
The Decomate II Current Awareness Service — 1 —

The Decomate II Current Awareness Service

Ferran Jorba1

Servei d’Informàtica
Universitat Autònoma de Barcelona

22 June 20002

Abstract
The Decomate II Current Awareness Service is an extension of the standard search
services of the system. This means that any of the Z39.50 databases available from
Decomate II can be queried to extract new records that match the users interest profiles.
This represents an interesting challenge, as the characteristics (fields and indexes) of
those implementations are diverse. In this paper we will see how users can manage their
profiles, how the results are presented on screen and also how Decomate II CAS
implements different search strategies to extract new additions to the databases without
getting any privileged access to them.

CAS design goals

The main purpose of the Decomate II system is to provide an unified access to the
diverse sources of bibliographic information that libraries deal with. The library
catalogue, the scientific bibliographies, remote journals at the publisher's web sites,
cooperative resources like RePEc, etc., each of them have their own native interface, but
the Decomate II system allows to access them from a single entry point. If a single
interface is a good thing for searching, a single alerting system is a logical extension for
it. That's the task of the Current Awareness Service.

At the same time, the CAS functionality should be seamlessly integrated into the main
system, and perceived by the end user as part of the same whole, not as an add-on. And
not only from the end-user point of view: internally, the Decomate II CAS keeps an
internal coherency with other components of the system and talks the same XREP3

protocol. The interfaces with them are clear and clean: this means that it can run either
on the same computer than the rest of the system, or on a different one.

User interface and functionality

The Decomate II CAS notifies subscribed users about new bibliographic records that
match a query for an user-selected list of databases. This query, together with other
user-defined delivery preferences, is called an interest profile. A new interest profile can
be created by the user after performing a search over one or more databases. The screen

1 Author’s address: Ferran.Jorba@uab.es.
2 Presentation given at the conference Logged into Economics : an Assessment of the European Digital

Library Decomate II, Barcelona (Spain), 22nd-23rd June, 2000.
3 XML Request and Response Protocol, explained elsewhere in this conference.

The Decomate II Current Awareness Service — 2 —

that shows the results of the search also has a button to save the query, and define his or
her choices: (s)he can set a name, frequency, email address, etc.

For each new interest profile created, the system sends a welcome message via email. At
the frequency chosen by the user, the system searches the selected databases for new
bibliographic records that match the query, and, if requested, it sends an email
notification. At the same time, it creates a virtual personalised journal with those
records. For each run, a new issue of this journal is created, which can be browsed via
the standard Decomate II Web interface, for which only the “subscriber” has access to.
Those records are locally stored in order to guarantee both a fast access and as a
safeguard against additions or changes in the remote databases. Of course, an interest
profile can also be modified or deleted by the end user at any time.

The system also tries to give flexibility and maintenance independence to the system
administrator: most of the values can be parametrised: the number of issues stored per
interest profile, the number of bibliographic records per issue, etc. It also deletes expired
users: in the university community people come and go, so the CAS system takes care,
via the Authentication Broker, to check user validity and permissions to the databases (as
they may change, or users may change status), and warns him or her via email if they are
wrong. After this notification has been sent and a number of grace days has passed
(another parameter yet), the profiles and issues for those expired users are automatically
removed.

CAS components

The CAS consists in three parts: the CAS Interactive Session, the CAS Server and the
CAS Robot.

1. The CAS Interactive session handles users requests and provides the logic for
presenting and updating the screens. As a clear user-interface task, it is handled by
the Broker’s functionality4.

2. The CAS Server handles CAS Interactive Session requests and translates them from
XREP to SQL and back. In other words, it is an XREP server and a SQL client.

3. The CAS Robot does the bulk of the heavy work. It checks all the available profiles,
calculates frequencies, decides whether the queries have to be performed and requests
the broker to execute them. It then filters new bibliographic records, keeps the
results, updates the issues and sends the results via email to the users.

Strategies to discover new bibliographic records

Most of the bibliographic alerting services are part of their data-loading procedures, so
they get those new records and distribute them to the subscribed users. There are plenty
of examples of this model that work well on a limited and controlled data5, not
necessarily bibliographic. The opposite one, where a service “watch” events —in a non-

4 And due to that, it has been implemented by the Broker team at Tilburg University.
5 For example, the table of contents email alerting service of the Consorci de Biblioteques Universitàries

de Catalunya (http://sumaris.cbuc.es).

The Decomate II Current Awareness Service — 3 —

privileged way— and notify users about changes is also popular on the Internet6. But
none of them allows the user to set a specific frequency to be notified about; rather, it is
an event-based system where the timing is determined by the observable event classes,
and system sends notifications to the subscribers7 as they happen, or at a fixed
frequency8.

