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Abstract

Information presentation in a digital library plays important role especially in improving the

usability of collections and helping users to get started with the collection. One approach

is to provide an overview through large topical category hierarchies associated with the

documents of a collection. But with the growth in the amount of information, this manual

classification becomes a new problem for users. The navigation through the hierarchy can

be a time-consuming and frustrating process.

In this master thesis, we examine the performance of machine learning algorithms for

automatic text classification. We examine three learning algorithms namely ID3, Instance-

Based Learning, and Naive Bayes to classify documents according to their category hier-

archies. We focused on the effectiveness measurement such as recall, precision, the F1-

measure, error, and the learning curve in learning a manually classified metadata collection

from the Indonesian Digital Library Network (IndonesiaDLN), and we compare the results

with an examination of the Reuters-21578 dataset. We summarize the algorithm that is

most suitable for the digital library collection and the performance of the algorithms on

these datasets.
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Chapter 1

Introduction

In recent years, many research projects, workshops, and conferences have focused on digital

libraries as a relatively new field [1]. Digital libraries have been seen as a means of making

distributed information readily and easily available. One of the efforts is the Open Archive

Initiative (OAI) that provides universal mechanisms to integrate metadata from distributed

digital libraries. Using the OAI protocol, one can harvest metadata from other digital

libraries and store it into one’s own database, or provide access to one’s metadata for other

digital libraries [2]. A collection of millions of metadata entries that represents million of

documents is then ready for users. The question arises of how retrieval of such information

can be facilitated [3].

When search engines became available on the Internet, many users felt that they only

needed to enter the appropriate terms into a search engine, and the desired information

would be retrieved. But inexperienced searchers discover difficulties when they are provided

with millions of hits. It leads to the recognition that subject classifications may become

more important than ever. Organizing information into subjects, or taxonomies, provides

users with a significant improvement in retrieval [4].

One of the digital library systems, examined in this thesis, is the Ganesha Digital Library

(GDL) software which is used by the Indonesian Digital Library Network (IndonesiaDLN)

[5]. This system implements the OAI protocol for metadata gathering and dissemination

over more than 45 digital libraries in Indonesia, provides metadata searching, and classifies

the metadata into categories for browsing.

Unlike other on-line directories, such as Yahoo! which uses trained information pro-

fessionals to organize and categorize collections, the digital libraries in this network are

1
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maintained by people with many backgrounds [6]. This raises another problem, that digital

libraries will contain incorrect or inconsistent classification, so in turn browsing through

category hierarchies can be frustrating and time consuming.

Apparently, the manual classification of the IndonesiaDLN metadata is noisy 1. Realiz-

ing the shortcoming of the manual classification method, we ask how good the perfor-

mance of the machine learning algorithms to perform automatic text classifica-

tion on the digital libraries metadata can be.

In order to bring us closer to this goal, in this first chapter we outline how machine

learning techniques have been used for information retrieval. Then, we describe how ma-

chine learning algorithms approach to the text classification. In the rest of this chapter we

describe briefly the motivations, organization, and contributions of this thesis.

1.1 Machine Learning for Information Retrieval

Machine learning was applied in information retrieval long before the recent advances of the

Web. It has been used in the following areas: information extraction, relevance feedback,

information filtering, text classification, and text clustering. In this section, we summarize

the research in these areas [7], while emphasizing the text classification area.

Information extraction techniques identify useful information from text documents au-

tomatically. The most widely studied sub-field is named-entity extraction. For example, we

can extract persons, locations, organizations, dates, times, number expressions, currency

amounts, email addresses, and Web addresses. The machine learning algorithms for this

extraction include neural networks, decision trees, Hidden Markov Models, and Maximum

Entropy models.

Relevance feedback reformulates search queries based a user’s evaluation of previously

retrieved documents. The main assumption is that the relevance of documents to a par-

ticular query is represented by a set of similar keywords [8]. Probabilistic techniques have

been used in relevance feedback by estimating the probability of the relevance of a given

document to a user.

Information filtering and recommendation techniques are similar to the relevance feed-

back. The difference is that while relevance feedback allows user to reformulate their search

1A discussion in an IndonesiaDLN’s mailing list in 2002 about users’ experiences in browsing articles
through the IndonesiaDLN’s category trees has figured out this problem. Users got difficulties in finding
articles because the placement of the articles in the category trees confused them.
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queries, information filtering techniques learn a user’s interest based on his or her evaluation

of system suggestions. One example of this technique combined with the recommendation

and the text classification system has been developed for book recommending systems [9].

The technique used the Naive Bayes algorithms.

Text classification and text clustering techniques have been studied extensively in tra-

ditional information retrieval literature. Text classification is a supervised learning that

classifies textual documents according to their predefined categories, while text cluster-

ing is unsupervised learning that groups documents into categories dynamically according

to their similarities. Machine Learning techniques have been applied extensively to text

classification and text clustering. Five text classification methods that have been widely

examined are Support Vector Machines (SVM), k-Nearest Neighbor (kNN), Naive Bayes,

Neural Network (NNet) [10], and Rocchio [11]. It has been shown that SVM achieved

the best performance on the Reuters-21578 data set [10]. For text clustering, the Estima-

tion Maximization (EM) algorithm has became the basis for many unsupervised clustering

algorithms [12].

One aims in machine learning to construct algorithms for predicting a certain label of

unseen examples after learning a limited number of training examples. In the absence of

any additional assumptions, this task cannot be solved since unseen situations might have

an arbitrary label. The assumptions about the nature of the label are subsumed in the term

inductive bias [13]. Different classifiers may have different inductive biases. On one hand,

an inductive bias enables the classifier to classify unseen instances, and on the other hand

it may be the cause of classification errors when it is inconsistent with the labels [14].

To attain the goals of this thesis, three machine learning techniques will be applied,

namely Naive Bayes, kNN, and ID3. Their importance and a more detailed description

of their techniques is presented in Chapter 2.

1.2 Text Classification

The automated text classification can be defined as assigning pre-defined category labels to

new documents based on the likelihood suggested by a training set of labelled documents

[10]. The machine learning paradigm has became one of the main approaches in this area.

It generates a classifier from the training set based on the characteristics of the documents

already classified. Then it uses the classifier to classify the new documents [11]. Using this
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approach, digital libraries that don’t have information professionals can use other digital

libraries’ classification on the same knowledge domain as the training set, to classify their

documents.

The question arises of how a document be assigned to the most likely category, with

the highest accuracy and the lowest computational cost [11]. Beside the limitation of the

techniques to classify the documents correctly, the correctness and consistency of the clas-

sifications provided by the information professionals for the training set also influence the

accuracy. The last issue leads to the question of how well the current classification has

been built at the IndonesiaDLN. We will compare the classification of the IndonesiaDLN

metadata with another well known data set, the Reuters-21578.

1.3 Motivation

The two most important motivating factors for the examination of the learning algorithms

for text classification in digital libraries are: identifying the most appropriate learning

algorithms for text classification in the digital libraries; and improving usability and services

of the digital libraries.

1.3.1 Improving The Usability and Services of the Digital Libraries

The rapid growth of information provided on the Internet has increased popularity of search

engines. Having an information need, one will go to Google or Yahoo! to find links to the

related web pages or one will type queries into Citeseer for scientific articles. Unfortunately,

most of the digital library database entries are not indexed by the search engines. While

it is easy to harvest the digital libraries databases using a particular protocol, such as the

OAI protocol, it is very likely that the search engines have not implemented the protocol to

crawl the digital libraries databases. In order for the databases to be searched directly by

the search engines (e.g. by Google), they should have an application that serves database

entries as web pages or exports to XML files on a web server [15].

The ability of the digital libraries to retrieve information according to user’s queries

with high accuracy and efficiency is of vital importance. A million records of metadata can

be harvested, stored, and then integrated from many digital libraries. The final question is

how usable the collections are for the users. Whether or not users from various backgrounds

can find valuable information somewhere in the collection is very important.



5

Machine learning techniques can help to improve the digital library services such as ad

hoc retrieval, routing and filtering, and browsing. Although machine learning techniques

have been researched extensively for long time in these fields there is still room to improve

various aspects of the learning algorithms and to apply them in many new ways.

1.3.2 Identifying the Most Appropriate Learning Algorithm

It is clear that no learning algorithm is optimal for all tasks [16]. One should find a situation

where the algorithms will perform well. After examining the accuracy of the algorithms

over the digital library metadata collections, we can identify the most appropriate learning

algorithm to be applied. This motivation leads to the main goal of this thesis.

1.4 Contributions

In this thesis, we provide the following contributions:

• Identify the most appropriate learning algorithm for automatic text classification of

the IndonesiaDLN metadata collection.

• Compare the automatic text classification results for the IndonesiaDLN metadata

collection data set with the Reuters-21578 data set.

1.5 Evaluation Framework and Thesis Organization

In this section, we describe the evaluation framework and the organization of this thesis.

1.5.1 Evaluation Framework

Figure 1.1 shows the evaluation framework used to examine the learning algorithms in this

thesis. The framework consists of three major stages: document preprocessing, classification

and testing, and analysis. The sub-stages are shown beneath each major stage.

1.5.2 Thesis Organization

This thesis consists of four chapters. Chapter 1 (this chapter) presents the problems, their

importance, and our research questions.
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Figure 1.1: Evaluation framework used in this thesis.

Chapter 2 describes definitions and methodology of the research. First, we review some

existing works on the automatic text classification and give a brief introduction to the

learning algorithms. Next, we describe the characteristics and processing of the data sets,

the classifiers and the system environment, and a method to measure the accuracy.

Chapter 3 describes the result of the experiments and the evaluation. We compare the

performance of the learning algorithms using two data sets, and identify one that is most

appropriate for the GDL application. We also discuss how the learning algorithm can be

implemented in the IndonesiaDLN.

Chapter 4 summarizes what we have learned and the possibilities for future work.



Chapter 2

Definitions and Methodology

We begin this chapter by defining the terms used throughout this thesis. We briefly describe

text classification, the learning algorithms that are used in this thesis, their importance,

and the selection of the learning software. We also describe the selection of the datasets,

their properties, and how to represent the datasets for the learning process. We conclude

this chapter with the accuracy measures used in this thesis.

2.1 Definitions

The type of learning task in this thesis is supervised learning. Given a pre-defined

classification (labelling) of some document collection, the learning program is to generate a

classifier. We can use the classifier to classify novel instances with the goal of predicting

labels correctly. The quality of the learning program for a specific task can be evaluated

from its accuracy, performance, and other properties. Table 2.1 describes the learning

problem of the automatic text classification in the IndonesiaDLN.

