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Abstract. It is a hotly researching topic to eliminate irrelevant vari-
ables from counterexample, to make it easier to be understood. K Ravi
proposes a two-stages counterexample minimization algorithm. This al-
gorithm is the most effective one among all existing approaches, but
time overhead of its second stage(called BFL) is very large due to one
call to SAT solver per candidate variable to be eliminated. So we pro-
pose a faster counterexample minimization algorithm based on unit core
extraction and incremental SAT. First, for every unsatisfiable instance
of BFL, we perform unit core extraction algorithm to extract the set of
variables that are sufficient to lead to conflict, all variables not belong
to this set can be eliminated simultaneously. In this way, we can elimi-
nate many variables with only one call to SAT solver. At the same time,
we employ incremental SAT approach to share learned clauses between
similar instances of BFL, to prevent overlapped state space from being
searched repeatedly. Theoretic analysis and experiment result show that,
our approach is 1 order of magnitude faster than K Ravi’s algorithm, and
still retains its ability to eliminate irrelevant variables.

1 Introduction

Model checking technology is widely employed to verify software and hardware
system. One of its major advantages in comparison to such method as theorem
proving is the production of a counterexample, which explains how the system
violates some assertion.

However, it is a tedious task to understand the complex counterexamples gen-
erated by model checker. Therefore, how to automatically extract useful infor-
mation to aid the understanding of counterexample, is an area of hotly research
[5, 6, 13, 14].

A counterexample can be viewed as an assignment to a variable set Free,
There must be a variables subset R ⊆ Free, which is sufficient to lead to coun-
terexample. Then for variables in Free − R,no matter what value do they take
on, they can’t prevent the counterexample. Thus we call R as minimization
set, and call the process that extract R as counterexample minimization.

Now we demonstrate the concept of counterexample minimization with fol-
lowing example:
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For AND gate z = a&b, assume the assertion is ”z always equal to 1”,
then there are three counterexamples: {a ⇐ 0, b ⇐ 0, z ⇐ 0}, {a ⇐
1, b ⇐ 0, z ⇐ 0}, and {a ⇐ 0, b ⇐ 1, z ⇐ 0}.
However, from an intuitive viewpoint, b is an irrelevant variable when
a equal to 0. At the same time, a is also an irrelevant variable when b
equals to 0. Then we can minimize above three counterexamples, and
obtain 2 minimization sets: {a ⇐ 0, z ⇐ 0} and {b ⇐ 0, z ⇐ 0}.

Thus, a minimized counterexample is much easier to be understood.
K Ravi[5] proposes a two-stage counterexample minimization algorithm. In

the first stage, an Implication Graph Based Lifting(IGBF) algorithm is per-
formed to quickly eliminate some irrelevant variables. In the second stage, a
highly expensive Brute Force Lifting algorithm(BFL) is performed to further
eliminate more irrelevant variables.

In BFL, free variables set contains input variables at all cycle and the initial
state variables. ”free” means that they can take on any value independent of
others. For every free variable v, BFL constructs a SAT instance SAT(v), to
determine if some assignment to v can prevent the counterexample. If SAT(v)
is unsatisfiable, then v can’t prevent the counterexample from happening , thus
v is irrelevant to counterexample and can be eliminated.

K Ravi[5] compares his approach with other counterexample minimization
approaches, and concludes that his approach is the most efficient one, it can
often eliminates up to 70% free variables. However, the run time complexity of
his approach is much higher than all other existing approaches. At the same
time, run time overhead of BFL is 1 to 3 orders of magnitude larger than that
of IGBF. So the key to speedup K Ravi’s two-stage approach is to reduce time
overhead of BFL.

The reasons of BFL’s large time overhead are:

1. It needs to call SAT solver for every free variable. But there are often thou-
sands of free variables in a counterexample. This means BFL needs to call
SAT solver thousands of times, it is a huge overhead;

2. It can’t share learned clause between similar SAT instances, so overlapped
state space may be searched repeatedly.

Accordingly, the keys to reduce time overhead of BFL are:

1. Eliminate as many as possible variables after every call to SAT solver;
2. Share learned clauses between similar SAT instances, to avoid searching

overlapped state space repeatedly.

