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Abstract－ It is a hotly research topic to eliminate irrelevant 
variables from counterexample, to make it easier to be 
understood. BFL algorithm is the most effective 
Counterexample minimization algorithm compared to all other 
approaches, but its run time overhead is very large due to one 
call to SAT solver per candidate variable to be eliminated. So 
we propose a faster counterexample minimization algorithm 
based on refutation analysis and incremental SAT. First, for 
every UNSAT instance of BFL, we perform refutation analysis 
to extract the set of variables that lead to UNSAT, all variables 
not belong to this set can be eliminated simultaneously. In this 
way, we can eliminate many variables with only one call to SAT 
solver. At the same time, we employ incremental SAT approach 
to share learned clauses between similar instances of BFL, to 
prevent overlapped state space from being searched repeatedly. 
Theoretic analysis and experiment result shows that, our 
approach can be 1 to 2 orders of magnitude faster than BFL, 
and still retain the minimization ability of BFL.1 

I. INTRODUCTION 
Model checking technology is widely employed to verify 

software and hardware system. One of its major advantages 
in comparison to such method as theorem proving is the 
production of a counterexample, which explains how the 
system violates some assertion. 

However, it is a tedious task to understand the complex 
counterexamples generated by model checker. Therefore, 
how to automatically extract useful information to aid the 
understanding of counterexample, is an area of active 
research[1][2]. 

If we can extract a subset of variables that are sufficient to 
lead to counterexample, then these variables can express a 
large number of counterexamples, not just the individual one 
generated by model checker. In the remainder of this paper, 
we call this variable subset as minimization set, and call the 
process that extract minimization set as counterexample 
minimization. 
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K Ravi[1] proposes a counterexample minimization 
algorithm called Brute Force Lifting algorithm (BFL). For 
every free variable v, BFL constructs a SAT instance SAT(v), 
to determine if v can prevent the counterexample. If SAT(v) 
is UNSAT, then v is irrelevant to counterexample, and can be 
eliminated. K Ravi compares BFL with other 
counterexample minimization approaches, and concludes 
that BFL is the most efficient one, it can often eliminate up 
to 70% free variables. However, the time complexity of BFL 
is much more higher than other existing approaches due to 
the following reasons: 
1 It need one call to SAT solver per candidate variable to 

be eliminated; 
2 It can’t share learned clause between similar SAT 

instances, so overlapped state space may be searched 
repeatedly. 

Accordingly, the key to reduce time overhead of BFL are: 
1 Eliminate multiple variables after every call to SAT 

solver; 
2 Share learned clauses between similar SAT instances, to 

avoid searching overlapped state space repeatedly. 
Therefore, we propose a faster counterexample 

minimization approach in this paper, which employ 
refutation analysis for all UNSAT instances to extract all 
relevant variables and eliminate all irrelevant variables. At 
the same time, our approach employs incremental SAT to 
share learned clauses between similar instances. 

We implement our algorithm based on zchaff [5] and 
NuSMV[4], and perform experiment on ISCAS89 
benchmark suite[6]. Experiment result shows that, our 
approach can be 1 to 2 orders of magnitude faster than BFL 
algorithm and with minor lost in its minimization ability. 
The remainder of this paper is organized as follows. Section 
II presents background material. Section III presents the 
refutation analysis algorithm. Section IV presents the 
incremental SAT approach. Section V present experiment 
result of our approach and compare it to that of BFL [1]. 
Section VI reviews related works. Section VII concludes 
with a note on future work. 

II. PRELIMINARIES 
A. Bounded Model Checking 

We first define the Kripke structure: 

Definition 1 Kripke structure is a tuple M=(S, I, W, T, A, 
L), with a finite set of states S, the set of initial states I⊆S, 
the input variable set W, transition relation between states 
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T:S×W×S→{0,1}, and the labeling of the states L:S→2A with 
atomic propositions set A. 