The automatic text classification learning problem:

Task: classifying the metadata into predefined categories.

Performance measure: F1-measure and percent of errors of the predicted labels.

Training experience: pre-defined classification of a metadata set by information professionals.

Table 2.1: The automatic text classification learning problem. The problem uses discrete-
valued target functions.

7
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A metadata instance in a digital library is a simple description about a digital re-

source. For example, a metadata instance describes title, author, abstract, date, list of files,

etc of an electronic paper stored in the digital library.

An instance or example is a fixed list of feature values. An instance in this task

describes a metadata instance as the basic entity we are dealing with.

A feature or attribute describes characteristics of an instance. A feature in this task

is a word occurred in the metadata. The value type of the feature is continuous and

represents the frequency of occurrence of the word in the metadata.

A label is a special feature that describes a category or classification of a metadata.

For example, acq, alum, heat, etc are some labels used by the Reuters-21578 dataset. A

dataset is a set of labelled instances. An unlabelled instance is an instance without

label.

A classifier is a function that maps an unlabelled instance to a label. We shall examine

concrete classifier functions below. For example, the ID3 algorithm stores the function in a

decision tree that maps an unlabelled instance to a category by following a path from the

root to a leaf an return a category at the leaf.

An inducer or a learning algorithm generates a classifier after learning a dataset,

and uses the classifier to classify the unlabelled instances [17]. Three inducers that will be

evaluated in this thesis are ID3, Instance-Based learning, and Naive Bayes.

2.2 Text Classification in the IndonesiaDLN

The metadata and its digital resources represented in the IndonesiaDLN is classified us-

ing a hierarchical category model. This model has been extensively used by many web

portals such as Yahoo! and the Google Web Directory. This representation is useful for

inexperienced users to get an overview of documents under a certain category.

Figure 2.1 shows a category hierarchy that lists names of digital libraries and provides

links to their metadata collection. The metadata is generated and contributed by the digital

library servers in the IndonesiaDLN. From this category, users select sub-categories from

the institutions listed, and then select articles to read.

Figure 2.2 (a) shows the category hierarchy model of the IndonesiaDLN. Every institu-

tion adds their own categories under the Institution Categories. This could produce long

hierarchy trees making browsing a time-consuming and frustrating process. The browsing
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Categories
 (By Publisher code) 
  


 
 
 ACPTUNSYIAH
 / 
Universitas Syah Kuala
  
(49)
  


 
 
 GDLHUB
 / 
GaneshaDL Central Hub
  
(2)
 


 
 
 IJPTUNCEN
 / Universitas Cendrawasih 
 (549)
  


 
 
 JBKMRGGREY
 / 
KMRG ITB
 
(110)
  


 
 
 JBPKINSTY
 / The Indonesian Institute of Science 


and Society 
 (6)
 


 
 
 JBPTIAIN
 / IAIN SUNAN GUNUNG DJATI 
 (2)
 


 
 
 JBPTIPBMMA
 / 
Magister Manajemen Agribisnis 
 -
 IPB
 


(134)
  


 
 
 JBPTITBPP
 / 
ITB Central Library
  
(1560)
  


 
 
 JBPTITBTI
 / 
Departemen Teknik Industri ITB
  
(5)
 


 
 
 JBPTUPI
 / 
Universitas Pendidikan Indonesia
  
(2)
 


 
 
 JIPTIAIN
  / 
IAIN Sunan Ampel Surabaya
  
(5)
 


 
 
 JIPTITNPP
 / 
ITN Malang Central Library
  
(5)
 


 
 
 JIPTSTIKI
  / 
Perpustakaan STIKI Malang
  
(3)
 


 
 
 JIPTUMM
 / 
Universitas Muhammadiyah Malang
  


(184
1)
 


 
 
 JIPTUNAIR
 / 
Universitas Airlangga Surabaya
  
(4)
 


 
 
 JIPTUNMERPP
 / 
UNMER Central Library
  
(69)
  


 
 
 JKLPNDPDII
 / 
Pusat Dokumentasi Dan Informasi 


Ilmiah LIPI
  
(2)
 


 
 
 JKPKBPPK
 / 
Badan Litbang Kesehatan
  
(1609)
  


 
 
 JKPKELNUSA
 / 
PT ELNUSA Tbk
 
(1356)
  


 
 
 JKPKFORLINK
 / 
Dana Mitra Lingkungan 
 -
 FORLINK
 


(51)
  


 
 
 JKPKJPL
H
 / 
JARINGAN PERPUSTAKAAN 


LINGKUNGAN HIDUP
  
(119)
  


 
 
 JKPKKLH
 / 
Kementerian Lingkungan Hidup
  
(1)
 


 
 
 JKPKLEMHANNAS
 / 
Lembaga Ketahanan 


Nasional RI
  
(19)
  


 
 
 JKPNPNRI
 / Perpustakaan Nasional Repu
 blik 


Indonesia 
 (1)
 


 
 
 JKPTBINUS
 / 
Bina Nusantara University
  
(107)
  


 
 
 JKPTIAINPP
 / IAIN
  SYARIF HIDAYATULLAH 
 (10)
  


 
 
 JKPTPERBANAS
 / 
STIE PERBANAS
 
(7)
 


 
 
 JKPTUAIPP
 / 
Perpustakaan Pusat UAI
  
(1)
 


 
 
 JKPTUTPP
 / Perpustakaan Pusat Universitas 


Terbuka 
 (57)
  


 
 
 JKP
TYARSI
 / 
Universitas Yarsi
  
(175)
  


 
 
 JKUNUAJ
 / 
Atma Jaya Catholic University
  
(4)
 


 
 
 JTPTIAIN
 / IAIN Wali Songo Semarang 
 (22)
  


 
 
 KBPTUNTAN
 / 
Universitas Tanjungpura
  
(12)
  


 
 
 KSPTIAIN
 / IAIN Antasari Banjarmasin 
 (54)
  


 
 
 LAPTIAIN
 / IAIN Lampung 
 (146)
  


 
 
 RIPTIAIN
  / IAI
 N Sulthan Syarif Qasim 
 (8)
 


 
 
 SAPTUNSRAT
 / 
Universitas Sam Ratulangi
  


(314)
  


 
 
 SBPTIAIN
 /
 IAIN Padang 
 (16)
  


 
 
 SGPTUNHALU
 / Universitas Haluoleo 
 (4)
 


 
 
 SNPTIAIN
 / IAIN Auludin Makasar 
 (42)
  


 
 
 SSPTIAIN
 / IAIN Raden Fatah Palembang 
 (38)
  


 
 
 SUPTIAIN
 / IAIN Sumatera Utara 
 (31)
  


 
 
 TESTINS
TITUTION
 / Institution Name Corp 
 (4)
 


 
 
 YOPTIAIN
 / IAIN Sunan Kalijaga 
 (1)
 


 


Figure 2.1: The category hierarchy contains the list of the digital libraries in the Indone-
siaDLN. The number represents the total amount of metadata submitted to the Indonesi-
aDLN.

facility is intended to show the richness or poorness of the collections shared by the in-

stitutions. It is expected that the institutions will be motivated to share more knowledge

through the IndonesiaDLN, because their collections are disseminated and presented to all

other digital libraries in the network [6].

Figure 2.2 (b) shows an example of the documents classification presented by JBP-

TITBPP (ITB Central Library) digital library server. The classification of the 25 articles is

based on their document types, department names, study programs, and publication years

[18].

2.3 The Learning Algorithms

In this section, we introduce three inducers that represent the three families of learning

algorithms: decision tree, instance-based learning, and Bayesian. We describe the
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IndonesiaDLN


Children


Universities


Heritage


Other Cluster


Networks...


University A


University B


University C

S1_Final Project


S2_Thesis


S3_Dissertations


Other Categories


              Top/    Networks /     Institution Names /   Inst. Categories/ ...


Category tree:


Address: 
/Top / Collections / General / JBPTITBPP / S2-Theses / Natural Sciences


/ Chemistry / 2000 /


Displaying article 1 - 5 of total 25 article(s).


Master Theses from JBPTITBPP / 2001-02-05 ::00


Pengaruh pelarut dan temperatur terhadap transpor Europium (III) melalui teknik


membran cair berpendukung.


By: Eti Testiani


Created: 2000-09-00 , with 1 file(s).


Master Theses from JBPTITBPP / 2001-02-14 ::00


Membran komposit berpendukung untuk pemisahan zat warna tekstil secara


proses osmosis balik.


By: Heru Pratomo AL.


Created: 2000-09-00 , with 1 file(s).


Master Theses from JBPTITBPP / 2001-03-29 ::00


Ekstraksi berilium (II) dari bijih yang mengandung illite, clinochlore dan kuarsa


dengan asetilaseton sebagai pengompleks


By: Radna Nurmasari


Created: 2000-09-00


Master Theses from JBPTITBPP / 2001-03-31 ::00


Transport lantanum melalui membran cair berpendukung ganda

By: Barlah Rumhayati


Created: 2000-10-00


Master Theses from JBPTITBPP / 2001-04-02 ::00


Produksi entropi dan pertautan osilator pada model Brussellator

By: Maria Erna


Created: 2000-09-00


(a)                                                                      (b)


Figure 2.2: (a) The category hierarchy model in the IndonesiaDLN. (b) Example of the
documents classification in the IndonesiaDLN.

importance of the algorithms and their basic ideas. Further discussion about these algo-

rithms is provided in chapter 3. Anyone who wants more description about these learning

algorithms can refer to [12].

2.3.1 Decision Tree

Decision tree learning is one of the most popular and practical methods currently used for

inductive bias. This method approximates classification to the discrete-valued label that

is robust to noisy data. Several methods have been proposed for constructing decision

trees, including ID3, C4.5, and CART. Among these learning algorithms, we chose ID3

because it corresponds approximately to the basic decision tree learning algorithm, while

other learning algorithms has been extended from this basic algorithm to achieve better

performance.

The basic idea of the ID3 algorithm is to construct an inducer in the form of a decision

tree, from the top node to the leaf nodes. Given the partial decision at one node, the

decision tree user then follows the next branch until he reaches the leaf node or the final

classification. ID3 uses a statistical property, called information gain, to select the attribute

or word that is most useful for classifying examples at each step while growing the tree. We
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define information gain formally as follow:

Gain(S, A) ≡ Entropy(S) −
∑

v∈V alues(A)

|Sv|

|S|
Entropy(Sv) (2.3.1)

Entropy(S) ≡
c

∑

i=1

−pilog2pi (2.3.2)

As seen in the equation 2.3.1, the information gain Gain(S, A) of an attribute A relative

to a collection of examples S, where V alues(A) is the set of all possible values for attribute

A and Sv is the subset of S for which attribute A has value v, is simply the reduction in

entropy caused by partitioning the examples according to this attribute. The next equation

defines entropy of S, if the classification label take on c different values, where pi is the

proportion of S belonging to class i. Because entropy specifies the minimum number of

bits of information needed to encode the classification of an arbitrary member of S, the

logarithm in this equation is base 2.