So we propose a faster counterexample minimization algorithm based on unit
core extraction and incremental SAT. First, for every unsatisfiable instance of
BFL, we perform unit core extraction algorithm to extract the set of variables
that are sufficient to lead to conflict, all variables not belong to this set can be
eliminated simultaneously. In this way, we can eliminate many variables with
only one call to SAT solver. At the same time, we employ incremental SAT



300 ShengYu Shen, Ying Qin, and SiKun Li

approach to share learned clauses between similar instances of BFL, to prevent
overlapped state space from being searched repeatedly.

We implement our algorithm based on zchaff[10] and NuSMV[9], and perform
experiment on ISCAS89 benchmark suite[11]. Experiment result shows that, our
approach is 1 order of magnitude faster than K Ravi’s algorithm[5], and without
any lost in its ability to eliminate irrelevant variables.

The remainder of this paper is organized as follows. Section 2 presents back-
ground material. Section 3 presents the counterexample minimization approach
based on unit core extraction. Section 4 presents the incremental SAT approach.
Section 5 presents experiment result of our approach and compares it to that of
K Ravi’s approach[5]. Section 6 reviews related works. Section 7 concludes with
a note on future work.

2 Preliminaries

2.1 Satisfiability Solvers

Basic Notions of Satisfiability Solvers
Given a Boolean formula F , the SAT problem involves finding whether a satis-
fying assignment for F exists. A SAT solver typically computes a total satisfying
assignment for F , if one exists, otherwise returns an UNSATISFIABLE answer.
In a SAT solver a Boolean formula F is usually represented in CNF. For instance,

f = (a ∨ b) ∧ (¬c ∨ d) (1)

A CNF formula is a conjunction of clauses. A clause is a disjunction of
literals. A literal is a variable or its negation. As shown by equation (1), formula
f contains two clauses:(a∨b) and (¬c∨d). Clause (¬c∨d) include two literals:¬c
and d. ¬c is a negative phase literal of variable c, and d is a positive phase literal
of d.

A total satisfying assignment for f is {(a, 0), (b, 1), (c, 0), (d, 0)}. ”total” means
that it contains assignments to all variables. {(b, 1), (c, 0)} is a partial satisfying
assignment because it contains only assignments to a subset of variables.

It is also convenient to use literals to designate variable-value pairs. For exam-
ple, the assignment {(a, 0), (b, 1), (c, 0), (d, 0)} can be denoted by {¬a, b,¬c,¬d}.

Implication Graph
According to unit clause rule, when a clause contains only one unassigned literal,
and all other literals are rendered false, then the variable of this unassigned literal
can take on its value according to its phase. This mechanism is called implication.
For instance, for clause (¬c ∨ d) and assignment {¬d}, variable c must take on
value 0 to make this clause true.

With this implication mechanism, we can construct an Implication Graph
G = (V, E). The nodes set V represents the literals of the assignments made by
implications or decisions. Each directed hyperedge E ⊆ 2V × V represents an
implication, caused by an antecedent clause.
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Conflict Learning
Conflict learning[8] can significantly boost performance of modern SAT solver.

While solving SAT instance, when a conflict arises, SAT solver will analyze
implication graph to construct learned clauses, and insert these clauses into
clause database. These clauses record the information of searched state space,
to prevent them from being searched again.

So after SAT solver terminates,there are two types of clauses in clause data-
base:

1. Origin clauses are those clauses inserted into clause database before SAT
solver start running.

2. Learned clauses are those clauses generated by conflict analysis.

2.2 Bounded Model Checking

We first define the Kripke structure:

Definition 1 (Kripke structure). Kripke structure is a tuple M=(S,I,T,L),
with a finite set of states S, the set of initial states I ⊆ S, a transition relation
between states T ⊆ S×S, and the labeling of the states L : S → 2AP with atomic
propositions set AP.