Bounded Model Checking (BMC)[3] is a model checking 
technology that consider only limited length path. We call 
this length as the bound of path. We denote the state of the 
i-th and (i+1)-th cycle as Si and Si+1, and transition relation 
between them as Ti(Si,Wi,Si+1), with input variable set of i-th 
cycle denoted by Wi. 

Let the safety assertion under verification be ASSERT, the 
goal of BMC is to find a state S that violate ASSERT, that is 
to say, ¬ASSERT∈L(S). Lets denote ¬ASSERT as P. 

Let P at i-th cycle as Pi ,then BMC problem can be 
expressed as: 

),,( 10ki0 +<≤<≤
∧∧∧¬∧∧= iiiikiki SWSTPPIF  (1) 

Reduce equation (1) into SAT instance, and solve it with 
SAT solver, then a counterexample can be found if it exists. 

B. BFL Algorithm and its Shortcoming 

BFL algorithm proposed by K Ravi[1] can eliminate much 
more free variables than all existing algorithm, often up to 
70% free variables can be eliminated. 

We give some terminology below: 

Definition 2: Assume the bound of counterexample is k, and 
denote the set of free variables as UU ki iWIFree

<≤
=

0
. 

The assignment to variable v in counterexample is denoted 
by Assign(v), the assignment to variable set V in 
counterexample is denoted by Assign(V)={Assign(v)|v∈V}. 

Obviously, the set Free includes input variables at all 
cycles and initial state variables.  

For a free variable v∈Free, v is an irrelevant variable if 
and only if the following statement hold true: “no matter 
what value do v take on, it can’t prevent the counterexample 
from happen. That is to say, it can’t prevent Pk of equation 
(1) from equal to 1“. Formal definition of irrelevant variable 
is given below: 

Definition 3 Irrelevant Variable: for v∈Free, v is an 
irrelevant variable iff:  
¬ ∃c∈{0,1}.[[M]]k ∧ (v⇐c) ∧A∧¬Pk (2) 

where  A=( Free−{v}⇐ Assign(Free−{v})) 
and [[M]]k=∧0≤i<kTi(Si,Wi,Si+1) 

Convert equation (2) into SAT instance, then v is 
irrelevant variable iff this SAT instance is Unsatisfiable. 

Thus, the BFL algorithm that extracts minimization set 
from counterexample is show below: 

Algorithm 1:BFL Algorithm 
1 F″ =[[M]]k ∧ ¬Pk 
2 foreach v∈Free 

a) F’=F″∧(Free−{v}⇐Assign(Free−{v})) 
b) if(SAT_Solve(F′ )==UNSAT)  

i. Free= Free−{v} 
3 Free is the minimization set 

To make it more distinct, we give the following 2 
definitions: 

Definition 4 Model Clause Set: all clauses generated from 
F″ in step 2a) of algorithm 1. 

Definition 5 Assignment Clause Set: all clauses generated 
from ( Free−{v} ⇐ Assign(Free−{v}) ) in step 2a) of 
algorithm 1. 

We call the former as model clause set, because F″ 
represent inverted model checking problem of equation (1). 
We call the latter as assignment clause set because they are 
used for assigning to all variables their value in 
counterexample, except v. For every v’ ∈ Free−{v}, its 
assignment clause contain only one literal. If Assign(v’)==1, 
then assignment clause of v’ is {v’}, otherwise it is {¬v’}. 
SAT solver will assign these values to them by BCP when 
solving this instance. 

III. COUNTEREXAMPLE MINIMIZATION WITH 
REFUTATION ANALYSIS 

In this section, we first describe the overall algorithm flow 
in subsection A, and then describe the most important part – 
refutation analysis in subsection B. We will prove its 
correctness in subsection C.  

A. Overall algorithm flow 

BFL algorithm can eliminate much more variables than all 
existing algorithm, but its time overhead is too high. 
Therefore, it is very important to reduce its timing overhead. 

