Bibliometric laws: Empirical flaws of fit

Bailón-Moreno, Rafael and Jurado-Alameda, Encarnación and Ruiz-Baños, Rosario Bibliometric laws: Empirical flaws of fit. Scientometrics, 2005, vol. 63, n. 2, pp. 209-229. [Journal article (Paginated)]


Download (1MB) | Preview

English abstract

The bibliometric laws of Zipf, Bradford, and Lotka, in their various mathematical expressions, frequently present difficulties in the fitting of empirical values. The empirical flaws of fit take place in the frequency of the words, in the productivity of the authors and the journals, as well as in econometric and demographic aspects. This indicates that the underlying fractal model should be revised, since, as shown, the inverse power equations (of the Zipf Mandelbrot type) are not adequate, as they need to include exponential terms. These modifications not only affect Bibliometrics and Scientometrics, but also, for the generality of the fractal model, apply to Economy, Demography, and even Natural Sciences in general.

Item type: Journal article (Paginated)
Keywords: Bibliometric Methods
Subjects: B. Information use and sociology of information > BB. Bibliometric methods
Depositing user: Daniel Torres-Salinas
Date deposited: 30 Mar 2009
Last modified: 02 Oct 2014 12:13


CONDON, E. U., Statistics of vocabulary. Science, 68 (1928) 1733.

ZIPF, G. K., Human Behaviour and the Principle of Least Effort, Adisson-Wesley Press, Inc, Cambridge, 1949.

MEADOW, C. T., WANG, J., STAMBOULIE, M., An analysis of Zipf Mandelbrot language meausures and their application to artificial languages. Journal of Information Science, 19 (1993) 247-258.

BROOKES, B. C., Ranking techniques and the empirical log law. Information Processing & Management, 20 (1984) 16-37.

MANDELBROT, B. B., An informational theory of the stadistical structure of language. In: W. JACKSON (Ed.) Communication Theory, pp. 486-502. London, Butterworths Scientific Publications, 1953.

MANDELBROT, B. B., The Fractal Geometry of Nature, Freeman, New York, 1977.

MANDELBROT, B. B., Structure formelle des textes et communication (deux études). Word, 11 (1954) 424.

FEDEROWICZ, J. E., A zipfian model on automatic bibliographic system: an application to MEDLINE. Journal of the American Society for Information Science, 33 (1982) 223-232.

FEDEROWICZ, J. E., The theorical foundation of Zipf s law and its application to the bibliographic database environment. Journal of the American Society for Information Science, 33 (1982) 285-293.

RUIZ-BAÑOS, R., Ciencimetría de redes. Análisis de la investigación internacional sobre Arqueología mediante el Método de las Palabras Asociadas (1980-1993). Ph. D. Thesis. Universidad, Granada, 1997.

RUIZ-BAÑOS, R., BAILÓN-MORENO, R., JIMÉNEZ-CONTRERAS, E., COURTIAL, J. P., Structure and dynamics of scientific networks. Part 2: The new Zipf's Law, the cocitations's clusters and the model of the presence of key-words. Scientometrics, 44 (1999) 235-265.

BRADFORD, S. C., Sources of informations on specific subjects. Engineering, 137 (1934) 85-86.

EGGHE, L., Consequences of Lotka s law for the law of Bradford. Journal of Documentation, 41 (1985) 173-189.

EGGHE, L., ROUSSEAU, R., Introduction to Informetrics: Quantitative Methods in Library, Documentation and Information Science, Elsevier, Amsterdam, etc., 1990.

ROUSSEAU, R., The nuclear zone of a Leimkuler curve. Journal of Documentation, 43 (1987) 322-333.

BROOKES, B. C., The Bradford law: a new calculus for the social sciences? Journal of the American Society for Information Science, July (1979), 30 (4) 233 234.

BROOKES, B. C., Bradford s law and the bibliography of science. Nature, 224 (1969) 653 656.

FERREIRO-ALAEZ, L., MENDEZ, A., Linealidad de las dispersiones Bradford. Revista Española de Documentación Científica, 3 (1980) 201-211.

JIMÉNEZ-CONTRERAS EVARISTO, Difusión de la literatura científica granadina reciente (1975-87). Granada, Universidad de Granada,1993.

LEIMKUHLER, F. F., The Bradford distribution. Journal of Documentation, 23 (1967) 197-207.

LEIMKUHLER, F. F., An exact formulation of Bradford's law. Journal of Documentation, 36 (1980) 285-292.

BROOKES, B. C., A critical commentary on Leimkuhler's "exact" formulation of the Bradford law. Journal of Documentation, 37 (2) (1981) 77-88.

GROOS, O. V., Bradford's law and the Keenan-Atherton data. American Documentation, 18 (1967) 46.

EGGHE, L., The duality of informetric systems with applications to the empirical laws. Journal of Information Science, 16 (1990) 17-27.

ROUSSEAU, R., Lotka's law and its Leimkuhler representation. Library Science with a Slant to Documentation and Information Studies, 25 (1988) 150-178.

LOTKA, A. J., The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16 (1926) 317-323.

PRICE D. J. D. S., Little Science, Big Science, Columbia Univ. Pt., New York, 1963.

PAO, M. L., Lotka's law: a testing procedure. Information Processing & Management, 21 (1985) 305 320.

ANZIL, F. (2003), Retrieved from

UNESCO (2003) Science and Technology: UNESCO UIS. Retrieved from

INTERNATIONAL MONETARY FUND (2003), International Monetary Fund Home Page. Retrieved from


Downloads per month over past year

Actions (login required)

View Item View Item