Diffusion of Latent Semantic Analysis as a Research Tool: A Social Network Analysis Approach

Tonta, Yaşar and Darvish, Hamid R. Diffusion of Latent Semantic Analysis as a Research Tool: A Social Network Analysis Approach., 2010 . In Symposium on Informetrics and Scientometrics Research, 2009 ASIS&T Annual Meeting Thriving on Diversity - Information Opportunities in a Pluralistic World, Vancouver (Canada), 6-11 November 2009. [Conference paper]

[thumbnail of tonta-darvish-oct-2009.pdf]
Preview
PDF
tonta-darvish-oct-2009.pdf

Download (555kB) | Preview

English abstract

Latent Semantic Analysis (LSA) is a relatively new research tool with a wide range of applications in different fields ranging from discourse analysis to cognitive science, from information retrieval to machine learning and so on. In this paper, we chart the development and diffusion of LSA as a research tool using Social Network Analysis (SNA) approach that reveals the social structure of a discipline in terms of collaboration among scientists. Using Thomson Reuters’ Web of Science (WoS), we identified 65 papers with “Latent Semantic Analysis” in their titles and 250 papers in their topics (but not in titles) between 1990 and 2008. We then analyzed those papers using bibliometric and SNA techniques such as co-authorship and cluster analysis. It appears that as the emphasis moves from the research tool (LSA) itself to its applications in different fields, citations to papers with LSA in their titles tend to decrease. The productivity of authors fits Lotka’s Law while the network of authors is quite loose. Networks of journals cited in papers with LSA in their titles and topics are well connected.

Item type: Conference paper
Keywords: Latent semantic analysis, social network analysis, co-authorship analysis, cluster analysis
Subjects: B. Information use and sociology of information > BG. Information dissemination and diffusion.
L. Information technology and library technology > LC. Internet, including WWW.
B. Information use and sociology of information > BB. Bibliometric methods
Depositing user: prof. yasar tonta
Date deposited: 18 Nov 2010
Last modified: 02 Oct 2014 12:17
URI: http://hdl.handle.net/10760/14689

References

Angluin, D., & Smith, C.H. (1983). Inductive inference: theory and methods. Computing Surveys, 15(3): 237-269.

Chen, C. (2004, April 6). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the USA (PNAS), 101 (Suppl. 1), 5303-5310. Retrieved, 11 August 2009, from http://www.pnas.org/content/101/suppl.1/5303.full.pdf.

Chen, C. (2006) CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57, 359 377.

Chomsky, N. (1991). Linguistics and cognitive science: Problems and mysteries. In A. Kasher (ed.), The Chomskyan turn (pp. 26-53). Cambridge, MA.: Basil Blackwell.

Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G.W., & Beck, L. (1988). Improving information retrieval with latent semantic indexing. In Proceedings of the 51st Annual Meeting of the American Society for Information Science, 25, 36-40.

Deerwester, S.T., Furnas, G.W., Harshman, R.A., Landauer, T.K., Lochbaum, K.E., & Streeter, L.A. (1989). Computer information retrieval using latent semantic structure. United States Patent 4,839,853 (June 13, 1989). USPTO Patent Full-text and Image Database. Retrieved, 15 April 2009, from http://patft.uspto.gov/netacgi/nph Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearchbool. html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=4839853.PN.&OS=PN/4839853&R S=PN/4839853

Deerwester, S.T., Furnas, G.W., Landauer, T.K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41, 321-407.

Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics. Amsterdam: Elsevier.

Freeman, L.C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1): 35- 41. Retrieved, 11 August 2009, from http://moreno.ss.uci.edu/23.pdf.

Garfield, E. (2004). Historiographic mapping of the knowledge domain literature. Journal of Information Science, 30, 119-145.

Glänzel, W. (2002). Coauthorship patterns and trends in the science (1980-1998): A bibliometric study with implications for database indexing and search strategies. Library Trends, 50(3): 461-473.

Hertzel, D.H. (1987). Bibliometrics, history of the development of ideas in. In Encyclopedia of Library and Information Science. Vol. 42, supplement 7, p. 144-211. New York: Marcel Dekker.

