Atıf Klasiklerinin Etkisinin ve İlgililik Sıralamalarının Pennant Diyagramları ile Analizi

Akbulut, Müge Atıf Klasiklerinin Etkisinin ve İlgililik Sıralamalarının Pennant Diyagramları ile Analizi., 2016 Master Thesis thesis, Hacettepe University. [Thesis]

[img]
Preview
Text
Muge_Akbulut_YL_Tez.pdf

Download (12MB) | Preview

English abstract

Citation indexes are important authority resources for measuring the contribution of scientists and scientific publications to literature. Many studies in information retrieval are based on research aiming to develop retrieval algorithms. These studies tend to receive citations from different fields because of the interdisciplinary nature of information retrieval. Therefore, it is important to analyze the so-called “citation classics” retrospectively to find out their impact on other fields. Yet, it is not easy to do this using citation indexes, especially for relatively old papers, as traditional citation analysis tends not to reveal the full impact of a work on other studies at its time and periods that follow. In order to see the big picture it is important to study the contribution of these studies on other disciplines as well. In this study the impact of Maron and Kuhns’ citation classic on “probabilistic retrieval” published in 1960 has been visualized using pennant diagrams that were developed on the basis of relevance theory, information retrieval and bibliometrics. We hypothesized that “The interdisciplinary relations that are unobservable with traditional citation analysis can be revealed using the pennant diagrams method”. In order to test the hypothesis works that cited Maron and Kuhns’ study between the years of 1960 and 2015 have been downloaded with their references (a total of 4,176 unique works) and graphics have been prepared by the macros written in MS Excel. Of 4,176 works, 90 were selected using convenience sampling techniques to create static and interactive pennant diagrams for further analysis. Another important output of this study is the relevance rankings. As an alternative to the relevance rankings based on the similarity of references already used in citation indexes, relevance rankings have been created using the pennant diagrams that took into account not only items that cited the core (seed) paper but also citations to the items that cited the core paper. Relevance rankings based on the similarity of references and that of pennant diagrams have been compared. Findings support the hypothesis in that pennant diagrams provide information as to which papers that the core paper on probabilistic model influenced or got influenced from, directly or indirectly. Relevance ranking based on pennant diagrams revealed the impact of the core paper on information retrieval field as well as on other disciplines. Furthermore, it identified the relations between these somewhat disconnected fields, between authors, works, and journals that cannot be readily identified using traditional citation analysis. Relevance rankings using pennant diagrams seem to have been more successful than the relevance rankings based on references similarity. This study is the first such study in Turkey that uses pennant diagrams for relevance rankings. The data used in graphs and relevance rankings are available through citation indexes (the frequencies of total citations and co-citations). Thus, alternative relevance rankings based on pennant diagrams can be offered to users. Pennant diagrams can help researchers track the relevant literature more easily as well as identify how a core work influences other works in a specific field or in other fields.

