How are new citation-based journal indicators adding to the bibliometric toolbox?

Leydesdorff, Loet How are new citation-based journal indicators adding to the bibliometric toolbox? Journal of the American Society for Information Science and Technology, 2009, vol. 60, n. 7. [Journal article (Unpaginated)]

[thumbnail of index.htm] HTML
index.htm

Download (223kB)
[thumbnail of journal indicators.pdf]
Preview
PDF
journal indicators.pdf

Download (286kB) | Preview

English abstract

The launching of Scopus and Google Scholar, and methodological developments in Social Network Analysis have made many more indicators for evaluating journals available than the traditional Impact Factor, Cited Half-life, and Immediacy Index of the ISI. In this study, these new indicators are compared with one another and with the older ones. Do the various indicators measure new dimensions of the citation networks, or are they highly correlated among them? Are they robust and relatively stable over time? Two main dimensions are distinguished—size and impact—which together shape influence. The H-index combines the two dimensions and can also be considered as an indicator of reach (like Indegree). PageRank is mainly an indicator of size, but has important interactions with centrality measures. The Scimago Journal Ranking (SJR) indicator provides an alternative to the Journal Impact Factor, but the computation is less easy.

Item type: Journal article (Unpaginated)
Keywords: impact, H-index, journal, citation, centrality, ranking
Subjects: A. Theoretical and general aspects of libraries and information. > AB. Information theory and library theory.
Depositing user: Loet Leydesdorff
Date deposited: 18 Jan 2010
Last modified: 02 Oct 2014 12:15
URI: http://hdl.handle.net/10760/13474

References

Bensman, S. J. (1996). The structure of the library market for scientific journals: The case of chemistry. Library Resources & Technical Services, 40, 145-170.

Bensman, S. J. (2007). Garfield and the Impact Factor. Annual Review of Information Science and Technology, 41, 93-155.

Bensman, S. J., & Leydesdorff, L. (in preparation). Definition and Identification of Journals as Bibliographic and Subject Entities: Librarianship vs. ISI Journal Citation Reports (JCR) Methods and their Effect on Citation Measures.

Bensman, S. J., & Wilder, S. J. (1998). Scientific and Technical Serials Holdings Optimization in an Inefficient Market: A LSU Serials Redesign Project Exercise. Library Resources and Technical Services, 42(3), 147-242.

Bergstrom, C. (2007). Eigenfactor: Measuring the value and prestige of scholarly journals. College and Research Libraries News, 68(5), 314.

Bollen, J., Rodriquez, M. A., & Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669-687.

Bollen, J., & Van de Sompel, H. (2006). Mapping the structure of science through usage. Scientometrics, 69(2), 227-258.

Bollen, J., Van de Sompel, H., & Rodriquez, M. A. (2008). Towards usage-based impact metrics: first results from the mesur project. Paper presented at the Proceedings of the 8th ACM/IEEE-CS joint conference on Digital Libaries, 16-20 June 2008, Pittsburgh, PA.

Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85-86.

Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169-173.

Brin, S., & Page, L. (2001). The Anatomy of a Large-Scale Hypertextual Web Search Engine. Proceedings of the seventh International Conference on the World Wide Web (WWW1998), 107-117; available at http://infolab.stanford.edu/~backrub/google.html (Accessed on Oct. 4, 2008).

Egghe, L., & Rao, R. (2008). Study of different h-indices for groups of authors. Journal of the American Society for Information Science and Technology, 59(8), 1276-1281.

Falagas, M. E., Kouranos, V. D., Arencibia-Jorge, R., & Karageorgopoulos, D. E. (2008). Comparison of SCImago journal rank indicator with journal Impact Factor. The FASEB Journal, 22(8), 2623-2628.

Frandsen, T. F., & Rousseau, R. (2005). Article impact calculated over arbitrary periods. Journal of the American Society for Information Science and Technology, 56(1), 58-62.

Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35-41.

Freeman, L. C. (1978/1979). Centrality in Social Networks: Conceptual Clarification. Social Networks, 1, 215-239.

Gaillard, J. (1992). Use of publication lists to study scientific production and strategies of scientists in developing countries. Scientometrics, 23(1), 57-73.

Garfield, E. (1971). The mystery of the transposed journal lists—wherein Bradford’s Law of Scattering is generalized according to Garfield’s Law of Concentration. Current Contents, 3(33), 5–6.

Garfield, E. (1972). Citation Analysis as a Tool in Journal Evaluation. Science 178(Number 4060), 471-479.

Garfield, E. (1979). Citation Indexing: Its Theory and Application in Science, Technology, and Humanities. New York: John Wiley.

Garfield, E. (1986). Journal Impact vs Influence: A need for five-year Impact Factors Information Processing & Management, 22(5), 445.

Garfield, E. (1990). How ISI selects Journals for Coverage: Quantitative and Qualitative Considerations. Current Contents(28 May), 5-13.

Garfield, E. (1998). Long-term vs. short-term journal impact: does it matter. The Scientist, 12(3), 11-12.

Garfield, E., & Sher, I. H. (1963). New factors in the evaluation of scientific literature through citation indexing. American Documentation, 14, 195-201.

Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside; at http://faculty.ucr.edu/~hanneman/nettext/ (last accessed on October 8, 2008).

Harter, S. P., & Nisonger, T. E. (1997). ISI’s impact factor as misnomer: a proposed new measure to assess journal impact. Journal of the American Society for Information Science, 48(12), 1146-1148.