Bounded Model Checking (BMC)[7] is a model checking technology that
consider only limited length path. We call this length k as the bound of path.
Let Si and Si+1 be the state of the i-th and (i+1)-th cycle, and T (Si, Si+1)
represents the transition relation between them.

Assume q is a boolean proposition, and the safety assertion under verification
is ”G q”, then the goal of BMC is to find a state S that violates q, that is to
say, ¬q ∈ L(S). In the remainder of this paper, ¬q will be denoted by P , and
we will not refer to q any more.

Let Pi be P at i-th cycle ,then BMC problem can be expressed as:

F := I(S0) ∧
k−1∧

i=0

T (Si, Si+1) ∧
k−1∧

i=0

¬Pi ∧ Pk

BMC always searches for shortest counterexample, so
∧k−1

i=0 ¬Pi always holds
true. Thus, we can remove it from above equation, and obtain following equation:

F := I(S0) ∧
k−1∧

i=0

T (Si, Si+1) ∧ Pk (2)

Reduce equation (2) into propositional satisfiability problem, and solve it
with SAT solver, then a counterexample can be found if it exists.

2.3 BFL Algorithm and Its Shortcoming

BFL algorithm proposed by K Ravi[5] can eliminate much more free variables
than all existing algorithms, often up to 70% free variables can be eliminated.

Lets first define some terminology below:
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Definition 2 (Assignment Clause). Assume the value of variable v in coun-
terexample is denoted by V alue(v) ∈ {0, 1}, then the Assignment Clause of v is
a unit clause which contain only one literal, which is defined as:

Assign(v) :=
{{v} if Value(v)==1
{¬v} otherwise (3)

Definition 3 (Free Variables Set). Assume the set of input variables is W ,
then input variables set of i-th cycle is denoted by Wi. Assume the set of state
variables is X, then state variables set of i-th cycle is denoted by Xi.

Assume the bound of counterexample is k, then the set of free variables is
Free := X0 ∪

⋃k
i=0 Wi.

Obviously,Free includes input variables at all cycle and initial state variables.
”Free” means that they can take on any value independent of others.

For a free variable v ∈ Free, v is an irrelevant variable if and only if the
following statement holds true: ”no matter what value do v take on, it can’t
prevent the counterexample from happening. That is to say, it can’t prevent
Pk of equation (2) from equal to 1”. Formal definition of irrelevant variable is
presented below:

Definition 4 (Irrelevant Variable). for v ∈ Free, v is irrelevant variable iff:

¬∃c ∈ {0, 1}.(
k−1∧

i=0

T (Si, Si+1) ∧ (v ⇐ c) ∧
∧

v′∈Free\v

Assign(v′) ∧ ¬Pk) (4)

Convert
∧k−1

i=0 T (Si, Si+1) ∧
∧

v′∈Free\v Assign(v′) ∧ ¬Pk into SAT instance,
then v is irrelevant variable iff this SAT instance is unsatisfiable.

Thus, the BFL algorithm that extracts minimization set from counterexample
is shown below:

Algorithm 1: BFL Counterexample Minimization Algorithm

1. F” =
∧k−1

i=0 T (Si, Si+1) ∧ ¬Pk

2. for each v ∈ Free
3. F ′ = F” ∧ ∧

v′∈Free\v Assign(v′)
4. if(SAT Solve(F ′)==UNSATISFIABLE) Free = Free \ v
5. Free is the minimization set

We introduce 2 definitions here to make it easier to describe our algorithm:

Definition 5 (Model Clause Set). In step 3 of algorithm 1, the clauses set
generated from F” is called Model Clause Set.

Definition 6 (Assignment Clause Set). In step 3 of algorithm 1, the clauses
set generated from

∧
v′∈Free\v Assign(v′) is called Assignment Clause Set.