Figure 2.3 shows an illustrative example of a training set taken from the Reuters-21578

for a text classification task. The category classes are economic subject categories, including

acq (acquisition), alum (aluminum), bop (balance of payments), carcass (animal body),

cocoa, coffee, copper, cotton, cpi (consumer price index), crude, and earn. The sample

has attributes ct (cents), shr (shares), net (advantage, excess of revenues), qtr (quarter),

rev (revenues), trade, note, oil, pct (percent), and compani (stemmed from company) with

continuous values that indicate the number of occurrence of the attributes in each document

instance.

The ID3 algorithm processed the training set and generated a classifier in a form of

decision tree as shown by Figure 2.4. ID3 uses this decision tree to classify novel instances.

2.3.2 Instance-Based Learning

Instance-based learning algorithms are sometimes referred to as “lazy” learning methods

because they delay processing until a new instance must be classified. This characteristic

distinguished instance-based learning from other learning algorithms that construct an ex-

plicit classifier as a description of the target label when training examples are provided. We

choose k-Nearest Neighbor (kNN) to represent this learning algorithm family because it is

the most basic instance-based method and has become the most widely used approach. It

is one of the top performing methods on the Reuters-21450 benchmark [10].
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No f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Class   No  f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Class


----------------------------------------- -----------------------------------------


1  0  0  0  0  0  2  0  0  5  2   acq     21  0  0  0  0  0  1  0  0  1  0   cotton


2  2  0  1  0  0  0  0  0  1  4   acq     22  3  0  0  0  0  0  0  0  0  0   cotton


3  0  0  1  0  0  1  0  0  2  4   acq     23  0  0  0  0  0  0  0  0  3  0   cotton


4  0  0  0  0  0  1  0  2  2  4   acq     24  0  0  0  0  0  0  0  0  10 0   cpi


5  0  0  0  0  0  0  1  0  7  3   acq     25  0  0  0  0  0  0  0  0  15 0   cpi


6  0  0  0  0  0  1  0  0  8  2   alum    26  0  0  0  0  0  0  0  0  8  0   cpi


7  0  0  0  0  0  2  0  0  2  1   alum    27  0  0  0  0  0  0  0  0  14 0   cpi


8  0  0  0  0  0  1  0  2  2  0   bop     28  10 0  0  0  0  0  0  5  5  0   crude


9  0  0  0  0  0  7  0  0  4  0   bop     29  0  0  0  0  0  0  1  8  0  2   crude


10 0  0  0  0  0  2  0  0  1  1   bop     30  0  0  0  0  0  1  0  12 0  10  crude


11 0  0  0  0  0  0  0  0  3  0   carcass 31  2  0  0  0  0  1  0  6  0  2   crude


12 0  0  0  0  0  1  0  0  1  0   cocoa   32  2  0  0  0  0  0  0  2  2  2   crude


13 0  0  0  0  0  3  1  0  1  1   cocoa   33  2  0  0  0  0  0  0  4  1  1   crude


14 0  0  0  0  0  1  0  0  2  0   cocoa   34  1  0  0  0  0  0  0  5  0  3   crude


15 0  0  0  0  0  2  0  1  0  0   coffe   35  2  0  0  0  0  0  0  3  0  2   crude


16 0  0  0  0  0  2  0  0  3  0   coffe   36  4  2  3  1  2  0  0  0  0  0   earn


17 0  0  0  0  0  1  0  0  4  0   coffe   37  3  4  3  1  2  0  0  0  0  0   earn


18 0  0  0  0  0  2  0  0  0  0   coffe   38  3  4  4  1  0  0  1  0  0  0   earn


19 2  0  0  0  0  1  0  1  1  4   copper  39  6  2  2  1  1  0  1  0  0  0   earn


20 0  0  3  0  0  1  0  0  2  1   copper  40  6  4  3  3  2  0  1  0  0  0   earn


Features:


f1=ct; f2=shr; f3=net; f4=qtr; f5=rev; f6=trade; f7=note; f8=oil; f9=pct; f10=compani


Figure 2.3: An example of a training set with 40 instances taken from the Reuters-21578.
Each instance has 10 attributes with a target concept.

The basic idea of the kNN algorithm is to simply store the training data, delay the

processing, and to classify when a new query instance is encountered. Given a test set, the

algorithm retrieves a set of k most similar or nearest instances from memory and classifies

the query instance based on the most common value among the k instances. The similarity

or nearest distance of the neighbors is defined by the Euclidean distance.

We define the feature vector of an instance x as 〈a1(x), a2(x), ...an(x)〉. The distance

between two instances xi and xj is defined as d(xi, xj), where ar(x) denotes the value of the

rth attribute of instance x, is formulated by equation 2.3.3. Another method to measure

the distance is using cosine value of two document vectors [10].

d(xi, xj) ≡

√

√

√

√

n
∑

r=1

(ar(xi) − ar(xj))2 (2.3.3)

2.3.3 Bayesian

The Bayesian learning methods use a probabilistic approach to generate a classifier. The

basic assumption is that the probability distributions of the training data together with the

test data govern the interested classification. The most practical algorithm in this learning

family is the Naive Bayes algorithm. For the text classification task, Naive Bayes is among
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Figure 2.4: The decision tree graph of the training set shown by Figure 2.3. The decision tree
was generated by the ID3 Inducer provided by the MLC++ and the graphs was constructed
by the dot preprocessor application. Each node contains an attribute and each leaf indicates
the target concept of its decision path. Which path should be followed to reach a leaf is
guided by the numbers that indicate the values of the attribute.

the most effective algorithms.

The basic idea in Naive Bayes approach is to use the joint probabilities of words and

categories to estimate the categories of a given document. We derive the Naive Bayes

classifier from Bayes’s theorem that defines the posterior probability P (v|D) from the prior

probability P (v), together with P (D) and P (D|v):

P (v|D) =
P (D|v)P (v)

P (D)
(2.3.4)

where P (v|D) is the probability of target value v (classification) given the observed data D.

In general, P (x|y) denotes the probability of x given y, while P (z) denotes the unconditional

probability of z. The most probable target value given the observed data D, also called a

maximum a posteriori (MAP) hypothesis, is provided by equation 2.3.5.

vMAP ≡ argmaxv∈V P (v|D)

vMAP = argmaxv∈V
P (D|v)P (v)

P (D)

vMAP = argmaxv∈V P (D|v)P (v) (2.3.5)

P (D) is a constant independent of v so that we can eliminate it from the equation. In our

case, given an instance with the attribute values 〈a1, a2...an〉, we will classify this instance
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to the most probable value, vMAP . We rewrite the equation 2.3.5 for this case into equation

2.3.6.

vMAP = argmaxvj∈V P (a1, a2...an|vj)P (vj) (2.3.6)

The meaning of “naive” in the “Naive Bayes” is based on the simplifying assumption

that the attribute values are conditionally independent given the target value. It means

that given the vj , the probability of the conjunction a1, a2...an is just the product of the

individual attributes’ probabilities.

P (a1, a2...an|vj) =
∏

i

P (ai|vj) (2.3.7)

where ai denotes the attribute found in the ith position within document j. With this

assumption, we can rewrite equation 2.3.6 and produce the approach used by the Naive

Bayes classifier.

vNB = argmaxvj∈V P (vj)
∏

i

P (ai|vj) (2.3.8)

Actually, the “naive” assumption for the text classification is incorrect. For example,

attribute “library” will have greater probability if preceded by attribute “digital”. For-

tunately, in practice the Naive Bayes inducer performs well on many text classification

problems.

2.4 The Learning Algorithm Tools

Ron Kohavi et al have implemented a library of C++ classes and tools for supervised

Machine Learning, called the MLC++ [16]. Other learning algorithm collections are the

one developed by Mooney [19], the Consultant [20], and the MLToolbox [21].

We choose the MLC++ for the learning algorithms implementation in this thesis for

the following reasons. First, it integrates the algorithms in a C++ library with one unified

coding methodology and the decomposition of components into C++ classes. This means

that the MLC++ allows more control over the algorithms. Second, it provides an array

of tools that give a broad picture of the performance of the algorithm when compared

to other algorithms. Some built-in utilities that are useful for examining the algorithms

include the Inducers, which run a given inducer on a given data file; Accuracy Estimation
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in different methods; Info, which provides basic statistical information about the dataset;

and LearnCurve, which generates a learning curve for a given induction algorithm and a

dataset [22].

2.5 The Datasets

This section describes the datasets used in this thesis. The first dataset is the IndonesiaDLN

metadata collection. This is the main dataset for the evaluation of the learning algorithms

for the text classification task in the digital library. The second dataset is the Reuters-21578

which aims is to compare the results with the previous examinations.

2.5.1 IndonesiaDLN Metadata Collection

The IndonesiaDLN metadata collection consists of 7793 metadata instances, collected from

about 45 digital library servers in the IndonesiaDLN network since October 2001 until July

2003. The collection represents many types of digital resources as shown by Figure 2.5 (a).

Document Types in the IndonesiaDLN Dataset
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(a)                                                                      (b)


Figure 2.5: (a) The document types in the IndonesiaDLN metadata collection. The most
common type, “research reports”, contains 1780 metadata instances, while “Exam” only
contains 7 metadata instances. (b) Category distribution in the IndonesiaDLN. The X axis
is scaled to only include 80 categories from total 489 categories. The most common category,
category number 1, contains 120 metadata instances. There are 309 categories that contain
two or more metadata items. The rarest 180 categories contain 1 metadata each.

The metadata is categorized into a hierarchical category tree as shown by Figure 2.2. For

the text classification task in this thesis, we map every category tree into a non-hierarchical

category number as shown by figure 2.6. We eliminate the “year” part of the hierarchy such
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as shown by Figure 2.2(b). This process results 489 distinct categories whose distribution

is shown by Figure 2.5 (b).