Hindman, M., Tsioutsiouliklis, K., & Johnson, J. A. (2003). Googlearchy: How a Few Heavily-Linked Sites Dominate Politics on the Web. Paper presented at the Annual Meeting of the Midwest Political Science Association; available at http://www.johnkeane.net/pdf_docs/teaching_sources/google/google.pdf (last accessed on October 8, 2008).

Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the USA, 102(46), 16569-16572.

Jin, B., Liang, L., Rousseau, R., & Egghe, L. (2007). The R- and AR-indices: complementing the H-index. Chinese Science Bulletin, 52(6), 855-863.

Kreft, G. G., & De Leeuw, E. D. (1988). The See-Saw Effect: A multilevel problem. Quality and Quantity, 22(2), 127-137.

Leydesdorff, L. (1993). The Impact of Citation Behaviour on Citation Structure. In A. F. J. van Raan, R. E. de Bruin, H. F. Moed, A. J. Nederhof & R. W. J. Tijssen (Eds.), Science and Technology in a Policy Context (pp. 289-300). Leiden: DSWO/ Leiden University Press.

Leydesdorff, L. (2007a). Visualization of the Citation Impact Environments of Scientific Journals: An online mapping exercise. Journal of the American Society of Information Science and Technology, 58(1), 207-222.

Leydesdorff, L. (2007b). “Betweenness Centrality” as an Indicator of the “Interdisciplinarity” of Scientific Journals. Journal of the American Society for Information Science and Technology, 58(9), 1303-1309.

Leydesdorff, L. (2008). Caveats for the Use of Citation Indicators in Research and Journal Evaluation. Journal of the American Society for Information Science and Technology, 59(2), 278-287.

Leydesdorff, L., & Schank, T. (2008). Dynamic Animations of Journal Maps: Indicators of Structural Change and Interdisciplinary Developments. Journal of the American Society for Information Science and Technology, 59(11), 1810-1818.

Lucio-Arias, D., & Leydesdorff, L. (2008). Main-path analysis and path-dependent transitions in HistCite™-based historiograms. Journal of the American Society for Information Science and Technology 59(12), 1948-1962.

Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing and Management, 44(2), 800-810.

Maricic, S. (1997). The mainstream-peripheral science communication. Technoscience, 10 (Winter 1997), at http://www.cindoc.csic.es/cybermetrics/pdf/394.pdf .

Martyn, J., & Gilchrist, A. (1968). An Evaluation of British Scientific Journals. London: Aslib.

Meho, L. I., & Yang, K. (2006). A New Era in Citation and Bibliometric Analyses: Web of Science, Scopus, and Google Scholar. ArXiv preprint cs.DL/0612132.

Moed, H. F. (2005). Citation Analysis in Research Evaluation. Dordrecht: Springer.

Moravčik, M. (1984). International Task Force on Science Indicators, Institute of Theoretical Physics, University of Oregon, November 1984.

Moravcsik, M. J. (1985). Applied scientometrics: An assessment methodology for developing countries. Scientometrics, 7(3), 165-176.

Nicolaisen, J., & Frandsen, T. F. (2008). The Reference Return Ratio. Journal of Informetrics, 2(2), 128-135.

NWB Team. (2006). Network Workbench Tool. Indiana University and Northeastern University, http://nwb.slis.indiana.edu (Accessed on Oct. 3, 2008).

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The pagerank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project, 1998; available at http://dbpubs.stanford.edu/pub/1999-66. (Accessed on Oct. 4, 2008).

Pinski, G., & Narin, F. (1976). Citation Influence for Journal Aggregates of Scientific Publications: Theory, with Application to the Literature of Physics. Information Processing and Management, 12(5), 297-312.

Price, D. J. de Solla (1965). Networks of scientific papers. Science, 149, 510- 515.

Pudovkin, A. I., & Garfield, E. (2002). Algorithmic procedure for finding semantically related journals. Journal of the American Society for Information Science and Technology, 53(13), 1113-1119.

Robinson, W. D. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15, 351-357.

Rousseau, R. (2005). Median and percentile impact factors: A set of new indicators. Scientometrics, 63(3), 431-441.

Rousseau, R. (2008). Reflections on recent developments of the H-index and h-type indices. CollNet Journal of Scientometrics and Information Management, 2(1), 1-8.

Sombatsompop, N., Markpin, T., & Premkamolnetr, N. (2004). A modified method for calculating the Impact Factors of journals in ISI Journal Citation Reports: Polymer Science Category in 1997–2001. Scientometrics, 60(2), 217-235.

Testa, J. (1997). The ISI database: The journal selection process; available at http://scientific.thomson.com/free/essays/selectionofmaterial/journalselection/

Van Raan, A. F. J. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), 491-502.

Visser, M., & Moed, H. F. (2008). Comparing Web of Science and Scopus on a Paper-by-Paper Basis. Paper presented at the 10th International Conference on Science, Technology, and Innovation Indicators, Vienna, 18-21 September 2008.

Yue, W., Wilson, C. S., & Rousseau, R. (2004). The Immediacy Index and the Journal Impact Factor: Two Highly Correlated Derived Measures. The Canadian Journal of Information and Library Science,, 28(1), 33-48.

Zitt, M., & Small, H. (2008). Modifying the journal Impact Factor by fractional citation weighting: The audience factor. Journal of the American Society for Information Science and Technology, 59(11), 1856-1860.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item