We call F” Model Clause Set because it represents inverted model checking
problem of equation (2). We call

∧
v′∈Free\v Assign(v′) Assignment Clause Set

because it is used to assign to all variables their value in counterexample, except
v. SAT solver will assign these values to them by performing BCP.
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3 Counterexample Minimization
with Unit Core Extraction

As stated before, the key to reduce time overhead of BFL is to eliminate multiple
variables after every call to SAT solver. So we present our key ideas below:

In algorithm 1, when SAT instance F ′ is unsatisfiable, a variables set R
that is sufficient to lead to conflict can be extracted from it by unit core
extraction. Then F”∧∧

v′∈R Assign(v′) is an unsatisfiable clause subset
of F ′. Thus Free − R can be eliminated immediately. In this way, we
can achieve our goal of eliminating multiple variables simultaneously.

In this section, we first describe the overall algorithm flow in subsection 3.1,
and then describe the most important part– unit core extraction algorithm in
subsection 3.2. We will prove its correctness in subsection 3.3. At last, we will
analyze the complexity of this algorithm in subsection 3.4.

3.1 Overall Algorithm Flow

Run time overhead of BFL is very large due to one call to SAT solver per
candidate variable to be eliminated. Therefore, it is very important to reduce
the number of calls to SAT solver.

Overall flow of our algorithm is shown by algorithm 2:

Algorithm 2 BFL with unit core extraction

1. F” =
∧k−1

i=0 T (Si, Si+1) ∧ ¬Pk

2. for each v ∈ Free
3. F ′ = F” ∧ ∧

v′∈Free\v Assign(v′)
4. if(SAT Solve(F ′)==UNSATISFIABLE)
5. R=Unit Core(v)
6. Free = Free ∩ R
7. Free is the minimization set

Compare it to algorithm 1, step 5 and 6 of algorithm 2 are newly inserted
steps, which are highlighted with bold font. In step 5, we perform unit core
extraction to extract the variables set R that lead to UNSATISFIABLE. And
then in step 6, we eliminate all variables not belong to R, then we don’t need to
call SAT solver for them any more. Thus, the number of calls to SAT solver is
significantly decreased in our approach compared to BFL.

3.2 Unit Core Extraction Algorithm

As stated by last subsection, we perform unit core extraction algorithm to extract
the variable set R that lead to UNSATISFIABLE. Main idea of our unit core
extraction algorithm are presented below:
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all literal of conflict clause c

S

Fig. 1. Implication graph starting from the unit clauses at the leaves and ending with
the conflict clause c at the root.

For SAT instance F ′, let F” be its model clause set, and A be its assignment
clause set. After SAT solver finished running, let C be its learned clause set.

Refer to last paragraph of section 2.2 of L.Zhang’s famous paper about un-
satisfiable core extraction [16],we have the following theorem 1.

Theorem 1. If F ′ is unsatisfiable, then there must be a conflict clause at deci-
sion level 0, we denote it by c. Because the decision level is 0, so there are no
decided variables, any variables can only take on their value by implication.

According to this theorem,there must be an implication graph starting from
the unit clauses at the leaves and ending with the conflict clause c at the root.
We show this implication graph in figure 1.Every rectangle is an unit clause,
and S is the set of unit clauses that make all literals of conflict clause c to
be false. Staring from clause c, we can traverse the implicate graph in reverse
direction, to obtain the set of unit clauses S that lead to conflict. We denote the
assignment clauses in S by S ∩ A, then the variables set that lead to conflict is
R = {v|Assign(v) ∈ S ∩ A}. This is the key idea of Unit Core Extraction.

Now we present the unit core extraction algorithm below.

Algorithm 3 Unit Core Extraction Unit Core(v)

1. set S = φ;
2. queue Q = φ;
3. for each literal l ∈ c
4. push antecedent clause of l into Q
5. mark antecedent clause of l as visited
6. while(Q is not empty)
7. cls=pop first clause from Q
8. if(cls is unit clause)
9. S = S + {cls}

10. if(cls is a learned unit clause) return R = Free \ v
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11. else
12. for each literal l ∈ cls
13. assume ante(l) is antecedent clause of l
14. if(ante(l) has not being visited before)
15. push ante(l) into Q
16. mark ante(l) as visited
17. return R = {v|Assign(v) ∈ S ∩ A}

There is a special case in step 10 of algorithm 3. When cls is a learned clause
with only one literal, we can’t backtrack further because the SAT solver has not
record the clauses involved in resolution to generate learned clause cls. In this
case, we abandon the effort to extract unit core, and just return R = Free \ v.
This means that we can eliminate only one variable v in this case.