Overall flow of our algorithm is show by algorithm 2: 

Algorithm 2 BFL algorithm with refutation analysis 
1 F″=[[M]]k ∧ ¬Pk 
2 foreach v∈Free 

a) F’=F″∧(Free−{v}⇐Assign(Free−{v})) 
b) if(SAT_Solve(F’)==UNSAT) 

i. R”=Refutation_Analysis() 
ii. Free=Free ∩R” 

3 Free is the minimization set 

Compare it to algorithm 1, step 2b) of algorithm 2 are 
newly inserted steps, which is highlighted with bold font. In 
step 2b)i, we perform refutation analysis to extract the 
variables set R” that lead to UNSAT. And then in step 2b)ii, 
we eliminate all variable not belong to R”. 

B. Refutation Analysis 

As stated by last subsection, we perform refutation 
analysis to extract the variable set R” that lead to UNSAT. 

For a SAT instance F’, we denote its model clause set by 
F”, and its assignment clause set by A. After SAT solver 
finished running, denote its learned clause set as C. 

If result of F’ is UNSAT, then there must be a conflict 
clause at decision level 0, we denote it by c. Because the 
decision level is 0, so there are no decided variables, any 
variables can only take on their value by implication. 

Staring from clause c, we can traverse the implicate graph 
in reverse direction, to obtain the set of origin clauses S that 
lead to conflict.  

We denote the assignment clauses in S by S∩A, then the 
set of variable that lead to UNSAT is R”={v| 
{v}∈S∩A}∪{v| {¬v}∈S∩A}. 

Now we present the refutation analysis algorithm below, 
the correctness proof will be given in next subsection. 

 Algorithm 3 Refutation Analysis 
1 set   S=φ;  
2 queue Q=φ; 
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3 foreach literal l∈c 
a) push antecedent clause of l into Q 

4 while(Q is not empty) 
b) cls=pop first clause from Q 
c) if(cls is a unit clause ) 

i. S=S+{cls} 
ii. If(cls is a learned unit clause) return R=Free-{v} 

d) else 
i. foreach literal l∈cls 

1. assume ante is antecedent clause of l 
2. if(ante has not being visited) 

a) push ante into Q 
b) mark ante as visited 

5 R”={v|{v}∈S∩A}∪{v|{¬v}∈S∩A} are variables lead to 
UNSAT 

There is a special case in step 4b)ii, when cls is a learned 
unit clause, we can’t backtrack further because the SAT 
solver has not record the clauses involved in resolution to 
construct cls. In this case, we abandon the effort to extract 
R”, and simply return R”=Free-{v}. This means that we can 
eliminate only one variable v in this case. 

Fortunately, we have not met with this special case in 
experiments. I suspect that this is because of the 1UIP 
conflict learning mechanism, which never generate learned 
unit clause. 

C. Correctness Proof 

We prove the correctness of algorithm 2 and 3 with 
following theorem: 

Theorem 1: F”∧∧cls∈Scls is an Unsatisfiable clause subset 
of F’ 

Proof: it is obvious that F”∧∧cls∈Scls is a clause subset of F’, 
so we only need to prove that it is Unsatisfiable.  

Assume C’⊆C is the set of learned clauses met with by 
algorithm 3 while traversing implication graph. Thus, 
F”∧∧cls∈Scls∧∧cls∈C’cls is Unsatisfiable. Then if we can 
remove ∧cls∈C’cls from it, and still retain its unsatisfiability? 

For every learned clause cls∈C’, assume NU(cls) and 
U(cls) are non-unit clauses set and unit clauses set that 
involved in resolution to construct cls.  

It is obvious that NU(cls)∈F”. And according to [8], unit 
clauses never involve in resolution, so U(cls) is empty set. 
So we can remove  ∧cls∈C’cls from F”∧∧cls∈Scls∧∧cls∈C’cls, 
and still retain its unsatisfiability 

Thus this theorem is proven. � 

Theorem 2: F”∧∧v’∈R”(v⇐Assign(v’)) is an Unsatisfiable 
clause subset of F’ 

Proof: it is obvious that F”∧∧v’∈R”(v⇐Assign(v’)) is an 
clause subset of F’. Thus we only need to prove that 
F”∧∧v’∈R”(v⇐Assign(v’)) is Unsatisfiable. 