Category Trees
 Class


Terbitan_Internal/Data2_-_Dokumentasi/Dokumentasi/
 1


Research_Reports/Institute_for_Research/ 
 2


S2-Theses/Engineering/Civil_Engineering/ 
 3


Research_Report/Law/ 
 4


Research_Report/Education/ 
 5


S1-Final_Project/Dept._of_Agriculture/Agribusines 
 6


Journal/Kedokteran/Jurnal_Kedokteran_YARSI/ 
 7


S2-Theses/Engineering/Highway_Systems_and_Eng./ 
 8


Referensi/Koleksi_Khusus/ 
 9


Figure 2.6: The category trees are mapped into class numbers.

The IndonesiaDLN dataset was preprocessed to produce two dataset representations,

i.e. a dataset that represents the collection from the Bandung Institut of Technology (ITB)

only, and a dataset that represents the whole IndonesiaDLN collection. Our objective is to

see the classification effectiveness over local collection and global collections.

For the ITB dataset, we only use categories that contain 4 or more metadata instances.

This elimination produces 64 categories and 729 metadata instances (429 metadata instances

for training set, and 300 metadata instances for test set). While for the whole IndonesiaDLN,

we only use categories that contain 8 or more metadata instances. This produce a dataset

that contains 137 categories and 3082 metadata instances (2009 metadata instances for

training set, and 1073 metadata instances for test set).

2.5.2 Reuters-21578 Dataset

In order for our results to be compared with previous works, we also evaluate the algorithms

using the news collection from the Reuters-21578 dataset. This corpus has become a new

benchmark lately in text classification evaluation [10]. We use the ApteMod version of the

Reuters-21578 dataset, that contains 21578 documents [23].

In evaluating the Reuters-21578 dataset, we only use the TOPICS category tag and

ignore other category tags such as EXCHANGES, ORGS, PEOPLE, and PLACES. We

only processed documents that have at least one category in their TOPICS tag. There are

120 categories that contain one or more documents, and 57 categories with more than 20

documents as shown by Figure 2.7.

The evaluation of learning methods in this thesis will be limited to the classification of

the single-label documents. Elimination of the multi-label documents from the Figure 2.7
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Category distribution in the Reuters-21578
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No  Train Test   Category     No  Train   Test  Category


----------------------------- ---------------------------------


1   1596  696    acq          27  37      12    jobs


2   31    19     alum         28  4       4     lead


3   22    9      bop          29  11      3     lei


4   6     5      carcass      30  13      5     livestock


5   46    15     cocoa        31  7       4     lumber


6   90    22     coffee       32  6       1     meal-feed


7   31    13     copper       33  206     87    money-fx


8   15    9      cotton       34  123     28    money-supply


9   54    17     cpi          35  24      12    nat-gas


10  3     1      cpu          36  3       1     nickel


11  253   121    crude        37  13      9     orange


12  3     3      dlr          38  13      6     pet-chem


13  2840  1083   earn         39  1       2     platinum


14  4     7      fuel         40  2       3     potato
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-----


(a)                                                                      (b)


Figure 2.7: (a) Category distribution in Reuters-21578. The X axis is scaled to include
only 40 categories. The most common category, category number 1 “earn”, contains 3987
documents. The most rare categories, 15 categories, contain 1 document each. (b) List of
the categories with the number of documents for the training set and the test set.

(a) resulted 52 categories and 9100 documents (training set 6532 documents and test set

2568 documents) as shown by Figure 2.7 (b).

2.6 Document Preprocessing

In this section we discuss the process of transforming the metadata and news texts into a

representation suitable for the learning algorithms. The process of this transformation is

shown by Figure 2.8, which mainly uses the Rainbow program from the BOW library [24].

Document Filtering
 Model Building
 Features Selection
 Data Representation


- Filter XML/SGML


  elements.


- Convert from XML/


  SGML format to


  plain text


Building a


collection model


using Rainbow :


- stopwords

- stemming


- indexing


IndonesiaDLN


Metadata


Reuters 21578


Select features or


words from the


model using the


information gain


measures.


- Generate sparse


matrix of the selected


features using


Rainbow.

- Convert the matrix


into an acceptable


data representation


format for the learning


algorithm (MLC++)


Figure 2.8: The data preprocessing steps. This process converts the original documents in
XML and SGML format into a suitable format for the learning algorithms in the MLC++.
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2.6.1 Document Filtering

Document filtering is a process of eliminating the irrelevant portions of the document for

the text classification. For example, the label, topics, or classification element embedded in

the document will be eliminated because they specify values which we wish to induce from

the other information.

The IndonesiaDLN metadata is formatted in XML format using the Dublin Core (DC)

metadata element set standard [25]. The DC standard consists of 15 main elements such

as title, creator, subject, description, relation, and so on. The elements can be expanded

into sub-elements.

Figure 2.9(a) shows an example of the IndonesiaDLN metadata. The metadata is en-

closed by <DC> and </DC> tags which include several internal element tags. The classifi-

cation of the metadata made by the information professional is enclosed by <HIERARCHY>

and </HIERARCHY> tags. We only include the most relevant elements for text classifi-

cation, i.e. title, creator, publisher, subject, and description.

The Reuters-21578 collection is distributed in 22 files. Each of the first 21 files (reut2-

000.sgm through reut2-020.sgm) contain 1000 documents, while the last (reut2-021.sgm)

contains 578 documents. Figure 2.9(b) shows an example of the Reuters-21578 document.

The classification of the document is enclosed by <TOPICS> and </TOPICS> tags where

in this example the topic is empty. We only use the TITLE and BODY elements for the

text classification.

The results of the document filtering are collections of files grouped into directories

based on their classification. All documents with the same class label are contained within

a directory. This grouping is required by the Rainbow program to build an index of the

collection.

2.6.2 Elimination of Stopwords

A stopword is defined as a very frequent word in a text corpus that does not carry dis-

criminative meaning of the document content. Articles, prepositions, and conjunctions are

natural candidates for a list of stopwords and normally filtered out as potential index terms

[26]. Elimination of stopwords has an additional important benefit, namely reducing the

size of features.

For documents in English, we use the SMART system’s list of 524 common words, like
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<dc>


    <title>Tasamuh, bersama Prof. Dr. Alwi Shihab</title>


    <title>


        <alternative>Tasamuh, with Prof. Dr. Alwi Shihab</alternative>


    </title>


    <creator>Alwi Shihab, Prof. Dr.</creator>


    <publisher>JBPTITBPP</publisher>


    <subject>


        <keywords>eksklusivisme, inklusivisme, pluralisme</keywords>


    </subject>


    <description>Dalam setiap agama akan selalu ada kelompok-kelompok


       pemikiran dalam memandang agamanya maupun agama mitra


       dialognya ....


    </description>


    <contributor>NARATOR : Evi Yuliani; digitized by Indro</contributor>


    <date>1997-07-20</date>


    <date>


        <modified>2000-09-26 ::00</modified>


    </date>


    <type>dlearn</type>


    <type>


        <schema>general</schema>


    </type>


    <identifier>itb-dist-salma-1997-Alwi-tasa</identifier>


    <identifier>


        <hierarchy>/Distance_Learning/Religion/Salman_Mosque/


          Ceramah_Umum/</hierarchy>


    </identifier>


    <source>Studium Generale</source>


    <language>Bahasa Indonesia</language>


    <relation>


        <count>1</count>


    </relation>


    <relation>


        <no>1</no>


        <datemodified>2003-04-15 11:08:12</datemodified>


        <haspart>itb-dist-salma-1997-Alwi-tasa-part2.RM</haspart>


        <haspath>disk1/1/itb-dist-salma-1997-Alwi-tasa-part2.RM


</haspath>


        <hasfilename>itb-dist-salma-1997-Alwi-tasa-part2.RM


</hasfilename>


        <hasformat>application/vnd.rn-realmedia</hasformat>


        <hassize>7726181</hassize>


        <hasuri>/download.php?


f=/disk1/1/itb-dist-salma-1997-Alwi-tasa-part2.RM</hasuri>


    </relation>


</dc>


<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET"


OLDID="16396"


 NEWID="1076">


<DATE> 3-MAR-1987 11:00:25.62</DATE>


<TOPICS><D>acq</D></TOPICS>


<PLACES><D>italy</D><D>west-germany</D><D>ussr</D></PLACES>


<PEOPLE></PEOPLE>


<ORGS></ORGS>


<EXCHANGES></EXCHANGES>


<COMPANIES></COMPANIES>


<UNKNOWN>


&#5;&#5;&#5;RM


&#22;&#22;&#1;f0664&#31;reute


u f BC-ITALY'S-BNL-NEGOTIATI   03-03 0097</UNKNOWN>


<TEXT>&#2;


<TITLE>ITALY'S BNL NEGOTIATING PURCHASE OF GERMAN BANK</TITLE>


<DATELINE>    ROME, March 3 - </DATELINE><BODY>Italy's state-


owned &lt;Banca Nazionale Del Lavoro-BNL> said it is negotiating

to buy a West German bank as part of its foreign expansion


policy.


    BNL president Nerio Nesi told a news conference the Italian


bank was currently involved in talks but declined to name the


German institution.


    He said the takeover move could be seen as BNL's reply to


Deutsche Bank AG &lt;DBKG.F>, which entered the Italian market


in December 1986, with the purchase of BankAmerica &lt;BACN>


subsidiary &lt;Banca D'America e D'Italia>.


    Nesi said BNL had also approved a 200 mln dlr credit line


to the Soviet Union aimed at enabling Soviet companies to pay


for Italian imports. He gave no further details.


    BNL officials said the group had also decided to increase


its activities in the Soviet Union by opening a representative


office in Moscow this month through its subsidiary lt;Sogecred>,


which specialises in Italian-Soviet trade.


 REUTER


&#3;</BODY></TEXT>


(a)                                                                      (b)


Figure 2.9: (a) An example of metadata from the IndonesiaDLN. The metadata is formatted
in XML using the Dublin Core metadata element set standard. (b) An example of the
Reuters-21578 document. The file is formatted in SGML.

“the” and “of”. While for documents in Indonesian Language, we use the stopwords list of

556 common words from [27], like sebuah ‘a’ and dari ‘of, from’.

2.6.3 Word Stemming

Stemming is a process of removing word’s affixes to generate word stems. For example,

the word represent is the stem of the variants represents, representing, representation, and

represented [26]. Stemming also reduces the number of features. Many research projects on

text classification use stemming for their document preprocessing such as in [10] and [28].

We apply the Porter Algorithm to stem the English documents because of its simplicity

and elegance [29]. In this thesis, we don’t apply stemming to documents in Indonesian
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language. To see the effect of stemming, we make two types of dataset, i.e. a dataset with

stemming and dataset without stemming.