Fortunately, we has not met with this special case in our experiments. But
we just can’t prove its absence in theory. Currently, I think it is because of the
1UIP conflict learning mechanism of zchaff, which may never generate learning
clause with only one literal.

The unsatisfiable core extraction approaches[16,17] do provide a mechanism
to record the clauses involved in resolution to generate learned clause. This
mechanism do help to eliminate more irrelevant variables, but it imposes very
large time overhead, which will outweigh the benefit of unit core extraction.

3.3 Correctness of Algorithm

Theorem 2. F” ∧ ∧
cls∈S cls is an unsatisfiable clause subset of F ′

Proof. It is obvious that F”∧∧
cls∈S cls is a clause subset of F ′, so we only need

to prove that F” ∧ ∧
cls∈S cls is unsatisfiable.

Assume C′ ⊆ C is the set of conflict clauses met with by algorithm 3 while
traverse the implication graph. Then according to algorithm 3 and figure 1,
F” ∧ ∧

cls∈S cls∧ ∧
cls∈C′ cls is unsatisfiable. Then if we can remove

∧
cls∈C′ cls

from it, and still retain its unsatisfiability?
For every learned clause cls ∈ C′, assume NU(cls) and U(cls) are non-unit

clauses set and unit clauses set that involved in resolution to construct cls. Then
it is obvious that F” ∧ ∧

cls∈S cls ∧ ∧
cls∈C′(

∧
cls′∈U(cls) cls′ ∧ ∧

cls′∈NU(cls) cls′)
is unsatisfiable.

It is obvious that NU(cls) ⊆ F”. And according to [8], unit clauses
never involve in resolution, so U(cls) is empty set. Thus we can remove∧

cls∈C′(
∧

cls′∈U(cls) cls′ ∧ ∧
cls′∈NU(cls) cls′) from F” ∧ ∧

cls∈S cls ∧ ∧
cls∈C′

(
∧

cls′∈U(cls) cls′ ∧ ∧
cls′∈NU(cls) cls′), and still reatin its unsatisfiability.

So F” ∧ ∧
cls∈S cls is unsatisfiable.

Thus this theorem is proven.

Theorem 3. F” ∧ ∧
v′∈R Assign(v′) is an unsatisfiable clause subset of F ′

Proof. It is obvious that R ∈ Free\v, so F”∧∧
v′∈R Assign(v′) is clause subset

of F ′ = F” ∧ ∧
v′∈Free\v Assign(v′).
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So we only need to prove that F” ∧ ∧
v′∈R Assign(v′) is unsatisfiable.

According to step 17 of algorithm 3,
∧

v′∈R Assign(v′) is equal to∧
cls∈S∩A cls.

So we only need to prove that F” ∧ ∧
cls∈S∩A cls is unsatisfiable.

According to theorem 2, F”∧∧
cls∈S cls is unsatisfiable, and it can be rewrit-

ten as F” ∧ ∧
cls∈S∩A cls ∧ ∧

cls∈S−A−F” cls.
We discuss it in 2 aspects:

1. if S − A − F” is an empty set, then F” ∧ ∧
cls∈S cls and F” ∧ ∧

cls∈S∩A cls
are of the same, then F” ∧ ∧

cls∈S∩A cls is unsatisfiable.
2. otherwise, S − A − F” isn’t an empty set. In this case, algorithm 3 will

meet with a learning clause with only one literal. According to step 10 of
algorithm 3,it will abandon the effort to extract unit core, and eliminate
only one variable v. According to step 3 of algorithm 2, it is obvious that
F” ∧ ∧

v′∈R Assign(v′) is unsatisfiable.

