Ranking-Verfahren für Web-Suchmaschinen

Dopichaj, Philipp . Ranking-Verfahren für Web-Suchmaschinen., 2009 In: Handbuch Internet-Suchmaschinen: Nutzerorientierung in Wissenschaft und Praxis. Akademische Verlagsgesellschaft AKA, pp. 101-115. [Book chapter]

[thumbnail of Rankingverfahren.pdf]
Preview
PDF
Rankingverfahren.pdf

Download (227kB) | Preview

English abstract

This article deals with ranking methods for search engines.

German abstract

Typische Web-Suchen liefern tausende Ergebnisse. Deshalb ist es von zentraler Bedeutung, dass die Suchmaschine die Ergebnisse sinnvoll sortiert, damit die wichtigsten Ergebnisse auf einen Blick zu erfassen sind. Hierzu wurden im Laufe der Jahre viele Verfahren entwickelt und verbessert. Wir behandeln in diesem Kapitel sowohl Verfahren, die auf dem Text der Webseiten basieren als auch solche, die die Verlinkungsstruktur berücksichtigen. Abschließend betrachten wir mögliche Erweiterungen der Suchverfahren für die Zukunft, ausgehend von technologischen Veränderungen im World Wide Web.

Item type: Book chapter
Keywords: Suche, Ranking,Web, Vektorraummodell, PageRank, HITS, Wissenschaftssuchmaschine, Buchsuchmaschine, Nachrichtensuchmaschine, Blogsuchmaschine, Lokale Suche
Subjects: L. Information technology and library technology > LS. Search engines.
Depositing user: J. H.
Date deposited: 16 Jan 2009
Last modified: 02 Oct 2014 12:13
URI: http://hdl.handle.net/10760/12736

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, Harlow, Essex, England, 1999.

[2] Norbert Fuhr. Probabilistic models in information retrieval. The Computer Journal, 35(3):243–255, 1992.

[3] Gerard Salton. The SMART Retrieval System: Experiments in Automatic Document Processing. Prentice Hall, 1971.

[4] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. Matrices, vector spaces, and information retrieval. SIAM Review, 41:335–362, 1999.

[5] Karen Spärck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic model of information and retrieval: development and status. Technical report, Computer Laboratory, University of Cambridge, 1998.

[6] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes. Morgan Kaufmann, 1999.

[7] Stephen Robertson. Understanding inverse document frequency: On theoretical arguments for IDF. Journal of Documentation, 60(5):503–520, 2004.

[8] Dirk Lewandowski. Web Information Retrieval. DGI, 2005.

[9] Michael Cutler, Yungming Shih, and Weiyi Meng. Using the structure of HTML documents to improve retrieval. In Proceedings of the USENIX Symposium on Internet Technologies and Systems, 1997.

[10] M. Cutler, H. Deng, S. S. Maniccam, and W. Meng. A new study on using HTML structures to improve retrieval. In ICTAI 1999 proceedings, pages 406–409. IEEE, 1999.

[11] Yiqun Liu, Canhui Wang, Min Zhang, and Shaoping Ma. Finding ”abstract fields” of web pages and query specific retrieval – THUIR at TREC 2004 web track. In TREC 2004 proceedings, 2004.

[12] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple BM25 extension to multiple weighted fields. In CIKM 2004 proceedings, pages 42–49. ACM, 2004.

[13] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. In Computer Networks and ISDN Systems, 1998.

[14] Jon Kleinberg. Authoritative sources in a hyperlinked environment. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1997.

[15] L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18:39–43, 1953.

[16] Zoltan Gyongyi and Hector Garcia-Molina. Web spam taxonomy. In Proc First International Workshop on Adversarial Information Retrieval on the Web (AIRWeb 2005), 2005.

[17] Zoltan Gyongyi, Hector Garcia-Molina, and Jan Pedersen. Combating web spam with trustrank. Technical report, Stanford University, 2005.

[18] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: a new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American, 284:34–43, 2001.

[19] Dirk Lewandowski and Christian Maaß, editors. Web-2.0-Dienste als Ergänzung zu algorithmischen Suchmaschinen, Berlin, 2008.

[20] Gerard Salton, James Allan, and Chris Buckley. Approaches to passage retrieval in full text information systems. In SIGIR 1993 proceedings, pages 49–58. ACM, 1993.

[21] Norbert Fuhr, Norbert Gövert, Gabriella Kazai, and Mounia Lalmas, editors. Proceedings of the 1st INEX Workshop. ERCIM, 2002.

[22] Norbert Fuhr, Mounia Lalmas, and Andrew Trotman, editors. Comparative Evaluation of XML Information Retrieval Systems. 5th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2006. Springer, 2007.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item