2.6.4 Feature Selection

Feature selection is a process of removing undiscriminative terms from documents in order

to improve classification accuracy and reduce computational complexity. Several feature

selection methods can be applied including document frequency threshold, information gain,

X2-statistics, mutual information, and term strength. We use information gain for feature

selection. It measures the number of bits of information obtained for category prediction

by knowing the absence or presence of a term in a document [30]. Previous work on feature

selection has indicated that such information theoretic approaches are quite effective for

text classification [31][30].

Let c1...cm denote the set of possible classes in the target space. The information gain

in 2.3.1 of a two-valued term t can be rewritten as:

G(t) = −
m

∑

i=1

P (ci)logP (ci) + P (t)
m

∑

i=1

P (ci|t)logP (ci|t) + P (t̄)
m

∑

i=1

P (ci|t̄)logP (ci|t̄) (2.6.1)

where P (ci) can be estimated from the fraction of documents in the total collection that

belongs to class ci and P (t) from the fraction of documents in which the term t occurs.

P (ci|t) can be computed as the fraction of documents that also are members of class ci that

have at least one occurrence of term t and P (t̄) is the fraction of documents in which term

t fails to appear.

To get a list of features that have highest information gain, we use the rainbow program

with --print-word-infogain (or -I) option. We generated feature sets with 10, 20, 30,

40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 200, 300, 400, 500, 600, 700, 800, 900,

and 1000 features. The 20 features with the highest information gain for the Reuters-21578

datasets is shown by Figure 2.10(a).

2.6.5 Data Representation

Data file format that MLC++ recognizes are based on Quinlan’s C4.5 format, which share

the same data file format with Irvine database [17]. A dataset consists of three files: data,

test, and names. The data file and test file contain labelled instances, one instance per line.



21

The names file defines the schema that allows parsing the data file. Figure 2.10(b) shows

the name definition file for the Reuters-21578 dataset. We can see that the attributes list

is defined by the words with the highest information gain as shown by Figure 2.10(a).

| File: reuters-100.names


| -------------------------------------------------


| NUMBER OF CLASSES    : 52


| NUMBER OF ATTRIBUTES : 100


|


| Classes:


|


pet_chem, fuel, lead, grain, housing, rubber, wpi,


strategic_metal, lei, cpi, jobs, retail, nickel, coffee,


carcass, income, zinc, cpu, orange, jet, interest, copper,


crude, ship, earn, cocoa, veg_oil, tea, gas, money_fx,


livestock, lumber, cotton, gold, meal_feed, tin, sugar, ipi,


iron_steel, bop, trade, reserves, gnp, acq, alum, heat, dlr,


potato, instal_debt, platinum, money_supply, nat_gas


|


| Attributes:


|


cts : continuous.


shr : continuous.


net : continuous.


...continued...


IG
  term


---------------


0.32563
 cts


0.22772
 shr


0.22557
 net


0.18019
 qtr


0.13878
 revs


0.13655
 trade


0.1163
  note


0.10115
 loss


0.10089
 pct


0.09863
 oil


0.08666
 rate


0.08617
 company


0.08552
 bank


0.08145
 profit


0.08099
 tonne


0.07951
 share


0.07472
 price


0.07409
 corp


0.07102
 coffee


...


(a)                                                                      (b)


| File: reuters-100.data


| Note: Reuters21578 dataset with 100 features


| -------------------------------------------------


| NUMBER OF INSTANCES: 6532


|


0,0,0,0,0,0,0,0,2,4,0,3,0,...,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,0,7,1,3,0,...,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,1,0,0,0,0,0,...,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,acq.


....continued...


(c)


100 attributes and a class


100 attributes


Figure 2.10: The data file format used by MLC++. (a) Example of the first 19 features
with the highest information gain for the Reuters-21578 dataset. (b) The “.names” file for
the Reuters-21578 dataset with 100 attributes. (c) The “.data” file for the Reuters-21578
dataset with 100 attributes.

The data file (training set) describes dataset instances that are used to train the algo-

rithm. The test file (test set) describes datasets instances that are used to test performance

of the algorithm. Each instance is composed of comma-separated attribute values, a label,

and (finally) a period. The attribute values are frequency of occurrence of the attributes in a

document or instance. Figure 2.10(c) shows a portion of the data file for the Reuters-21578

datasets.
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2.7 Effectiveness Measures

In this section, we describe effectiveness measures to evaluate the text classification methods.

In term of information retrieval, effectiveness is purely a measure of ability of the system

to satisfy user in term of the relevance of documents retrieved [32]. For text classification,

we define it as a measure of ability of the system to classify documents into their relevant

categories. We begin this discussion with the contingency table model, which leads to the

most widely used effectiveness measures.

2.7.1 The Contingency Table

The Yahoo! Dictionary defines contingency table as a statistical table that shows the

observed frequencies of data elements classified according to two variables, with the rows

indicating one variable and the columns indicating the other variable [33]. We will generate

two important measures of the system’s effectiveness from this kind of table, which is not

really a contingency table at all [32], namely recall and precision.

Consider a simple contingency table from a binary decision system as shown by Table

2.2. The system makes n binary decisions, each of which has exactly one correct answer,

either Yes or No [34]. Each entry specifies the number of decisions of the specified type.

For example, a is the number of times the system decided Yes, where Yes was the correct

answer. And b is the number of times the system decided Yes (incorrect decision), where

No was the correct answer.

Category Expert Judgements
Yes No

Classifier Yes a b a + b
judgments No c d c + d

Total a + c b + d a + b + c + d = n

Table 2.2: The contingency table for a set of binary decisions.

The following are two important measures of effectiveness that are derived from the

contingency table:

• Recall is the number of categories correctly assigned divided by the total number of

correct categories that should be assigned:

R = a/(a + c) (2.7.1)
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• Precision is the number of categories correctly assigned divided by total number of

categories assigned:

P = a/(a + b) (2.7.2)

The effectiveness measures could be misleading if we examined the recall and precision

alone. We may sacrifice precision to obtain a high recall, and vice versa. To summarize and

make a composite measures, we use the F1-measure as an evaluation criterion, which was

initially introduced by van Rijsbergen [32]:

F1 =
2PR

P + R
(2.7.3)

In this thesis, we use M -ary decision instead of the binary decision. We can calculate

the precision and recall from the confusion matrix that is similar to the contingency table,

but the table is expanded for the M -ary decision. A confusion matrix is a tool aiding in

the analysis of misclassification [35]. One can find that tokens belonging to a specific class

are misclassified to other classes. From the confusion matrix one also can determine which

other classes tend to be chosen. An example of a confusion matrix produced by MLC++

is shown by Figure 3.2.

2.7.2 Averaging Techniques

For evaluating the global effectiveness across categories, there are two ways of computing

effectiveness namely macro-averaging and micro-averaging [28, 36, 34, 26]. Macro-averaging

computes the effectiveness on a per-category basis, then averages over categories. Micro-

averaging computes the average effectiveness over all individual decisions as a single group.

Macro-averaging gives equal weight to each category, while micro-averaging gives equal

weight to every document. Intuitively, we can understand that macro-averaging scores are

more influenced by the classifier’s effectiveness on rare categories, while micro-averaging

scores tend to be dominated by the effectiveness on common categories [10].

The M -ary decision that is used in this thesis leads to the recall and precision calculation

using the macro-averaging technique. They are calculated from the confusion matrix per-

category basis, then are averaged over the categories. When we calculate over all instances

as a group, we will get the total correct classification and total incorrect classification.

Thus, the evaluation based on the last calculations will produce Accuracy and Error

measurements.
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2.7.3 Accuracy Estimation

Other measure commonly used in machine learning literature, such as accuracy (A) and

error (E), are not widely used in TC [36]. As shown by equation 2.7.4, the large value

that their denominator has in TC makes them much more insensitive to variations in the

number of correct decision (a + d) than R and P .

Given the contingency table as shown in Table 2.2, accuracy and error are defined as:

A =
a + d

a + b + c + d
(2.7.4)

E =
b + c

a + b + c + d
= 1 − A (2.7.5)

The main effectiveness measure provided by MLC++ is the accuracy estimation (error

rate). MLC++ provides a LearnCurve utility that generates a learning curve for a given

induction algorithm and a dataset. Given a dataset, the x-axis represents the number of

training instances and the y-axis represents the accuracy when trained on the given number

of instances and tested on the unseen instances [16].

2.8 Utilities

We use the following utilities supported by MLC++ to get effectiveness measurement re-

sults:

• Inducer, runs the given inducer on the given data file and produce these reports:

instance counts, classification counts, generalization accuracy, the overall accuracy,

and the confusion matrix. Output of this utility will be processed to get the recall

and precision for different feature sizes.

• Info, provides basic statistical information about the dataset. It reports the number of

instances in the ”.data”, ”.test”, and ”.all” files. It also reports the class probabilities,

the number of attributes, and their types.

• LearnCurve, generates a learning curve for a given induction algorithm and a dataset.



Chapter 3

Results and Evaluation

In this chapter, we provide the basic statistical information about the datasets, the mea-

surement results, and evaluation of the learning effectiveness based on recall, precision,

F1-measure, and the inducers’ learning curve.

3.1 The Datasets

We use three datasets in this thesis, i.e. the collection of metadata from ITB (729 in-

stances), the whole metadata collection from the IndonesiaDLN (3082 instances), and the

Reuters-21578 document collections (9100 instances). From each dataset, we generate 24

new datasets in different number of features as listed by Figure 3.1(b).

We use the Info utility of MLC++ to get the basic statistical information about the

datasets. One item of information derived from the statistics is the number of duplicate or

conflicting instances as shown by Figure 3.1. The duplicate instances occurs when instances

with a set of features have the same feature frequency profiles and the same classes. The

duplicate instances show us the similarity of the documents according to the selected features

and target values. The conflicting instances occur when instances with the same feature

frequency profiles are labelled with different classes.

Example of a dataset with duplicate instances is shown by Figure 3.1(a). It shows 2

subsets of 26 instances with 10 features from the Reuters-21578 dataset. The first subset was

generated without stemming and consists of the following features: cts, shr, net, qtr, revs,

trade, note, oil, pct, and company. The second subset was generated with stemming and

consists of the following features: ct, shr, net, qtr, rev, trade, note, oil, pct, and compani.

25
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| File: reuters-10.all


| With stemming


0,0,0,0,0,0,0,0,2,4,acq.


0,0,0,0,0,1,2,0,0,9,acq.


0,0,0,0,0,0,0,1,0,1,acq.