In Decomate II, the scenario is quite different: there is an unknown set of requests
(interest profiles), over a distributed collection of bibliographic data (external Z39.50
repositories, with no privileged access to them), to be notified at different frequencies
(user chosen) and possibly delivered in different formats. Moreover, those Z39.50-
accessible databases have different attributes, indexes and characteristics.

So, as the databases are diverse, we thought we’d better devise a set of different
strategies to deal with those situations. We looked at the most obvious indexes to
identify new records: a date field9 first, and a record id second. A Z39.50 database with
those indexes should be a good one. Really? How good is a date index if we cannot
search with a “greater than” comparison? The same can be said about the record id field.
Most of the databases have at least one of those fields indexed, but it is not so common
to allow the “greater than” comparison. Others do not even have those fields indexed,
and also a few of them do not even have them. For the last case, we had to imagine a
way to build an unique identification for those records (we called it a calculatedID). We
ordered them from better to worse, and we came out with those strategies:

A. searchByDate
B. searchByRecordID
C. compareLastDate
D. compareLastRecordID
E. checkStoredRecordIDs
F. checkStoredCalculatedIDs

Later on, well advanced in the implementation phase, we found out that with a judicious
use of parameters, we could reduce them into four, grouping C with D and E with F,
giving this shorter list10:

1. searchByDate: when the date field can be searched by “greater than”.
2. searchByRecordID: when the record id field can be searched by “greater than”.
3. compareLastID: when there is an identification field that belongs to an ordered set, so

we can compare it locally with a “greater than” with the last one retrieved.

6 Like Netmind’s Mind-it (http://mindit.netmind.com), which monitors page changes and alerts

subscribed users about them.
7 For a good discussion of different models of alerting services, see Annika Hinze and Daniel Faensen, A

Unified Model of Internet Scale Alerting Services (see bibliography). Section 2 describes event
notification services. An interesting insight the authors provide of the digital library scenario is that
“Objects of interest are unknown at the time of profile definition and usually come into existence later”
(section 3.1.2).

8 Like the weekly ISI “Discovery Agent” (http://www.isinet.com/products/alertsvc/daprod.html).
9 The more common word “field” is used here, although in proper Z39.50 terminology they are called

“use attribute”.
10 We didn’t group A with B due to the well known difficulties to deal with dates and date formats,

specially when used as a search field.

The Decomate II Current Awareness Service — 4 —

4. checkStoredIDs: when there is no id belonging to an ordered set that can be
compared with a “greater than” operation, each of the incoming records must be
matched against all records found so far, using an “exclusive or” operation. If the
database doesn’t provide a proper record id field, a unique identification has to be
generated, based on a combination of fields that creates non-repeteable keys. An
MD5 signature can be optionally calculated when the string is too long to fit in CAS
tables.

Those strategies are stored in the Decomate II metadata, where database information is
stored and administered. For each database, a CASSearchStrategy entry must be added,
for example:

 <CASSearchStrategy>
 <method>searchByDate</method>
 <searchField>ld</searchField>
 <dateFormat>yyyy.mm.dd</dateFormat>
 </CASSearchStrategy>

 <CASSearchStrategy>
 <method>searchByRecordID</method>
 <searchField>id</searchField>
 </CASSearchStrategy>

 <CASSearchStrategy>
 <method>compareLastID</method>
 <keyTag>RECORDID</keyTag>
 </CASSearchStrategy>

 <CASSearchStrategy>
 <method>checkStoredIDs</method>
 <keyTag>ISSN</keyTag>
 <keyTag>COLLATION</keyTag>
 <shortenKeyMethod>MD5</shortenKeyMethod>
 </CASSearchStrategy>

We know of at least one system that is not able to fit here: there is one well known
bibliographic service that doesn’t return more than 200 records via Z39.50. We
understand, however, that this is a faulty implementation that has to be fixed.

Architectural model and implementation

CAS is a two-head beast. Both the CAS Server and the CAS Robot share the same
objects and their behaviour. For example, the central object of the whole CAS system is
the interest profile, and all the work is done around it, both by the Server and the Robot.
There are also common objects like personalised journal issues, bibliographic records,
parameters, etc. Thus, it was a logical decision to build an object oriented system that
reuses the same objects and guarantees their coherent behaviour and an easier
developer’s maintenance.

