Text, Data and People –
How to Represent
Earth System Science

Hans Pfeiffenberger
Ana Macario
Alfred Wegener Institut, Bremerhaven
Introduction

- **Earth System Science (ESS) is an interdisciplinary and global collaboration**
- **ESS output is heavily data-centric**
 - data come from observations
 - and simulation (“in silico” experiments)
- **ESS work is organized around**
 - expeditions or campaigns and
 - coupled models of earth’s sub-systems
- **Logistics and system cost are extremely high**
 - one ship may cost up to 500 G€
 - “Earth Simulator”, the fastest computer 2 years ago
- **ESS data potentially are of extreme long term value**
An important, typical Experiment

- **EISENEX / EIFEX**: Conducted during two expeditions of “Polarstern”, with a 4 year pause

- **EIFEX (2004):**
 - 54 scientists (and students) from
 - 14 institutes and 3 companies from
 - 7 European countries and South Africa
 - Oceanographers
 - Biologists
 - Chemists.....

- “Biogeochemistry”
Collaboration’s data needs

- Need to work from a common understanding of what is known about the subject
- Need to plan expeditions and coordinate with ships’ operators general plan (5 or more years in advance)
- Need to coordinate instrument design, operation and interfacing before ships departure
- Meet aboard, sail and work 8 weeks or so
- Do evaluation, when at the home institute, exchanging their particular results.
- Publish text; PhD students dump the data somewhere, if nobody watches, or keep it “private”
Data Publishing

There is reason enough to thoroughly publish data:

- Potential reuse in many more contexts than foreseen
- Enable peer reviewers to have a critical look at data quality

Problem: Metadata

- ISO 19115 is a metadata standard (with ~1000 attributes) for georeferenced data
- Almost no producer of data knows how to form ISO 19115 for his/her data (nor wishes to know)

There is no reward system (like: number of peer reviewed papers) in place to stimulate individuals

- There should be a solution for well curated datasets and databases
Data Management

- Metadata needed even on “work in progress”- or auxiliary datasets,
 - both need to be “archived”, or managed
 - Even if they may never achieve a level of “published” data
 - They need to be available to a distributed project group during their project, long before publication

- There are too many datasets to produce correct and complete ISO 19115 metadata “manually”
 - Find ways to produce ISO by each instrument at the time of data creation, automatically
 - Use context or relationship instead of descriptive metadata
Relating all relevant Objects

...but for AWI expeditions only, today

Hans Pfeiffenberger, Ana Macario, Alfred Wegener Institut, Helmholtz Association
OAI4 CERN 2005-10-20
Current PANGAEA relationship encoding

Dataset-to-Publication relationship metadata should be expressed in RDF/XML and placed in the "Relations datastream"

Identifiers needed (in addition to locators)
Goals

- Transfer concepts and content from “homegrown”, internal repositories to federations of standards-based IRs around the world

- Harvest (f.e.) Polarstern-expedition related text and data from all IRs of participants

- Display / sort / analyze / rank the maze of material through all meaningful criteria

- Find key networks of people, projects, text,.....
Welcome to Helmholtz Web Services for primary data, publications and personal portfolio.

Search: macario

Select Repository:
- ✔ Fedora at AWI
- ✔ Pangaea

Search

Results 1-5 for 'macario':

1. **Personal Homepage of Dr. Ana Macario** [text, people]
 (2005) Ana Macario

2. **A Discovery Service for Knowledge Related to Research Platforms** [event, international talk]

3. **Portal for Earth Sciences in Polar Regions** [event, international talk]

4. **Research platforms in polar regions - a portal approach** [event, international talk]

5. **An homogeneous Directory of People, Publications, and other Resources as a means for IT-based Knowledge Management in Science** [event, invited national talk]

Fedora at AWI Response Time: 0.144s, 5 Results
Pangaea Response Time: 0.374s, 0 Results
Show Results 6-10 -->

Script Time: 0.399s
Types of Object In the order of appearance (1)

- **(Institutions)**
- **Person**
 - represented by splash page (Personal home page)
 - uid: eduPersonPrimaryName
 - primary encoding: eduPerson schema
- **(informal group)**
- **Project**
 - represented by splash page (Project home page)
 - uid: maybe a specific encoding of the funders’ project number
 - primary encoding: eduPerson/eduOrg schema
- **Expedition, Campaign:**
 - represented by splash page (Expedition home page)
 - treat it as a project, generate project number from expedition identifier
 - primary encoding: eduPerson/eduOrg schema
Types of Object In the order of appearance (2)

- **Datasets**
 - represented by splash page
 - uid: maybe the same kind as publications
 - primary encoding: Community specific (f.e.: ISO 19115)

- **Publications**
 - represented by splash page containing
 - abstract, etc.
 - pointer to article at publishers site
 - pointer to article at IR
 - publisher’s word about what is the “original”, etc.
 - uid: DOI, permanent URL, etc.
 - primary encoding: repository’s (proprietary) format (f.e.: Fedora’s, it must be possible to map this in an unambiguous way to METS, MPEG21-DIDL,...
Object relationships (tentative)

Person

Group

Project

Publication

Dataset

Expedition / Experiment / Campaign

IsAuthorOf

IsMemberOf

IsPartOf

IsMemberOf

IsPLOf

IsAuthorOf

IsBasedOn

IsDescribedBy

IsResultOf

IsPartOf
Conclusion 1 – Text with Data

- (Text-)Publications and related primary data have to be cross-referenced
 - We need ontology and schema designs to express the relationships (to solve reuse/aggregation problem)
- Extensive descriptive metadata (f.e. ISO19115) are useful only to big repositories of well curated datasets with similar content
- The full text of publications (and its relation to datasets) may be the best “metadata” for the datasets you will get
 - Primary hit in a (Google-like) search may be a publication, which refers to primary data
Conclusions 2 - Full Relation Network

Service providers should make use of network of all relevant objects - people, projects, … datasets, text
- harvest relationship metadata
- harvest descriptive metadata (Dublin Core quality)
- enable new search paradigms

Data providers need to expose the relationship of objects
- will require a “complex” metadata format
- will require an ontology for relationships
- will require unique identifiers for people etc. (from eduPerson schema, ~ email address)
- introduce identifiers for projects and “experiments”