000 1069 682.19 >10
s38417 14 2029 980 >20000 981 947.84 >10

By the way, BFL of s13207,s38584 and s38417 don’t
finish within 20000 seconds, its variables is eliminated by
incremental SAT approach without refutation analysis

TABLE 2
 Run Time Statistics of Our Algorithm

Circuits Vars Clauses Free
Vars

Eliminated
by ref
analysis

Num of
UNSAT

Number
of SAT

Peak
size of
S

Peak
size of
Q

s1512 14858 39735 667 601 5 61 3219 397
s1423 16565 44248 483 369 29 85 8250 736
s3271 21769 59656 507 416 16 75 5042 448
s3384 19452 50353 743 596 19 128 7127 458

s3330 6935 17322 373 278 17 78 2308 321
s5378 16180 42415 530 387 24 119 4253 484
s9234 18291 49555 362 173 53 136 6454 581
s13207 107079 284839 1352 1025 68 259 34108 1999
s38584 237756 661828 1621 1005 64 552 73971 5119
s38417 211653 576324 2029 910 71 1048 81855 7703

From this two table, we can conclude that:
1 Our approach is 1~2 orders of magnitude faster than

BFL;
2 Our approach doesn’t lose the minimization ability.
3 From 5th column of table 2, we can see that most

variable are eliminated by refutation analysis, and do
not need to run SAT solver for them any more

4 Compare last 2 columns of table 2 to 3rd column, the
size of Q and S are much smaller than that of clause
database

VI. Acknowledge

This research work is Supported by the National Natural
Science Foundation of China under Grant No. 90207019;the
National High Technology Development 863 Program of
China under Grant No. 2002AA1Z1480.

VII. Conclusion

To make the counterexample easier to be understood,
irrelevant variables must be eliminated. BFL is the most
effective counterexample minimization algorithm. However,
its time overhead is too large.

Therefore, we propose a faster counterexample
minimization algorithm in this paper. Our algorithm run 1 to
2 magnitude orders faster than BFL, and with only minor
lost in minimization ability.

In this paper we only deal with safety assertion, we would
also like to address minimization approach for loop like
counterexample of liveness property in future work.

References
[1] K Ravi and Fabio Somenzi. Minimal Assignments for

Bounded Model Checking. In TACAS'04,pages
31-45,2004. LNCS 2988.

[2] H.Jin, K.Ravi,and F.Somenzi. "Fate and free will in
error traces".TACAS’02,pp 445-458,2002.LNCS 2280.

[3] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu .
"Symbolic Model Checking using SAT procedures
instead of BDDs".In DAC’99.pages 317-320, 1999.

[4] A. Cimatti, et.al "NuSMV 2: An OpenSource Tool for
Symbolic Model Checking". In CAV’02,pages 359-364,
2002.LNCS 2404

[5] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient SAT solver. In
DAC’01, pages 530-535,2001.

[6] http://www.cbl.ncsu.edu/CBL_Docs/iscas89.html
[7] N. Een and N. Sorensson. Temporal Induction by

Incremental SAT Solving. In BMC’03.
[8] L.Zhang, C.Madigan, M.Moskewicz, and S.Malik.

Efficient conflict driven learning in a Boolean
satisfiability solver. ICCAD 2001.

 454