The Decomate II Current Awareness Service — 5 —

Those main objects (interest profiles, issues, bibliographic records, etc.) are persistent11,
that is, they can be stored and retrieved among different sessions. We had to choose a
proper persistence repository for them. The primary lingua franca that Decomate II
speaks to the outer world is Z39.50, and it makes sense to make CAS bibliographic data
Z39.50-accessible. This allow the reuse of the Broker+MPS combo functionality for
CAS journals bibliographic retrieval and presentation functionality. However, Z39.50
systems usually don’t provide immediate indexing12 or transaction control. Due to that,
a more traditional and business-oriented relational database system is used for storing
interest profiles and other non-bibliographic information. This further complicates the
persistence layer in our system, that has interfaces with SQL, the filesystem and the
Broker. In the later one, the Broker mediates with the Z39.50 functionality and the
Authorisation Broker using standard HTTP. So, the CAS Server is an XREP server and
a SQL client, and the CAS Robot is both an SQL and HTTP client. A graphical
representation of the object hierarchy can be depicted this way:

CAS Server CAS Robot

Shared non-
persistent objects

Shared persistent objects

Persistence layer

SQL layer HTTP layer Filesystem layer

SQL server Broker Files and
directories

Network

Broker

CAS object hierarchy

11 There is a large bibliography on object persistence, specially about the so-called impedance-mismatch

between object-oriented programming and relational databases. See a selected bibliography at the end
of this article.

12 This is not a protocol fault or responsability, but rather than Z39.50 systems are, in general, build
around free-text indexing systems over flat files. Moreover, database updates over Z39.50 are a
relatively recent feature of the protocol (in version 3, 1995), and they are optional, in the so called
Extended Services.

The Decomate II Current Awareness Service — 6 —

Conclusion

Decomate II CAS service is a generic system that allows a unified alerting service about
new bibliographic entries from a distributed set of databases, without using any
privileged access to them. It is based on the existing Decomate II infrastructure (Broker,
MPS and Authorisation Broker) to send to the authorised users notifications about new
publications that fit their interests, and to create personalised journals with those records.
Almost any Z39.50 database accessible from Decomate II can be configured to deliver
new records, selecting the right strategy and choosing the appropriate values.

A system like this, where there are factors beyond the developers control, like time
(usually measured in weeks or even months) or the variety of Z39.50 implementations
out there, make it quite difficult to test it properly. Due to that, it needs a long
experimental period to settle it down and mature. However, we believe that we have
build a solid and scalable system that allows further refinement in the future.

Acknowledgements
The Decomate II CAS has been a collaborative work of many people, who have enriched
it with their suggestions and feedback. I would like to thank all the Decomate II partners
for it, specially my colleagues at UAB Angels Sales, Laura Permanyer, Nuria Gallart and
Carme Ribera (the latter no longer at UAB) and the project team at Tilburg University:
Thomas Place, Hans van den Dool, Roel de Cock and Joost Dijkstra (who is no longer at
TU), and of course the always needed testing and feedback from the teams at LSE and
EUI.

Bibliography
Ambler, Scott W., Building Object Applications That Work, Cambridge, etc. : Cambridge University

Press : SIGS Books, 1998.
—— The Design of a Robust Persistence Layer For Relational Databases, 16 August 1998 version

(http://www.ambysoft.com/persistenceLayer.pdf).
—— Mapping Object to Relational Databases, 26 February 1999 version

(http://www.ambysoft.com/mappingObjects.pdf).
Brown, Kyle, Bruce G. Whitenack, Crossing Chasms : a Pattern Language for Object-RDBMS

Integration : the Static Patterns, Knowledge Systems Corporation, 1998
(http://www.ksccary.com/Articles/ObjectRDBMSPattern/ObjectRDBMSPattern.htm).

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal, Pattern Oriented
Software Architecture : A System of Patterns, Chichester : Wiley, 1996.

Hinze, Annika, Daniel Faensen, A Unified Model of Internet Scale Alerting Services, 1999
(http://www.inf.fu-berlin.de/~hinze/projects/publications/TR-B-99-15/).

Heinckiens, Peter M., Building Scalable Database Applications : Object-Oriented Design, Architectures
and Implementations, Reading, Mass. : Addison-Wesley, 1988.

Object Matter, Inc., Object Relational Mapping Strategies, 1988
(http://www.objectmatter.com/vbsf/docs/maptool/ormapping.html).

Russell, Mark L., Foundations of Object Relational Mapping, v0.2 [mlf-970703], 15 July 1997
(http://www.chimu.com/publications/objectRelational/).

Salo, Timo, Justin Hill, Scott Rich, Chuck Bridgham, Daniel Berg, “Object Persistence : Beyond
Serialization”, in Dr. Dobbs Journal, vol. 24, n. 5 (May 1999), p. 19-33.

Turner, Paul, Arthur M. Keller, Reflections on Object-Relational Applications September 1, 1995
(http://www-db.stanford.edu/pub/keller/1995/reflections-object-relational.pdf).

Yoder, Joseph W., Ralph E. Johnson, Quince D. Wilson, Connecting Business Objects to Relational
Databases, 1998 (http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P51.pdf).