According to algorithm 3, ∧v’∈R”(v⇐Assign(v’)) is equal to 
∧cls∈S∩Acls. So we only need to prove that F”∧∧cls∈S∩Acls is 
Unsatisfiable. 

According to theorem 1, F”∧∧cls∈Scls is Unsatisfiable, 
which can be rewritten as F”∧∧cls∈S∩Acls∧∧ cls∈S-A-F”cls. 

Lets discuss it in two aspects: 
1 If S-A-F” is empty set, then F”∧∧cls∈S∩Acls is 

Unsatisfiable 
2 Otherwise, S-A-F” isn’t empty set. In this case, 

algorithm 3 will meet with a learned unit clause. 

According to step 4b)ii of algorithm 3, it will abandon 
the effort to extract R”, and eliminate only one variable 
v. In the case, F”∧∧cls∈S∩Acls is Unsatisfiable 

Thus this theorem is proven. � 

D. Complexity Analysis 

We know that the space overhead of refutation analysis 
mainly reside in set S and queue Q. Lets analyze as below: 

 We add a tag to each clause in clause database of SAT 
solver, to indicate that if this clause belongs to set S. 
Therefore, space overhead of S is linear to size of clause 
database. 

 For queue Q, it may contain learned clauses. Because 
conflict analysis algorithm of SAT solver also need to 
perform similar implicate graph traversing, so space 
overhead due to Q is not larger than that of SAT solver. 

Next, let’s analyze the time complexity of our algorithm. 
In algorithm 3, the most complex part is the if statement in 

step 4c)i2. For every clause that has been in Q, this if 
statement will be run once. Because the size of Q is much 
smaller than clause database, so time overhead of algorithm 
3 is much smaller than that of SAT solver. 

In algorithm 2, one call to refutation analysis algorithm 
will eliminate many irrelevant variables, thus prevent them 
from calling SAT solver. 

We will present the number of call to refutation analysis 
and SAT solver in experiment result. 

IV. Incremental SAT 

From step 2a) of algorithm 2, we can deduce that model 
clause set generated from F” is independent of the loop of 
step 2. So we can add model clause set into clause database 
before that loop. In this way, we do not need to add model 
clause set into clause database repeatedly. 

At the same time, we also do not need to add assignment 
clause set into clause database in each iteration of the loop in 
step 2 of algorithm 2. Assume that in two back-to-back 
iterations, we need to process v1 and v2 in these two 
iterations, so we only need to insert assignment clause of v1 
in clause database after the first iteration, and delete 
assignment clause of v2 before the second iteration. 

Therefore, we modify algorithm 2 into the following 
algorithm 4. All new steps are highlight with bold font. 

Algorithm 4 BFL algorithm with refutation analysis and 
Incremental SAT 
1 F″=[[M]]k ∧ ¬Pk 
2 Insert F″∧(Free⇐Assign(Free)) into clause database 
3 Foreach v∈Free 

a) Delete assignment clause of v from clause database 
b) if(SAT_Solve(F’)==UNSAT) 

i. R”=Refutation_Analysis() 
ii. Free=Free ∩R” 

iii. For all v’∈Free-R”, delete its assignment clause 
from clause database 

c) Else 
i. Insert assignment clause of v into clause database 

4 Free is the minimization set 
Here the readers may doubt that: in step 3a) and 3b)iii, 

when deleting assignment clauses, if we need to delete 
relevant learned clauses?  
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N. Een[7] conclude that: for a certain SAT instance, when 
deleting a clause that contain only one literal, all learned 
clause can be safely kept in clause database. 

This statement improve performance in 2 aspects: 
1 Learned clause can be share between similar instances 
2 No need to waste time on deleting learned clauses. 

V. Experiment Result 

K Ravi [1] only presents the circuits that used to generate 
counterexample, but has not presented the assertion used. 
Therefore, we cannot compare our approach with his one 
directly. So we implement his algorithm and ours in 
zchaff[5], such that we can compare them with same circuits 
and assertions.  