0,0,0,0,0,0,0,0,2,0,acq.


0,0,0,0,0,0,0,0,2,5,acq.


0,0,0,0,0,0,0,0,3,1,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,0,1,acq.


0,0,0,0,0,0,0,0,2,0,acq.


0,0,0,0,0,0,0,0,1,1,acq.


0,0,0,0,0,0,0,1,5,3,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,1,2,acq.


0,0,0,0,0,0,0,0,1,0,acq.


0,0,0,0,0,0,0,0,2,2,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,10,5,acq.


0,0,0,0,0,0,1,0,2,0,acq.


0,0,1,0,0,0,0,0,1,0,acq.


0,0,1,0,0,0,1,0,4,2,acq.


0,0,0,0,0,0,0,0,1,2,acq.


0,0,1,0,0,0,0,0,0,0,acq.


0,0,1,0,0,0,0,0,2,3,acq.


0,0,0,0,0,0,0,0,2,1,acq.


0,0,0,0,0,0,2,0,1,1,acq.


...


| File: reuters-10.all


| Without stemming


0,0,0,0,0,0,0,0,2,4,acq.


0,0,0,0,0,0,0,0,0,7,acq.


0,0,0,0,0,0,0,1,0,0,acq.


0,0,0,0,0,0,0,0,2,0,acq.


0,0,0,0,0,0,0,0,2,5,acq.


0,0,0,0,0,0,0,0,3,1,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,0,1,acq.


0,0,0,0,0,0,0,0,2,0,acq.


0,0,0,0,0,0,0,0,1,1,acq.


0,0,0,0,0,0,0,1,5,3,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,1,2,acq.


0,0,0,0,0,0,0,0,1,0,acq.


0,0,0,0,0,0,0,0,2,2,acq.


0,0,0,0,0,0,0,0,0,0,acq.


0,0,0,0,0,0,0,0,10,2,acq.


0,0,0,0,0,0,0,0,2,0,acq.


0,0,1,0,0,0,0,0,1,0,acq.


0,0,1,0,0,0,0,0,4,2,acq.


0,0,0,0,0,0,0,0,1,1,acq.


0,0,1,0,0,0,0,0,0,0,acq.


0,0,1,0,0,0,0,0,2,2,acq.


0,0,0,0,0,0,0,0,2,1,acq.


0,0,0,0,0,0,0,0,1,1,acq.


...


Dataset


Feature
 stem
 nostem
 stem
 nostem
 stem
 nostem


sizes
 %
 %
 %
 %
 %
 %


1
  
 
 10
 66
       
  
 69
       
  
 81
       
 
 82
       
  
 80
       
 
 84
       
  


2
  
 
 20
 33
       
  
 38
       
  
 48
       
 
 51
       
  
 45
       
 
 53
       
  


3
  
 
 30
 19
       
  
 23
       
  
 33
       
 
 34
       
  
 27
       
 
 33
       
  


4
  
 
 40
 11
       
  
 14
       
  
 23
       
 
 26
       
  
 20
       
 
 27
       
  


5
  
 
 50
 8
         
  
 9
         
  
 17
       
 
 20
       
  
 17
       
 
 19
       
  


6
  
 
 60
 8
         
  
 8
         
  
 15
       
 
 16
       
  
 15
       
 
 17
       
  


7
  
 
 70
 8
         
  
 8
         
  
 14
       
 
 15
       
  
 14
       
 
 16
       
  


8
  
 
 80
 7
         
  
 7
         
  
 12
       
 
 13
       
  
 12
       
 
 15
       
  


9
  
 
 90
 7
         
  
 7
         
  
 11
       
 
 12
       
  
 11
       
 
 12
       
  


10
 
 100
 7
         
  
 7
         
  
 9
         
  
 11
       
  
 10
       
 
 12
       
  


11
 
 110
 7
         
  
 7
         
  
 8
         
  
 10
       
  
 10
       
 
 11
       
  


12
 
 120
 7
         
  
 7
         
  
 8
         
  
 9
         
  
 9
         
  
 11
       
  


13
 
 130
 7
         
  
 7
         
  
 7
         
  
 8
         
  
 9
         
  
 10
       
  


14
 
 140
 7
         
  
 7
         
  
 7
         
  
 8
         
  
 9
         
  
 10
       
  


15
 
 150
 7
         
  
 7
         
  
 6
         
  
 7
         
  
 8
         
  
 10
       
  


16
 
 200
 6
         
  
 7
         
  
 5
         
  
 6
         
  
 7
         
  
 9
         
  


17
 
 300
 6
         
  
 6
         
  
 4
         
  
 5
         
  
 5
         
  
 6
         
  


18
 
 400
 6
         
  
 6
         
  
 4
         
  
 5
         
  
 3
         
  
 5
         
  


19
 
 500
 6
         
  
 6
         
  
 4
         
  
 4
         
  
 3
         
  
 3
         
  


20
 
 600
 5
         
  
 6
         
  
 4
         
  
 4
         
  
 3
         
  
 3
         
  


21
 
 700
 5
         
  
 6
         
  
 4
         
  
 4
         
  
 2
         
  
 3
         
  


22
 
 800
 5
         
  
 5
         
  
 4
         
  
 4
         
  
 2
         
  
 3
         
  


23
 
 900
 5
         
  
 5
         
  
 4
         
  
 4
         
  
 2
         
  
 2
         
  


24
 
 1000
 5
         
  
 5
         
  
 3
         
  
 4
         
  
 2
         
  
 2
         
  


Reuters
ITB
 IndonesiaDLN


No


(a)                                                                      (b)


Figure 3.1: (a) Two subset of 26 instances with 10 features from the Reuters-21578 dataset.
These subsets show the effect of stemming in decreasing the number of duplicate in-
stances. (b) Duplicate or conflicting instances in the ITB, IndonesiaDLN, and Reuters-
21578 datasets, based on feature sizes. The values represent the total percentage of dupli-
cate instances and conflicting instances. The datasets with stemming tend to have lower
percentage of these instances compared with the ones without stemming.

The first subset has 10 duplicate instances, while the second subset has 6 duplicate instances.

Two features that contribute to this cut are note and company. In the stemmed subset,

notes and noted were stemmed into note, while company and companies were stemmed

into compani. This stemming will increase the frequency of both features and as an effect

it may reduce the number of duplicate instances in the stemmed dataset.

Figure 3.1(b) shows the percentage of duplicate or conflicting instances in the datasets

with stemming and without stemming, based on the feature sizes. The datasets with stem-

ming tend to have lower duplicate or conflicting instances. On all datasets with 10 features,

more than 60% of the instances are duplicate or conflicting instances. We reduce the frac-

tion of duplicate or conflicting instances to under 10% using feature sizes 50, 100, and 120

for the ITB, IndonesiaDLN, and Reuters datasets respectively.
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3.2 The Learning Output

The main measurement test was carried using the Inducer utility to process the datasets

on each classifier. We also wrote several Perl and unix shell scripts to automate the learning

processes.

Figure 3.2(a) gives an illustration of IB’s learning output on the ITB dataset with 10

features. It shows the number of instances in the training and test sets, number correct and

incorrect instances, errors, and the confusion matrix. For further analysis, we only use the

error scores and the confusion matrix. We calculate the macro-averaging for recall and

precision measurements from the matrix.

The Unix time command is used to capture information about the elapsed time in

seconds for each learning process. Figure 3.2(b) shows the time command output that

describes the required time to execute each process. We only use the elapsed time values

of the output for further analysis.

3.3 Results and Evaluation

We ran each learning algorithm with various-sized feature sets on each dataset. In this

section, we present the test results and evaluation grouped by recall-precision, time per-

formance, errors, and learning curve. All of the learning processes were conducted using

AlphaStationXP1000 nodes provided by the RUG’s High Performance Computing Center.

The processors are alpha processors 21264A, with 667 MHz a 64K/64K data/instruction

cache and a 4MB L2 cache.

We created 18 jobs, and each job was ran on a node. 9 jobs ran the Inducer commands

for NB, IB, and ID3 on the ITB, IndonesiaDLN, and Reuters-21578 dataset collections

(each collection consists of 24 new datasets in different feature sizes). The other 9 jobs ran

the LearnCurve commands for the three classifiers on the three datasets (each dataset with

1000 features size).

3.3.1 Recall, Precision, and F1-Measure

Given the confusion matrices produced by MLC++, we calculate recall, precision, and F1-

measure of the classifiers on the datasets. We got their scores by calculating the decisions on

a per-category basis and then averaging over all categories. This produced macro-averaging
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(a) The Inducer’s output

begin: itb-10 ib

Classifying (% done): 10% 20% 30% ... 80% 90% 100% done.

Number of training instances: 729

Number of test instances: 403. Unseen: 128, seen 275.

Number correct: 70. Number incorrect: 333

Generalization error: 85.938%. Memorization error: 81.091%

Error: 82.630% +- 1.890% [78.628% - 86.016%]

Average Normalized Mean Squared Error: 59.653%

Average Normalized Mean Absolute Error: 87.192%

Displaying confusion matrix...

(a) (b) (c) (d) ... <-- classified as

-------- -------- -------- --------

14.00 1.00 0.00 0.00 ... (a): class 1

0.00 9.00 0.00 0.00 ... (b): class 10

0.00 0.00 5.00 0.00 ... (c): class 11

5.00 0.00 1.00 0.00 ... (d): class 12

.... .... .... .... ....

end: itb-10 ib

(b) The Unix time output for above Inducer’s process:

0.60user 0.08system 0:08.15elapsed 8%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (1757major+535minor)pagefaults 0swaps

Figure 3.2: (a) Output of the Inducer utility for IB on the ITB dataset with 10 features
size. (b) The complete output of a Unix time command. The elapsed time is shown by
0:08.15elapsed (in hours:minutes.seconds).

scores that are dominated by rare categories. The tabular results provided by Table 3.1

concern the IndonesiaDLN dataset.

