Obtención de patrones y reglas en el proceso académico de la Universidad de las Ciencias Informáticas utilizando técnicas de minería de datos

Alvarez, Susel, Gonzalez, Ernesto, Pérez, Zady and Espinosa, Ivet Obtención de patrones y reglas en el proceso académico de la Universidad de las Ciencias Informáticas utilizando técnicas de minería de datos., 2007 (In Press) [Preprint]

[thumbnail of Suzel.pdf]
Preview
PDF
Suzel.pdf

Download (282kB) | Preview

English abstract

This investigation intends to classify the students of the University of Informatics Sciences according to their academic behaviour using a set of Data Mining techniques like clustering, decision trees and inductive learning algorithms. The main goal of this work is to find hidden patterns and rules that define this behaviour, based on the relationship established between the scholarship level of the student’s parents, and their academic origins with their grades in the first year of their career. These results can help to improve the quality of the academic process in the UCI.

Spanish abstract

Esta investigación se propone clasificar a los estudiantes de la Universidad de Ciencias de la Informática en función de su comportamiento académico utilizando un conjunto de técnicas de minería de datos como clustering, árboles de decisión y los algoritmos de aprendizaje inductivo. El objetivo principal de este trabajo es encontrar patrones ocultos y las normas que definen este comportamiento, sobre la base de la relación establecida entre el nivel de escolaridad de los padres del estudiante, y sus orígenes académicos con sus grados en el primer año de su carrera. Estos resultados pueden ayudar a mejorar la calidad del proceso académico en la UCI. Key words: Quality of the academic process, Knowledge Discovery in Databases, Data Mining

Item type: Preprint
Keywords: Quality of the academic process, Knowledge Discovery in Databases, Data Mining, Calidad del proceso docente, Bases de Datos, Minería de Datos
Subjects: G. Industry, profession and education. > GA. Information industry.
G. Industry, profession and education. > GB. Software industry.
G. Industry, profession and education. > GC. Computer and telecommunication industry.
G. Industry, profession and education. > GD. Organizations.
Depositing user: Susel /S.A Alvarez
Date deposited: 30 Apr 2008
Last modified: 02 Oct 2014 12:10
URI: http://hdl.handle.net/10760/10937

References

[1] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 2000.

[2] Berthold, M.; Hand, D.J. (eds.) Intelligent Data Analysis. An Introduction, Springer, 2ndEdition, 2003.

[3] Orallo Hernández, J.:Quintana Ramírez, Ma. J..:Ramírez Ferri, C.:Introducción a la Minería de Datos. Prentice Hall, 2004

[4] Fayyad, U. M., Piatetsky-Shapiro, G., Smith, P., Uthurusamy R.: Advances in Knowledge Discovery and Data-Mining, AAAI Press / The MIT Press, 1996.

[5] Crivat, B.: SQL Server Data Mining Programmability. . URL:

http://msdn.microsoft.com/sql/bi/dmining/default.aspx?pull=/library/en-us/dnsql90/html/sqldmprgrm.asp. Fecha de

Acceso: Dic 12, 2006.

[6] Iyer, Raman and Crivat, Bogdan SQL Server Data Mining: Plug-In Algorithms. . Fecha de Acceso: Dic 13, 2006 URL: http://msdn.microsoft.com/sql/bi/dmining/default.aspx?pull=/library/en-us/dnsql90/html/ssdmpia.asp.

[7] MacLennan, J.: Unearth the New Data Mining Features of Analysis Services 2005.; development lead for the Data Mining engine in the SQL Server 2005. MSDN Magazine, September 2004. URL:

http://msdn.microsoft.com/msdnmag/issues/04/09/AnalysisServices2005/. Fecha de Acceso: Dic 13, 2006.

[8] Netz, A.; SQL Server 2000: Data Mining Helps Customers Make Better Business Decisions. Interviewed Netz, Amir; Microsoft SQL Server Development Manager. URL:

http://www.microsoft.com/presspass/features/2000/04-24sql.mspx. Fecha de Acceso: Dic 15, 2006.

[9] Tang, L. and Bradley, P...AMO Lets You Dig Deeper into Your Data from Your Own Applications, MSDN Magazine, June 2005. URL:

http://msdn.microsoft.com/sql/bi/dmining/default.aspx?pull=/msdnmag/issues/05/06/am o/toc.asp. Fecha de Acceso: Dic 15, 2006.

[10]. Tang, Z., MacLennan J.: Data Mining with SQL Server, ISBN-10: 0-471-46261-6.

[11] Chapman, P.: Clinton, J.: Kerber, R.: Khabaza, T.: Reinartz, T.: Shearer, C.: Wirth, R.: CRISP-DM 1.0 Step-by-step data mining guide, 1999.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item