Thus this theorem is proven.

According to theorem 3, Assigning to all variables in R their value in coun-
terexample can make F ′ unsatisfiable. Thus according to definition 3, variables
in Free − R are all irrelevant variables. No matter what value do they take
on, they can’t prevent the counterexample. Thus, we can eliminate Free − R
simultaneously in step 6 of algorithm 2.

3.4 Complexity Analysis

Because our algorithm depends heavily on SAT solver, so we don’t analyze its
complexity directly. Instead, we compare our algorithm with SAT solver.

We first analyze space complexity of our algorithm. Comparing algorithm
2 and 1, the only difference is that algorithm 2 add an unit core extraction
step. Therefore, difference of space complexity between them resides in unit core
extraction algorithm. We know that the space overhead of unit core extraction
mainly resides in set S and queue Q. Lets analyze them as below:

– We add a tag to each clause in clause database of SAT solver, to indicate
that if this clause belongs to set S. Therefore, space overhead of S is linear
to size of clause database.

– For queue Q, it may contain learned clauses. Because conflict analysis algo-
rithm of SAT solver also need to perform similar implicate graph traversing,
so space overhead of Q is not larger than that of SAT solver. We will present
the peak size of Q in table 3 of experiment result, it is obvious that its size
are much smaller than clause database.

Next, we will analyze the time complexity of our algorithm.
In algorithm 3, the most complex part is the if statement in step 14. For

every clauses that has been in Q, this if statement will be run once. Because the
size of Q is much smaller than clause database, so time overhead of algorithm 3
is much smaller than that of BCP in SAT solver.



Minimizing Counterexample with Unit Core Extraction 307

In algorithm 2, one call to unit core extraction algorithm will eliminate many
irrelevant variables, thus prevent them from calling SAT solver. This will signif-
icantly decrease the number of calling SAT solver and time overhead.

We will present the number of calls to unit core extraction algorithm and
SAT solver in table 3 of experiment result.

4 Incremental SAT

From step 3 of algorithm 2, it is obvious that F ′ of two consecutive iterations
are very similar. This suggests a good chance to share learned clause between
them by employ incremental SAT approach.

In last paragraph of section 6, K Ravi[5] has mentioned that BFL’s perfor-
mance can be improved by Incremental SAT. But he hasn’t presented how to
achieve this. And all his experiments are based on non-incremental SAT. So we
present here a novel approach to improve BFL’s performance further by incre-
mental SAT.

For two consecutive iterations, assume the two variables to be eliminated are
v1 and v2. Then for the first iteration, F ′ = F” ∧ ∧

v′∈Free\v1 Assign(v′). For
the second iteration, F ′ = F” ∧ ∧

v′∈Free\v2 Assign(v′). After we have finished
solving the first F ′, to obtain the second one, we only need to delete Assign(v1)
and insert Assign(v2) into clause database.

N. Een[12] concludes that: when delete a unit clause that contains only one
literal, all learned clauses can be safely kept in clause database.

So when we delete Assign(v1), we don’t need to delete any learned clauses.
Thus all learned clauses can be shared between consecutive iterations.

Therefore, we modify algorithm 2 into the following algorithm 4. All new
steps are highlight with bold font.

Algorithm 4 BFL with unit core extraction and Incremental SAT

1. F” =
∧k−1

i=0 T (Si, Si+1) ∧ ¬Pk

2. Insert F ′ = F” ∧ (
∧

v′∈Free Assign(v′)) into clause database
3. for each v ∈ Free
4. delete Assign(v) from clause database
5. if(SAT Solve(F ′)==UNSATISFIABLE)
6. R=Unit Core(v)
7. Free = Free ∩ R
8. For each v′ ∈ Free − R
9. delete Assign(v′) from clause database

10. else
11. Insert Assign(v) into clause database
12. Free is the minimization set

In step 8 and 9 of algorithm 4, according to N. Een’s conclusion [12] stated
above, we can simply delete all such Assign(v′), and no need to delete any
learned clauses.