Jackendoff, R.S. (1992). Languages of the mind. Cambridge, MA: MIT Press.

Kitajima, M., Kariya, N., Takagi, H., & Zhang, Y. (2005). Evaluation of website usability using Markov chains and latent semantic analysis. IEICE Transactions on Communications E88B(4): 1467-1475.

Landauer, T.K., & Dumais, S.K. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2): 211-240. Retrieved, 11 August 2009, from http://lsa.colorado.edu/papers/plato/plato.annote.html.

Landauer, T.K., Foltz, P.W., & Laham, D. (1998). Introduction to latent semantic analysis. Discourse Processes, 25, 259-284.

Leydesdorff, L (2007). “Betweenness centrality” as an indicator of the “interdisciplinarity” of scientific journals. Journal of the American Society for Information Science and Technology, 58, 1303-1319.

Lochbaum, K.E., & Streeter, L.A. (1989). Comparing and combining the effectiveness of latent semantic indexing and the ordinary vector-space model for information retrieval. Information Processing & Management, 25, 665-676.

Michalski, R.S. (1983). A theory and methodology of inductive learning. Artificial Intelligence, 20, 111-161.

Newman, M.E.J. (2001, January 16). The structure of scientific collaboration networks.

Proceedings of the National Academy of Sciences of the USA, 98(2): 404-409. Retrieved, 12 August 2009, from http://nicomedia.math.upatras.gr/courses/mnets/mat/Newman_StructureOfScientificCollabor ationNets.pdf.

Newman, M.E.J. (2004). Who is the best connected scientist? A study of scientific coauthorship networks. In E. Ben-Naim, H. Frauenfelder, & Z. Toroczkai (eds.), Complex networks (pp. 337-370). Berlin: Springer. Retrieved, 11 August 2009, from http://wwwpersonal. umich.edu/~mejn/papers/cnlspre.pdf.

Otte, E. & Rousseau, R. (2001). Social network analysis: a powerful strategy, also for the information sciences. Journal of information Science, 28, 443-455.

Pinker, S. (1990). The bootstrapping problem in language acquisition. In B. MacWhinney (ed.), Mechanisms of language acquisition. Hillsdale, NJ: Lawrence Erlbaum.

Price, D.J. de Solla (1970). Citation measures of hard science, soft science, technology and nonscience In C.E. Nelson & D. Pollock (eds.). Communication among scientists and engineers. (p. 3-22). Lexington, M.A.: D.C. Heath & Co.

Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25, 348-349.

Rousseau, B. & Rousseau, R. (2000). LOTKA: a program to fit a power law distribution to observed frequency data. Cybermetrics, 4(1). Retrieved, 11 August 2009, from http://www.cindoc.csic.es/cybermetrics/articles/v4i1p4.html.

Scott, J. (2000). Social Network Analysis: A Handbook. 2d ed. Thousand Oaks, CA: Sage Publications.

Scott, J., Tallia, A., Crosson, J.C., Orzano, A.J., Stroebel, C., DiCicco-Bloom, B., O’Malley, D., Shaw, E., & Crabtree, B. (2005). Social network analysis as an analytic tool for interaction patterns in primary care practices. Annals of Family Medicine, 3, 443–448. Retrieved, 11 August 2009, from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1466914.

Sentinel Visualizer. (2009). Social network analysis (SNA). Retrieved, 11 August 2009, from http://www.fmsasg.com/SocialNetworkAnalysis/.

Shepard, R.N. (1987, September 11). Towards a universal law of generalization for psychological science. Science, 237(4820): 1317-1323.

Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3): 595- 610.

Vygotsky, L.S. (1968). Thought and language. (1934), (A. Kozulin, Trans.). Cambridge, MA: MIT Press.

White, H.D., Wellman, B., & Nazer, N. (2004). Does citation reflect social structure? Longitudinal evidence from the "Globenet" interdisciplinary research group. Journal of the American Society for Information Science and Technology, 55, 111-126.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item