Implementation and Evaluation of a Quality-Based Search Engine

Overview

• Context
• Quality in the Internet
• Link Analysis
• Alternative Methods for Quality Assessment
• AQUAINT Project (Automatic Quality Assessment for Internet Resources)
 – AQUAINT Model
 – Implementation
 – Evaluation

Lack of Quality on the Internet

• “a large fraction of low quality web pages that users are unlikely to read” (Page et al. 1998:2)
• “False infomation abounds, either accidentally or with evil intent” (Weinstein & Neumann 2000)
• “information quality varies widely on the Internet” (Zhu & Gauch 2000:288)

Automatic Quality Assessment is Reality

• Automatic Grading of Essays for College Entry Exams in the USA (Miltsakaki & Kukich 2004)
• Recommendation Systems: human judgements are aggregated and weighted ba complex algorithms (Avesani et al. 2005)

Framework for Definitions of Quality

• Transcendent: objective and absolute quality, which is universally valid.
• User-oriented: subjektivity, quality depends on context and situation of the user

cf. Marchand 1990

Link-Analysis
Link-Analysis: Basic Idea

- Current standard approach to automatic quality assessment
- Basic idea stems from Biblio- or Scientometrics
- Many links to an object support its authority
- Most well known algorithm: PageRank (maybe applied by Google)

Link-Analysis: PageRank

- The more links pointing to a page, the higher is its authority
- The higher the authority of a page, the more it contributes to the authority of the target page
- Iterative algorithm

Link-Distribution

Growth Model

\[\Pi(l(i)) = \alpha \frac{lc(i)}{L} + (1-\alpha) \frac{1}{U} \]

- \(\Pi(l(i)) \): Probability that new link refers to unit \(i \)
- \(lc(i) \): number of in-links of unit \(i \) (Link – Count)
- \(L \): current number of links in the network
- \(U \): current number of units in the network
- \(\alpha \): parameter

Matthew-Effect

- Jesus said:
 “For everyone who has will be given more, and he will have an abundance. Whoever does not have, even what he has will be taken from him.”
 (Matthew 25:29)

TREC: Approach

- Text Retrieval Conference
- Test Basis
 - Objects (Documents, ...)
 - Information Requests (Topics)
 - Standard Relevance Assessment
- Starting in 2000: Web Track
 - Different Corpora ("web snapshots")
 - Evaluation of Web Retrieval Algorithms
Web-Track: Results

– Several groups tested PageRank in the TREC web track
– Improvement could only be noted for the homepage finding task

Link-Analysis

• Link Analysis is insufficient as the only basis for quality assessment
• Experimental systems are searching for alternative approaches
• -> AQUAINT

State of the Art

<table>
<thead>
<tr>
<th>Link-Analysis</th>
<th>PageRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUAINT</td>
<td>AQUAINT</td>
</tr>
<tr>
<td>Amento et al. 2000</td>
<td>Ivory & Hearst 2002</td>
</tr>
<tr>
<td>Zhu & Gauch 2000</td>
<td></td>
</tr>
<tr>
<td>Bucy et al. 1999</td>
<td></td>
</tr>
</tbody>
</table>

AQUAINT

• Perspektive: Quality Information Retrieval
• Quality Basis: Decisions made at Internet-Catalogues (Yahoo)
• Other web pages as contrastive (negativ) pages
• Different pages are used for model development and for evaluation
• Evaluation considers retrieval effectivity and page quality

AQUAINT was funded by the German Research Foundation (DFG)
Grant MA 241/13-1

Automatic Quality Assessment for Internet Resources

Pages which are intellectually evaluated
Analysis of features
Domain 1

Pages not evaluated Siten or pages evaluated negatively
Analysis of features

Analysis of the differences Machine Learning -> Quality Model

Page Features
Page Features
Features

- Single Features tell us little or are ambivalent
- Example: age of a page
 - Conference pages from last year?
- Complex Quality Model
 - Disadvantage: no transparency

AQUAINT: Features

- Features extracted from HTML Code and DOM
 - Some 110 features
 - Partly from previous research
- Examples for features
 - Graphic vs. Text orientation (Colors, Graphics)
 - Structure and complexity
 - Size of some elements (Tags)
 - Text, Links, Hierarchy Level
 - Balance (e.g. between Links and Text ...)

Features: Design

- Design very important for human quality judgement (Tractinsky 1997, Bouch et al. 2000)
 - Eye is primarily directed to graphic elements (Ollermann et al. 2004)
 - Strong correlation between design and trust (Fogg et al. 2001)

AQUAINT: Features

- Features extracted from HTML Code and DOM
 - Some 110 features
 - Partly from previous research
- Examples for features
 - Graphic vs. Text orientation (Colors, Graphics)
 - Structure and complexity
 - Size of some elements (Tags)
 - Text, Links, Hierarchy Level
 - Balance (e.g. between Links and Text ...)

Features: Design

Simplicity
- Structure complex figures
- Symmetry cluttered

Complexity
- Structure complex figures
- Symmetry cluttered
- Overburdened
Quality Model

• Current model
 – some 15,000 pages from Yahoo - Health
 – some 15,000 pages from Search engines
 – some 10,000 intellektually found Spam
 (Source: Lycos Europe)
• Linear Regression Model

Evaluation

Evaluation: Subjektivity of Quality Judgements

• “The quality of a web site inherently is a matter of human judgement”
 (Amtento et al. 2000:296)
• “In fact, for a website there can be as many views of its quality as there are usages”
 (Brajnik 2001:2)
• “Many kinds of human judgement are intrinsically inconsistent” (Mizzaro 1997:814)

Evaluation

• Searches in Domain Health
• Grading of results pages by test users
 – According to relevance and
 – Quality
• 20 test users with 10 queries each
 – Log-File
 – Notes of test administrators

Evaluation: Subjectivity of Quality

-> Break with Cranfield-Paradigm of Evaluation in Information Retrieval

• No transcendent and absolute relevance
• But individual, subjective quality evaluation in the context
• Different evaluation strategy as in standard information retrieval evaluation
 (TREC, CLEF, NTCIR, INEX, ...)
Evaluation Results AQUAINT:
At Ten Documents

<table>
<thead>
<tr>
<th>Ranking Method</th>
<th>Grade assigned by user</th>
<th>Quality Grading</th>
<th>Relevance Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Ranking</td>
<td>Grade 1</td>
<td>29</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Grade 1 to 2</td>
<td>101</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Grade 1 to 3</td>
<td>154</td>
<td>143</td>
</tr>
<tr>
<td>Quality Ranking</td>
<td>Grade 1</td>
<td>32</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Grade 1 to 2</td>
<td>119</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Grade 1 to 3</td>
<td>185</td>
<td>167</td>
</tr>
<tr>
<td>Random Ranking</td>
<td>Grade 1</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Grade 1 to 2</td>
<td>68</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Grade 1 to 3</td>
<td>114</td>
<td>110</td>
</tr>
</tbody>
</table>

Future Work

- **Future Quality Models?**
 - Probably combinations of link analysis, content analysis as well as presentation analysis
- **Web-Design Mining as a sub task of Web Mining**
 - e.g. colors (Eibl & Mandl 2005) or structure (Mandl 2003)

Thanks for your Attention

I am looking forward to the Discussion