308 ShengYu Shen, Ying Qin, and SiKun Li

Thus, This mechanism improves performance in 2 aspects:

1. Learned clauses can be share between similar instances, to avoid searching
overlapped state space repeatedly.

2. No need to waste time on deleting learned clauses.

5 Experiment Result

K Ravi[5] only presents the circuits that used to generate counterexample, but
has not presented the assertion used. Therefore, we can’t compare our result
with his one directly. So we implement K Ravi’s two-stages algorithm and ours
in zchaff[10], such that we can compare them with same circuits and assertions.

We use NuSMV[9] to generate deep counterexample in the following way:

1. Perform a symbolic simulation to generate a state sequence S0, ..., Sk.
2. Use ”Sk can not be reach” as an assertion, and put it into BMC package of

NuSMV[9] to obtain a counterexample shorter than k.

We perform counterexample minimization with K Ravi’s two-stages algo-
rithm[5] and our algorithm. The timeout limit is set to 10000 seconds.

5.1 Experiment Result of K Ravi’s Two Stages Approach

Because K Ravi’s approach includes two stages, so we first present its result in
table 1. The 1st column are the circuits used to generate counterexample. The
2nd column presents the length of counterexample. The 3rd column presents
number of free variables.

The 4th column is the number of variables eliminated by first stage of K
Ravi’s approach, the 5th column is the run time overhead of first stage.

The 6th column is the number of variables eliminated by BFL, the second
stage of K Ravi’s approach, The 7th column is run time overhead of BFL.

According to table 1, most irrelevant variables are eliminated by first stage,
with little run time overhead. But to further eliminate more irrelevant variables,
the highly expensive BFL must be called. The run time overhead of BFL is 2 to
3 orders of magnitude larger than that of first stage.

In the last 2 rows of table 1, K Ravi’s approach run out of time limit. To
obtain the data in the 6th column, we incorporate incremental SAT into BFL,
but without unit core extraction.

5.2 Comparing Result of Our Approach and That of K Ravi

Experiment result of our approach and that of K Ravi are presented in table 2.
The 1st column are the circuits used to generate counterexample. The 2nd col-
umn presents the length of counterexample. The 3rd column present number of
free variables.
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Table 1. Experiment Result of K Ravi’s Two Stage Approach.

Circuits CE Free first stage second stage
length Vars Eliminated Run Eliminated Run

Vars time Vars time

s1512 21 667 601 0.07 5 5.097

s1423 24 483 325 0.07 75 92.443

s3271 15 507 398 0.911 34 38.946

s3384 13 743 596 0.08 19 29.01

s3330 6 373 279 0.03 16 2.613

s5378 10 530 344 0.08 72 12.698

s9234 7 362 169 0.09 57 16.984

s13207 22 1352 977 0.581 132 4080.34

s38584 14 1621 1008 2.592 61 >10000

s38417 14 2029 909 1.365 71 >10000

Table 2. Experiment Result.

Circuits CE Free Result of K Ravi[5] Result of our approach
length Vars Eliminated Run Eliminated Run Speedup

Vars time Vars time

s1512 21 667 606 5.167 606 3.45 1.50

s1423 24 483 400 92.513 397 7.12 12.99

s3271 15 507 432 39.857 432 6.11 6.52

s3384 13 743 615 29.09 615 9.61 3.02

s3330 6 373 295 2.643 295 1.77 1.49

s5378 10 530 416 12.778 411 8.21 1.56

s9234 7 362 226 17.074 226 10.36 1.65

s13207 22 1352 1109 4080.921 1093 153.92 26.51

s38584 14 1621 1069 >10000 1069 682.19 >10

s38417 14 2029 980 >10000 981 947.84 >10

The 4th column is the number of irrelevant free variables eliminated by the
two stages of K Ravi’s algorithm[5]. run time of the two stages of K Ravi’s
algorithm is shown in 5th column.