We perform counterexample minimization with BFL [1] 
and ours. The timeout limit is set to 20000 seconds. 

Experiment result is presented in table 1. The first column 
is the circuit used to generate counterexample. The second 
column presents the length of counterexample. The third 
column presents number of free variables. 

The 4th column is the number of irrelevant free variables 
eliminated by K Ravi’s BFL[1]. Divide this number with the 
third column, we can then get the minimization rate in the 
5-th column, run time of BFL is shown in 6-th column. 

The 7-th column is the number of irrelevant free variables 
eliminated by our approach. Divide this number with the 
third column, we can then get the minimization rate in the 
8-th column, run time of ours is shown in 9-th column. The 
speedup compared to BFL is shown in last column. 

In table 2, we present run time statistics of our algorithm: 
The 1st column is the name of circuits. Their number of 

variables and clause are presented in 2nd and 3rd column. 
Their number of free variable are presented in 4th column, 
the variable eliminated by refutation analysis in step 3b)ii of 
algorithm 4 are presented in column 5. The numbers of 
UNSAT instance are presented in the 6th column. The 
numbers of SAT instance are presented in 7th column. The 
peak size of Q and S are presented in last 2 columns. 

TABLE I 
 Experiment Result 

Result of BFL[1] Result of our approach 
Circuits CE 

length 
Free 
Vars 

Eliminated 
Vars 

Run time Eliminated 
Vars 

Run time Speedup

s1512 21 667 606 39.85 606 3.45 11.55
s1423 24 483 400 292.65 397 7.12 41.10
s3271 15 507 432 70.16 432 6.11 11.48
s3384 13 743 615 126.1 615 9.61 13.12
s3330 6 373 295 19.69 295 1.77 11.12
s5378 10 530 416 133.27 411 8.21 16.23
s9234 7 362 226 75.37 226 10.36 7.28 
s13207 22 1352 1109 >20000 1093 153.92 >100 
s38584 14 1621 1069 >20000 1069 682.19 >10 
s38417 14 2029 980 >20000 981 947.84 >10 

By the way, BFL of s13207,s38584 and s38417 don’t 
finish within 20000 seconds, its variables is eliminated by 
incremental SAT approach without refutation analysis 

TABLE 2 
 Run Time Statistics of Our Algorithm 

Circuits Vars Clauses Free 
Vars 

Eliminated 
by ref
analysis 

Num of 
UNSAT 

Number 
of SAT 

Peak 
size of 
S 

Peak 
size of 
Q 

s1512 14858 39735 667 601 5 61 3219 397 
s1423 16565 44248 483 369 29 85 8250 736 
s3271 21769 59656 507 416 16 75 5042 448 
s3384 19452 50353 743 596 19 128 7127 458 

s3330 6935 17322 373 278 17 78 2308 321 
s5378 16180 42415 530 387 24 119 4253 484 
s9234 18291 49555 362 173 53 136 6454 581 
s13207 107079 284839 1352 1025 68 259 34108 1999 
s38584 237756 661828 1621 1005 64 552 73971 5119 
s38417 211653 576324 2029 910 71 1048 81855 7703 

From this two table, we can conclude that: 
1 Our approach is 1~2 orders of magnitude faster than 

BFL; 
2 Our approach doesn’t lose the minimization ability. 
3 From 5th column of table 2, we can see that most 

variable are eliminated by refutation analysis, and do 
not need to run SAT solver for them any more 

4 Compare last 2 columns of table 2 to 3rd column, the 
size of Q and S are much smaller than that of clause 
database 
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VII. Conclusion 

To make the counterexample easier to be understood, 
irrelevant variables must be eliminated. BFL is the most 
effective counterexample minimization algorithm. However, 
its time overhead is too large. 

Therefore, we propose a faster counterexample 
minimization algorithm in this paper. Our algorithm run 1 to 
2 magnitude orders faster than BFL, and with only minor 
lost in minimization ability. 

In this paper we only deal with safety assertion, we would 
also like to address minimization approach for loop like 
counterexample of liveness property in future work. 
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