For overall comparison, Figure 3.3 shows the curves of the F1-measures for various

feature sizes on the ITB, IndonesiaDLN, and Reuters datasets. The system run was able to

process up to 1000 features on the ITB dataset but up to 600 features on the IndonesiaDLN

dataset. While on the Reuters-21578 dataset, the system run was only able to process

maximally 500 features for NB, 700 features for ID3, and 800 features for IB. This difference

was caused by the limitation of the application to handle large data files. The application

requires a lot of memory and time to process larger files, and on some data files the process

was terminated because it was out of memory.
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Classifiers


Features
 R
 P
 F
 R
 P
 F
 R
 P
 F


10
 0.09
 0.05
 0.06
 0.1
 0.08
 0.09
 0.1
 0.08
 0.09


20
 0.15
 0.11
 0.13
 0.16
 0.16
 0.16
 0.17
 0.16
 0.16


30
 0.16
 0.13
 0.14
 0.19
 0.18
 0.18
 0.2
 0.2
 0.2


40
 0.16
 0.13
 0.14
 0.21
 0.22
 0.21
 0.21
 0.22
 0.21


50
 0.17
 0.14
 0.15
 0.24
 0.27
 0.25
 0.24
 0.24
 0.24


60
 0.19
 0.18
 0.18
 0.26
 0.29
 0.27
 0.25
 0.26
 0.25


70
 0.19
 0.18
 0.18
 0.27
 0.29
 0.28
 0.25
 0.25
 0.25


80
 0.19
 0.18
 0.18
 0.28
 0.3
 0.29
 0.26
 0.25
 0.25


90
 0.19
 0.18
 0.18
 0.3
 0.33
 0.31
 0.28
 0.27
 0.27


100
 0.2
 0.19
 0.19
 0.3
 0.34
 0.32
 0.3
 0.29
 0.29


110
 0.2
 0.19
 0.19
 0.29
 0.34
 0.31
 0.3
 0.29
 0.29


120
 0.21
 0.19
 0.2
 0.31
 0.35
 0.33
 0.32
 0.32
 0.32


130
 0.21
 0.19
 0.2
 0.31
 0.34
 0.32
 0.32
 0.32
 0.32


140
 0.21
 0.19
 0.2
 0.31
 0.35
 0.33
 0.33
 0.33
 0.33


150
 0.21
 0.19
 0.2
 0.3
 0.35
 0.32
 0.33
 0.33
 0.33


200
 0.21
 0.19
 0.2
 0.31
 0.34
 0.32
 0.34
 0.35
 0.34


300
 0.25
 0.23
 0.24
 0.34
 0.38
 0.36
 0.36
 0.37
 0.36


400
 0.31
 0.29
 0.3
 0.33
 0.34
 0.33
 0.38
 0.4
 0.39


500
 0.32
 0.3
 0.31
 0.33
 0.39
 0.36
 0.37
 0.38
 0.37


600
 0.33
 0.32
 0.32
 0.32
 0.37
 0.34
 0.37
 0.37
 0.37


NB
 IB
 ID3


Table 3.1: The macro-averaged results for the recall, precision, and F1-measure on the
IndonesiaDLN datasets. The system was only able to process the datasets with maximally
600 features because of the run time limitation.

On the average, the lowest score of the F1-measures is on the ITB dataset. This difference

is related to the number of instances provided by the ITB dataset which is relatively small

(1132 instances) compared to the IndonesiaDLN and the Reuters-21378 datasets that have

3082 and 9100 instances respectively. This reason will be clearly explained by Figure 3.6 in

the Learning Curve section.

We know from the curves that the score of the F1-measure on all datasets are relatively

low. Even if we compare the score for IB and NB on the Reuters-21578 dataset with

the one reported by Yang [10], our F1-measure score is significantly lower. This fact can

be explained by two possible reasons. First, we used the macro-averaging technique to

calculate the scores and this allows the rarely used categories to dominate. For example,

on the IndonesiaDLN dataset with 10 features, the rare categories with zero precision and

recall (totally missclassified) are about 74% of total categories. These categories force

the global average to a lower level. Second, possibly because we used a different feature

weighting setting and techniques. Yang use log(tf) while we use information gain, and the

feature sizes used by Yang is about 1000-2000 features while we only able to process 500-

1000 features. For IB, we set the number of neighbors to 10 while Yang used 45. As a

consequence, this difference will influence the accuracy of the learning results.
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Figure 3.3: The macro-averaged F1-measure for various feature sizes on three datasets with
stemming. The X axis represents the feature size, and the Y axis represents the macro-
averaged F1-measure of a classifier on a given feature size. (a) F1-measure on the ITB
dataset (729 instances). (b) F1-measure on the IndonesiaDLN dataset (3082 instances).
(c) F1-measure on the Reuters-21578 dataset (9100 instances), where NB was only able to
process until 500 features.

NB gets the lowest position among other classifiers on both ITB dataset and Indonesi-

aDLN datasets, but it gets the highest position on the Reuters-21578 dataset. This result

can be used to explain the quality of the IndonesiaDLN classification by its users. We know

from the theory as noted by Mitchell [12] that the Bayesian inference, which NB classi-

fication is one of its worked example, depends strongly on the prior probabilities. With

the probabilities about situation at hand, NB attempts to classify novel situations, and its

accuracy relies heavily on the probability assigned to the prior situation. Thus, given the

low scores on the ITB and IndonesiaDLN datasets and high scores on the Reuters-21578

dataset, we can conclude that prior probabilities over document classification by Indonesi-

aDLN users at hand is less reliable as an indicator to classify novel documents compared

with the one by Reuters’s professionals.



31

IB performs better than ID3 on the ITB dataset, and comparable on both the Indone-

siaDLN and the Reuters-21578 datasets. IB with the number of neighbors more than one

is intended to form smoothing that can clean up the influence of some data inconsistencies

and exceptions, and if this works well, we can conclude that the ITB dataset is noisier than

other datasets. From Figure 3.3(a) we also know that the performance of this classifier is

decreasing when the feature size is increasing.

The larger number of features doesn’t always provide better input data for the classifiers.

It can be seen from Figure 3.3 that the macro-averaged F1-measure for all classifiers will

increase until a certain number of features, then will decrease or become constant. For

example, Figure 3.3(a) shows that IB decreases after 170 features, ID3 decreases after 60

features, and NB remains constant after 200 features. This phenomenon is referred to as

“the curse of dimensionality” [12]. As an illustration of this phenomenon, we can imagine

instances described by 200 features and more, but only 50 are relevant to the label. In

this case, adding features increases the amount of information available, but also leads to

a degraded performance. As an increasing number of parameter are estimated from a fixed

amount of data, we induce a model of the noise as well as the true relationship in the

training set [37].

3.3.2 Error

We calculate error by averaging all decisions in a single group with no weighting on the

basis of category size to produce a result that will be dominated by common categories.

This averaging is important because, as shown by Figure 2.5(b), most documents are clas-

sified into common categories whose number is less then 20% of the total categories in the

IndonesiaDLN dataset.

Figure 3.4 shows the micro-averaged error of the classifiers on all datasets. Figure

(a) shows the error curves on the ITB dataset, figure (b) on the IndonesiaDLN dataset,

and figure (c) on the Reuters-21578 dataset. The number of features for each curve vary

depending on the capability of the system run to process the data files completely.

Given the curves we can see that the “curse of the dimensionality” is clearly felt by IB.

On all datasets, the error rate of IB decreased until a certain level of feature size (between

150 and 300 features), and then increased after that level. The large number of features

increases the number of irrelevant attributes that dominate the distance between neighbors.

As a consequence, the similarity matric used by IB will be misleading. IB and other nearest
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Micro-Error (Reuters Dataset)
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Figure 3.4: Micro-averaged error for various feature sizes on three datasets with stemming.
The X axis represents the feature size, and the Y axis represents the percentage of error by
a classifier on a given feature size.

neighbor classifiers are sensitive to this problem [12](p.235).

On the ITB dataset, ID3 outperforms others until we use 60 features. After that, its

error increases and becomes constant. At this point, IB outperforms ID3 and has the

lowest error rate at feature size 200. After that, IB’s error rate increases because of the

dimensionality problem.

On the IndonesiaDLN dataset, ID3 outperforms others until reaching feature size 400.

At this point, NB outperforms ID3 after decreasing the error rate significantly from feature

size 200 on. This phenomena could be caused by sparse location of the features. Probably

the NB classifier found that features ranked after 200 by information gain contribute to the

positive results that in turn will improve its performance.

On the Reuters-21578 dataset, NB outperforms others on all feature sizes. This result

confirms the highest performance that is achieved by NB as shown by Figure 3.3(c). ID3 is

at the second position with a constant error rate of 17.5% since the feature size 200.
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3.3.3 The Effect of Stemming

Beside running tests on the datasets with stemming, we also run tests on the datasets with-

out stemming. Given the resulting confusion matrices, we calculated the macro-averaged

F1-measure on the datasets without stemming. To see the effect of the stemming, we cal-

culated the difference of F1-measure scores on the datasets with stemming and without

stemming, which produced improvement of F1-measures on each datasets.

The curves of these improvements are shown by Figure 3.5. A curve rising above the X

axis shows an improvement of the classifier’s performance at that number of features. From

this figure we know that for a dataset with certain numbers of features stemming doesn’t

always improve the performance of the classifier. For example on the IndonesiaDLN dataset,

the stemming improves almost all of the classifiers, but at some level of feature sizes, the

performance dropped. The performance of ID3 dropped on the feature size 60-80, and IB

on the feature size 120+.

We calculate the cumulative improvement for each curve by summing the values above

and below the X axis, and show the result in the legend box. On average, the summation

shows improvement on all classifiers over all datasets, except on IB (-0.12) and ID3 (-

0.01) over the ITB dataset. This results shows that stemming in general will improve the

performance.

A better improvement is shown by the Reuters-21578 dataset. The performance of IB

and ID3 were improved 0.4 and 0.35 points respectively, while NB also improved but only

about 0.04 points. If we compare these improvements with other datasets, the classifiers

gain more benefits from the stemming on the Reuters-21578 dataset although not signifi-

cant. It is understood because the Reuters-21578 dataset is in English, while the ITB and

IndonesiaDLN datasets are predominantly in Indonesian with very little in English.

We didn’t apply stemming for Indonesian language because of the following reason. The

effectiveness of stemming depends on the morphological complexity of the language, and

Indonesian language is considered to be morphologically less complex than English because

it does not recognize tenses, gender and plural forms. Thus, the impact of stemming on

retrieval for Indonesian language is limited [27][38].
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Figure 3.5: The effect of stemming on the F1-measure over three datasets. The X axis
represents the feature size, and the Y axis represents the difference between the F1-measure
scores of a classifier on a datasets with stemming and without stemming on a given feature
size. The values in the legend box show the total sum of the differences. A rising curve
above the X axis shows an improvement.

3.3.4 Learning Curve

We ran the LearnCurve utility for each classifier on each dataset. From the total of 9 Learn-

Curve runs, we were only able to get 7 results, because two runs for NB on the IndonesiaDLN

and the Reuters-21578 datasets were terminated due to the maximum execution time limit

(72 hours or 3 days). For evaluation, we generate curves that are fitted to the data with

two motivations. First, to see the performance of each classifier on the different datasets,

and second to see the performance of different classifiers on the same dataset.

