Measuring Diversity of Research by Extracting Latent Themes from Bipartite Networks of Papers and References

Mitesser, Oliver, Heinz, Michael, Havemann, Frank and Gläser, Jochen Measuring Diversity of Research by Extracting Latent Themes from Bipartite Networks of Papers and References., 2008 . In Fourth International Conference on Webometrics, Informetrics and Scientometrics & Ninth COLLNET Meeting, Berlin, 2008. (In Press) [Conference paper]

[thumbnail of MitesserWIS2008mdr.pdf]
Preview
PDF
MitesserWIS2008mdr.pdf

Download (374kB) | Preview

English abstract

Inspired by the hypothesis that the diversity of research might decline as a result of new science policy measures we explore the potential of bibliometric measures for analysing the diversity of research at meso- and macro-levels of (national sub-) fields, countries, and organisations. Our aim is to render changes in the diversity of research landscapes measurable and therefore comparable in time series as well as between different countries. We discuss different methodological approaches and some results based on a method that extracts latent themes from bipartite networks of research papers and their cited references by singular value decomposition of the citation matrix.

Item type: Conference paper
Keywords: research diversity, bibliometric method, LSA, co-citation, bibliographic coupling, bipartite networks
Subjects: B. Information use and sociology of information > BB. Bibliometric methods
Depositing user: Frank Havemann
Date deposited: 10 Aug 2008
Last modified: 02 Oct 2014 12:12
URI: http://hdl.handle.net/10760/12207

References

Adams, J. and D. Smith (2003). Funding research diversity. A report from Evidence Ltd to Universities UK. 1 (84036), 102.

Alter, O., P. Brown, and D. Botstein (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences 97 (18), 10101–10106.

Bordons, M., F. Morillo, and I. Gomez (2004). Analysis of cross-disciplinary research through bibliometric tools. In H. Moed, W. Glänzel, and U. Schmoch (Eds.), Handbook of quantitative science and technology research, Chapter 21, pp. 437–456. Kluwer, Dordrecht.

Botafogo, R., E. Rivlin, and B. Shneiderman (1992). Structural analysis of hypertexts: identifying hierarchies and useful metrics. ACM Transactions on Information Systems (TOIS) 10 (2), 142–180.

Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harshman (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science 41 (6), 391–407.

Egghe, L. and R. Rousseau (2003). BRS-compactness in networks: Theoretical considerations related to cohesion in citation graphs, collaboration networks and the internet. Mathematical and Computer Modelling 37 (7-8), 879–899.

Gläser, J., S. Lange, G. Laudel, and U. Schimank (2008). Evaluationsbasierte Forschungsfinanzierung und ihre Folgen. In F. Neidhardt, R. Mayntz, P. Weingart, and U. Wengenroth (Eds.), Wissen für Entscheidungsprozesse, pp. 145–170. Bielefeld: transcript.

Gläser, J. and G. Laudel (2007). Evaluation without Evaluators: The impact of funding formula on Australian University Research. In R. Whitley and J. Gläser (Eds.), The Changing Governance of the Sciences: The Advent of Research Evaluation Systems, pp. 127–151. Dordrecht: Springer.

Griffiths, T. and M. Steyvers (2004). Finding scientific topics. Proceedings of the National Academy of Sciences 101 (suppl. 1), 5228–5235.

Grupp, H. (1990). The concept of entropy in scientometrics and innovation research. Scientometrics 18 (3–4), 219–239.

Harley, S. and F. S. Lee (1997). Research selectivity, managerialism, and the academic labor process: The future of nonmainstream economics in UK universities. Human Relations 50, 1427–1460.

Havemann, F., M. Heinz, M. Schmidt, and J. Gläser (2007). Measuring Diversity of Research in Bibliographic-Coupling Networks. In D. Torres-Salinas and H. F. Moed (Eds.), Proceedings of ISSI 2007, Volume 2, Madrid, pp. 860–861. Poster abstract.

Janssens, F., W. Glänzel, and B. De Moor (2007). A Hybrid Mapping of Information Science. In D. Torres-Salinas and H. F. Moed (Eds.), Proceedings of ISSI 2007, Volume 1, Madrid, pp. 408–420.

Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation 14, 10–25.

Marshakova, I. V. (1973). Sistema svyazey mezhdu dokumentami, postroyennaya na osnove ssylok (po ukazatelyu “Science Citation Index“). Nauchno-Tekhnicheskaya Informatsiya Seriya 2 – Informatsionnye Protsessy i Sistemy 6, 3–8. (in Russian).

Mitesser, O. (2008). Latente semantische Analyse zur Messung der Diversität von Forschungsgebieten – Methodendiskussion und Anwendungsbeispiel. Master’s thesis, Humboldt-Universität zu Berlin, Institut f¨r Bibliotheks- und Informationswissenschaft.

Rafols, I. and M. Meyer (2007). Diversity measures and network centralities as indicators of interdisciplinarity: case studies in bionanoscience. In D. Torres-Salinas and H. F. Moed (Eds.), Proceedings of ISSI 2007, Volume 2, Madrid, pp. 631–637.

Rafols, I. and M. Meyer (2008). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. To appear, http://www.sussex.ac.uk/spru/documents/rafols-meyer-diversity2008.pdf.

Ricotta, C. and L. Szeidl (2006). Towards a unifying approach to diversity measures: bridging the gap between the Shannon entropy and Rao’s quadratic index. Theoretical Population Biology 70 (3), 237–243.

Schmidt, M., J. Gläser, F. Havemann, and M. Heinz (2006). A Methodological Study for Measuring the Diversity of Science. In International Workshop on Webometrics, Informetrics and Scientometrics & Seventh COLLNET Meeting, 10-12 May, Nancy, pp. 129–137. SRDI– INIST-CNRS.

Shimatani, K. (2001). On the measurement of species diversity incorporating species differences. Oikos 93 (1), 135–147.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item