The 6th column is the number of irrelevant free variables eliminated by our
approach. run time of our algorithm is shown in 7th column. The speedup com-
pared to K Ravi’s algorithm is shown in last column.

5.3 Run Time Statistics of Our Approach

In table 3, we present some run time statistics of our algorithm:
The first column is the name of circuits. The variables and clauses number of

CNF files are presented in 2nd and 3rd column. Their number of free variables are
presented in 4th column, the variable eliminated by unit core extraction in step 7
of algorithm 4 are presented in 5th column. The numbers of UNSATISFIABLE
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Table 3. Run Time Statistics.

Circuits Vars Clauses Free Eliminated Number Number Peak
Vars by of of size

Unit Core UNSAT SAT of Q

s1512 14858 39735 667 601 5 61 397

s1423 16565 44248 483 369 29 85 736

s3271 21769 59656 507 416 16 75 448

s3384 19452 50353 743 596 19 128 458

s3330 6935 17322 373 278 17 78 321

s5378 16180 42415 530 387 24 119 484

s9234 18291 49555 362 173 53 136 581

s13207 107079 284839 1352 1025 68 259 1999

s38584 237756 661828 1621 1005 64 552 5119

s38417 211653 576324 2029 910 71 1048 7703

instances are presented in the 6th column. The numbers of SAT instances are
presented in 7th column. The peak size of Q is presented in last column.

Relationship between these columns is:
4th column=5th column+6th column+7th column

5.4 Conclusion About Experiment Result

From these tables, we can conclude that:

1. In most case, our approach run much faster than K Ravi’s algorithm;
2. According to last column of table 2, it is obvious that the more complex the

counterexample, the higher the speedup. For the three most complex coun-
terexample:s13207, s38584 and s38417, our approach is 1 order of magnitude
faster than K Ravi’s algorithm.

3. Our approach achieves this speedup without any lost in its ability to elimi-
nate irrelevant variables;

4. From 5th column of table 3, most variables are eliminated by unit core
extraction, and don’t need to run SAT solver for them any more;

5. Compare last column of table 3 to 3rd column, the size of Q are much smaller
than that of clause database.

6 Related Works

Our work are somewhat similar to SAT solution minimization of SAT-based
image computation[2–4].

Ken.McMillan’s approach [3] needs to construct an alternating implication
graph rooted at input variables. With this graph, he eliminates irrelevant vari-
ables from SAT solution.

Hyeong-Ju Kang[4] assigns lower decision priority to next state variables,
such that when the transition relation is satisfied, as many as possible next state
variables are undecided.
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P Chauhan[2] employs an ATPG-like approach to analyze the dependence
relation between input variables and transition relation. And try to eliminate as
many as possible next state variables from final solution.

Minimization of counterexamples is useful in the context of abstraction-
refinement[1, 15]. Refinement is often more effective when it is based on the
simultaneous elimination of a set of counterexamples rather than on elimination
of one counterexample at a time.

There are also other approaches to minimize counterexample.
Jin[6] presents a game-based technique that partitions an error trace into

fated segments, controlled by the environment attempting to force the system
into an error, and free segments, controlled by the system attempting to avoid
the error.

P. Gastin[13] proposes a length minimization approach for explicate state
model checker SPIN, which tries to generate shorter counterexample.

Alex Groce[14] proposes a value minimization approach for C language. His
approach tries to minimize the absolute value of typed variables of C language.

7 Conclusion

To make the counterexample easier to be understood, irrelevant variables must
be eliminated. At the same time, minimized counterexamples can significantly
improve the performance of many important verification algorithm.

K Ravi’s algorithm is the most effective counterexample minimization algo-
rithm. However, its time overhead is too large.

Therefore, we propose a faster counterexample minimization algorithm in
this paper. Our algorithm is 1 order of magnitude faster than K Ravi’s algorithm
without any lost in its ability to eliminate irrelevant variables;

In this paper we only due with path like counterexample of safety assertion,
we would also like to address minimization of loop-like counterexample in future
work.
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