Figure 3.6 compares the performance of IB and ID3 over the three datasets. From this

figure we know that on different datasets, the classifiers will perform differently, and all

classifiers achieve better performance in accordance with the increasing of the number of

instances. On the same feature size and number of instances, both classifiers have better

performance on the Reuters-21578 dataset, while on the ITB and the IndonesiaDLN datasets
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Figure 3.6: Learning curves fit to the data, using f(x) = a ∗ xb function, of IB and ID3 on
three datasets with 1000 features. The X axis represents the number of training instances
and the Y axis represents the accuracy when trained on a given number of instances and
tested on the unseen instances. The number of instances for this comparison is limited to
2000.

the performances are far lower.

The hierarchical classification model used by the ITB and the IndonesiaDLN which is

mapped into a flat classification model for our data representation also could lead to this low

result. Similar documents that was classified under similar sub-category but under different

root categories could lead to the emergence of conflicting instances as shown by Figure 3.1.

For example, a research report about ”environment” and a thesis about the same topic will

be classified into different categories by the domain expert.

Since at the beginning of learning until 429 instances, both IB and ID3 perform better

on the ITB dataset than on the IndonesiaDLN dataset. IB achieves error rate 79% vs 85%

on both datasets respectively, and ID3 achieves 76% vs 80%. These figures explain the

results shown by Figure 3.3, where the classifiers achieved lower F1-measure score on the

ITB dataset. Intuitively, the classification on the ITB dataset should be more consistent

compared with on the IndonesiaDLN dataset. It should be more consistent because it was

done by selected staff at the ITB library while the IndonesiaDLN’s classification was done

by many people from many organizations that join the digital library network. There is no

guarantee that they used the same classification standard and had the same background

for the classification technique. Figure 3.6 confirms this assumption, that given the same

number of instances and feature size, the classifiers will achieve better performance on the

ITB dataset.

Given Figure 3.7, we will evaluate how the different classifiers will perform on the same
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Figure 3.7: Learning curves fit to the data, using f(x) = a ∗ xb function, of (a) three
classifiers on the ITB dataset, (b) IB and ID3 on the IndonesiaDLN dataset, and (c) IB and
ID3 on the Reuters-21578 datasets. All datasets use 1000 features. The X axis represents
the number of training instances and the Y axis represents the accuracy when trained on a
given number of instances and tested on the unseen instances.

dataset. Figure 3.7(a) shows the learning curves of three classifiers on the ITB dataset. We

know from this figure that NB significantly underperforms other classifiers. On this dataset,

IB slightly outperforms ID3, but on the IndonesiaDLN (b) and on the Reuters datasets (c),

ID3 outperforms IB. If we see the inclination of the IB and ID3 curves on the ITB dataset

and extrapolate the curves on more instances number, ID3 will show better performance.

Figure 3.7(a) also shows that at the beginning, IB learns faster than other classifiers,

but after 300 instances, its error rate become higher than ID3. Figures (b-c) show that ID3

learns faster than IB, and it appears to be the best classifier for this measurements. These

results confirmed Moulinier’s report [39] where ID3 outperforms IB and NB.
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The Computation Time on the ITB Dataset
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Figure 3.8: The computation time curves of (a) NB, (b) IB, and (c) ID3 on all datasets.
The X axis represents the feature sizes, and the Y axis represents the computation time
(seconds) by a classifier to learn a dataset on a given feature size.

3.3.5 The Computation Time

We compare the computation time of NB, IB, and ID3 where the computation time data

was collected during the precision-recall measurement as shown by Figure 3.3 previously.

The datasets varied on their number of instances and feature sizes.

Figure 3.8 shows the computation time curves of the classifiers on the ITB, Indonesi-

aDLN, and Reuters-21578 datasets. Given these comparisons, we know that among the

classifiers, NB is the worse in term of the computation time required to learn the datasets.

It is because according to the equation 2.3.8, the number of distinct P (ai|vj) terms that

must be estimated by NB from the training data equals to the number of distinct feature

values time the number of distinct target values. When new instance is learned, NB also

must update its estimation, and that in turn will increase its computation time.

On the ITB and IndonesiaDLN datasets, IB achieved lower computation time compared

to ID3. Given a new training data, IB doesn’t give the processing result or the explicit
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description of target function. It stores the training examples and postpones the general-

ization, until a new instance is given to be classified. This reduces the computation time

significantly during the training. While on the Reuters-21578 dataset, which has more in-

stances for training and classification, ID3 requires lower computation time than IB. On

this dataset, IB must pay more computation time to classify more instances than on other

datasets.

3.4 Summary

In these experiments, we have measured the performance of NB, IB, and ID3 classifiers on

the ITB, IndonesiaDLN, and Reuters-21578 datasets. The following points summarize the

results demonstrated by the experiments:

• Duplicate or conflicting instances are easily found on the datasets with small feature

sizes. On the datasets with 10 features, more than 60% of the instances are these

instances. We can reduce the duplicate or conflicting instances to less then 10% by

using between 50 and 150 features.

• A larger feature size doesn’t guarantee a better performance, because it could lead

to the ”curse of dimensionality”. This phenomena was clearly felt by IB. Almost on

all datasets, its error rate decreased until a certain level of feature size (between 150

and 300 features), and then increased after that level. It is because the large feature

size also will increase the number of irrelevant attributes that dominate the distance

between neighbors (see Figure 3.4).

• Stemming doesn’t always improve the performance of the classifiers, but in general

it does. To get the best performance, we should adjust the feature size to a value

that will lead to the best performance, and this value could be different for different

classifiers (see Figure 3.5).

• The performances of the classifiers on the ITB and the IndonesiaDLN datasets are not

satisfactory compared to the one on the Reuters-21578 dataset with the same feature

sizes and number of instances (see Figure 3.3 and 3.6). The most possible reason is

that the mixing of topics (e.g. agriculture and engineering) and information types

(e.g. research report and journal) in making up the category hierarchies may lead to

the inconsistency in classification.
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• In general, ID3 is the winner for this experiment, followed by IB on the second place

and then NB (see Figure 3.7).

• NB suffers the highest computation time among other classifiers, especially when the

feature size is increased as shown by Figure 3.8. The figure also shows the ”laziness”

nature of IB, where it requires less computation time on training phase and more

computation on the classification phase. On the ITB and IndonesiaDLN datasets,

whose test instances are small, IB achieved the shortest computation time, but on

the Reuters-21578 with more test instances, it required higher computation time than

ID3.



Chapter 4

Conclusions and Future Work

In this thesis, we examined learning algorithms for automatic text classification in DLs. We

measured the performance of NB, IB, and ID3 algorithms on the ITB, and the Indonesi-

aDLN collections and compared the results with the Reuters-21578 collection. This chapter

summarizes the results and discusses possible future work on this field.

4.1 Conclusions

The goal of this thesis was to measure the performance of three machine learning algorithms

to perform automatic text classification on DL, especially on the ITB and the IndonesiaDLN

datasets. Intuitively, the classification on the ITB dataset should be better compared with

on the IndonesiaDLN dataset. It is because it was done by selected staffs at the ITB library

while the IndonesiaDLN’s classification was done by many people from many organizations

that join the network. There is no guarantee that they used the same classification standard

and had the same background on the classification technique. We want to know how good

the performance on the ITB dataset is and the possibility of using its classifiers to classify

novel instances in the IndonesiaDLN. By comparing the results with performance on the

Reuters-21578 dataset, we want to know whether it is suitable to apply ML techniques for

the automatic text classification on the IndonesiaDLN metadata.

The experiment apparently confirmed the assumption, that given the same number of

instances and feature size, the performance of IB and ID3 on the ITB dataset is better

than on the IndonesiaDLN dataset (figure 3.6). Given 1000 features and 429 instances,

IB achieved error rate 79% vs 85% on both datasets respectively, and ID3 achieved 76%

40
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vs 80%. Compared with the result on the Reuters-21578 dataset, performance on both

datasets is significantly lower. IB achieved error rate 40% and ID3 achieved 31,5% on the

last dataset.

The poor results on the ITB and the IndonesiDLN datasets are possibly caused by the

following reasons. First, the classification in both datasets is mainly based on the mixing

of information sources, types, and domains which make up the category tree. This would

cause the ambiguity in categorizing the documents. Thus, the inconsistency in categoriz-

ing documents by many users is very possible. Second, we transformed the hierarchical

classification model used by the IndonesiaDLN into a flat classification model for our data

representation. It seems that the mapping imperfectly represents the actual classification.

Third, we didn’t apply stemming for Indonesian, while most of documents in this dataset

are in this language. The stemming for English is proven to improve performance on the

Reuters dataset (figure 3.5).

Although the performance is not very good, we found several interesting results from

this experiment. First, ID3 appears to be the best classifier on the ITB and IndonesiaDLN

dataset, followed by IB, and then NB. Second, on large feature sizes, IB faces the curse of

dimensionality. The features will increase the number of irrelevant attributes that dominate

the distance between neighbors. Third, stemming does not always improve the performance

on some conditions, but in general it will give better dataset input to the classifiers that

could improve the performance.

As long as the classification on training material is done by many users with different

background on classification technique, the automatic text classification in DLs, especially

in the IndonesiaDLN, will never achieve high performance. The DLs need to improve

their classification quality, such as using a particular classification standard, before we can

apply automated text classification using ML techniques. Otherwise, other techniques to

improve DL usability should be evaluated that is not based on the existing classification,

for example using document clustering [40] or concept mapping [41]. The results achieved

could be useful not only for the IndonesiaDLN and the Ganesha Digital Library software,

but for other text classification studies as well. One can compare the results with other

text classification reports on the Reuters dataset.
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4.2 Future Work

After examining three learning algorithms for text classification in the Indonesia Digital

Library Network, there is more work that needs to be done.

• Investigate a better way to represent the hierarchical classification used by the In-

donesiaDLN. Domain experts build the classification based on the resource types (e.g.

research reports, thesis, journal, etc.) that are followed by the subjects of the re-

sources. Applying automatic classification on the basis of the individual resource

type should improve the performance of the classifiers. On the same resource type,

the category hierarchies should be more consistent.

• Improve the classification method of the IndonesiaDLN by using a common classifica-

tion standard among its domain experts. Without a good classification at hand, it is

difficult to achieve a good performance of the automatic classification on this digital

libraries.
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