An Automat for the semantic processing of structured information

Leiva-Mederos, Amed and Senso, José A. and Domínguez-Velasco, Sandor and Hípola, Pedro An Automat for the semantic processing of structured information. 2009 Ninth International Conference on Intelligent Systems Design and Applications, 2009. [Journal article (On-line/Unpaginated)]

[img]
Preview
PDF
An_Automat.pdf

Download (107Kb) | Preview

English abstract

Using the database of the PuertoTerm project, an indexing system based on the cognitive model of Brigitte Enders was built. By analyzing the cognitive strategies of three abstractors, we built an automat that serves to simulate human indexing processes. The automat allows the texts integrated in the system to be assessed, evaluated and grouped by means of the Bipartite Spectral Graph Partitioning algorithm, which also permits visualization of the terms and the documents. The system features an ontology and a database to enhance its operativity. As a result of the application, we achieved better rates of exhaustivity in the indexing of documents, as well as greater precision and retrieval of information, with high levels of efficiency.

Item type: Journal article (On-line/Unpaginated)
Keywords: PuertoTerm, Automatic indexing, Cognitive models, Ontologies
Subjects: I. Information treatment for information services > IE. Data and metadata structures.
Depositing user: Pedro Hipola
Date deposited: 15 Jul 2012
Last modified: 02 Oct 2014 12:23
URI: http://hdl.handle.net/10760/17342

References

"SEEK" links will first look for possible matches inside E-LIS and query Google Scholar if no results are found.

S. Domínguez. (2009) SATCOL 6 herramienta para el minado de corpus y construcción de índices automáticos, Universidad Central de las Villas, Cuba. 2009.

Jose A. Senso, PJ Magaña-Redondo, P. Faber-Benitez, A. Vila-Miranda, “Metodología para la estructuración del conocimiento de una disciplina: el caso de PuertoTerm”, El profesional de la información, vol 16, nº 6, pp. 591-604, 2007.

C. Lanquillon, “Enhancing Text Classification to Improve Information Filtering”, Künstliche Intelligenz, nº 2, pp. 37-38, 2002.

D. Lewis, M. Ringuette, “A comparison of two learning algorithms for text classification”, in Third Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, University of Nevada, 1994.

N. Chomsky, Aspects of the Theory of Syntax. Cambridge, MA. MIT Press, 1965.

M. Sahami, S. Dumais, D. Heckerman, E. Hovitz, et. al., A Bayessian approach to filtering junk a-mail. available in http://robotics.stanford.edu/users/sahami/papersdir/spam.pdf, 1998.

Y. Yang, J. Pedersen, “A comparative study on feature selection in text categorization”, Journal of Artificial Intelligence Research, nº 6, pp. 1-34, 1997.

D. Mladenic, M. Grobelnik, M. “Feature selection for classification based on text hierarchy”, in Working notes of Learning from Text and the Web: Conference on Automatic Learning and Discovery (CONALD-98), 1998.

I. Dhillon, “Co-clustering documents and words using Bipartite Spectral Graph Partitioning”, in “Knowledge Discovery and Data Mining”, pp. 269-274, 2001.

C. Fillmore, “Frame semantics", in Linguistics in the Morning Calm, Seoul, Hanshin Publishing Co., pp. 111-137, 1982


Actions (login required)

View Item View Item