Turkish abstract

Atıf dizinleri bilim insanlarının ve bilimsel çalışmaların literatüre olan katkılarının ölçümüne yönelik otorite kaynaklardır. Bilgi erişim literatüründeki birçok çalışma erişim algoritmalarının geliştirildiği araştırmalara dayanmaktadır. Bilgi erişim alanının disiplinlerarası yapısı dolayısı ile bu çalışmalara birçok farklı alandan atıflar yapılmaktadır. Bilgi erişim literatüründe “klasik” olarak nitelendirilen ve birçok alanı etkileyen çalışmaların özellikle geriye dönük olarak incelenmesi önemlidir. Fakat özellikle eski tarihli çalışmaların etkilerinin atıf dizinlerinde gözlenmesi kolay değildir. Geleneksel atıf analizi çalışmanın kendi dönemindeki ve daha sonraki dönemlerdeki çalışmalar üzerindeki etkilerini ortaya çıkarmak için yeterli değildir. Bu çalışmaların diğer disiplinlere etkileri ve alandaki yeni modellere katkılarının ortaya çıkarılması büyük resmi görebilmek açısından önemlidir. Bu çalışma kapsamında bilgi erişim literatüründe atıf klasiği haline gelmiş olan Maron ve Kuhns'un 1960 yılında yayımladıkları “olasılıksal erişim” ile ilgili çalışmanın literatürdeki etkisi ilgililik kuramı (relevance theory), bilgi erişim ve bibliyometriye dayanarak geliştirilen pennant diyagramları aracılığıyla görselleştirilmiştir. Bu amaçla temel hipotezi “Geleneksel atıf analizi ile gözlenemeyen disiplinlerarası ilişkiler pennant diyagramları yöntemi ile ortaya çıkarılabilir” şeklinde belirlenmiştir. Hipotezi test etmek için Maron ve Kuhns’un çalışmasına 1960 ile 2015 yılları arasında atıf yapan çalışmalar (toplam 4176 tekil çalışma) kaynakça bilgileri ile birlikte indirilmiş ve MS Excel programında yazılan makrolar yardımıyla hesaplamalar yapılarak grafikler hazırlanmıştır. Bu çalışmalardan kolayda örneklem yöntemi ile seçilen 90 çalışma için etkileşimli ve statik pennant diyagramları oluşturulmuş ve bu diyagramlar ayrıntılı olarak incelenmiştir. Bu çalışmanın bir diğer önemli çıktısı da ilgililik sıralamalarıdır. Atıf dizinlerinde halihazırda kullanılmakta olan kaynakça benzerliğine dayalı ilgililik sıralamasına alternatif olarak çekirdek makalenin kaynakçası dışında diğer araştırmacıların atıflarının da hesaplamaya dahil edildiği pennant diyagramı yöntemi ile ilgililik sıralaması oluşturulmuş ve bu sıralamalar birbirleri ile karşılaştırılmıştır. Bulgular hipotezleri destekler niteliktedir. Pennant diyagramları çekirdek makalede geçen olasılıksal modelin doğrudan ya da dolaylı olarak hangi modelleri etkilediği ya da hangi modellerden etkilendiği hakkında bilgi vermektedir. Çekirdek makalenin bilgi erişim alanı ve diğer disiplinlere katkıları ve birbirinden kopuk gibi gözüken alanlar arasındaki ilişkiler ile yazar, çalışma ve dergiler arasında belirli olmayan ve geleneksel atıf analizi ile belirlenemeyen ilişkiler ortaya çıkarılmıştır. Pennant diyagramları yöntemi kullanılarak oluşturulan ilgililik sıralamaları kaynakça benzerliğine göre oluşturulan ilgililik sıralamasından daha başarılı bulunmuştur. Çalışma Türkiye literatüründe ilgililik sıralaması oluşturulması kapsamında pennant diyagramları yönteminin kullanıldığı ilk çalışmadır. Bunun dışında pennant diyagramlarının etkileşimli versiyonu da ilk kez bu çalışmada hazırlanmıştır. Çalışma kapsamında oluşturulan grafiklerde ve ilgililik sıralamalarında kullanılan veriler (toplam atıf ve ortak atıf sayıları) atıf dizinlerinde mevcuttur. Dolayısıyla atıf dizinlerinde kullanıcılara bu çalışmadakine benzer alternatif ilgililik sıralamaları sunulabilir. Pennant diyagramları hem araştırmacıların literatürü izlemelerini kolaylaştırılabilir hem de bir çalışmanın belli bir alanda ya da farklı alanlardaki çalışmaları nasıl etkilediği belirlenebilir.

Item type: Thesis (UNSPECIFIED)
Keywords: Information Retrieval, Bibliometrics, Pennant Diagrams, Relevance, Relevance Rankings, Impact, Tf*idf Weighting; Bilgi Erişim, Bibliyometri, Pennant Diyagramları, İlgililik, İlgililik Sıralamaları, Etki, Tf*idf Ağırlıklandırma
Subjects: A. Theoretical and general aspects of libraries and information. > AA. Library and information science as a field.
A. Theoretical and general aspects of libraries and information. > AC. Relationship of LIS with other fields .
B. Information use and sociology of information > BB. Bibliometric methods
Depositing user: Muge Akbulut
Date deposited: 15 Dec 2016 15:41
Last modified: 15 Dec 2016 15:41
URI: http://hdl.handle.net/10760/30513

References

"SEEK" links will first look for possible matches inside E-LIS and query Google Scholar if no results are found.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.

Al, U. (2008). Türkiye'nin bilimsel yayın politikası: Atıf dizinlerine dayalı bibliyometrik bir yaklaşım. (Doktora Tezi, Hacettepe Üniversitesi, Ankara). Erişim adresi: http://yunus.hacettepe.edu.tr/~umutal/publications/dissertation/full.pdf

Al, U., Sezen, U. ve Soydal, İ. (2012). Türkiye'nin bilimsel yayınlarının sosyal ağ analizi yöntemiyle değerlendirilmesi. (TÜBİTAK Sosyal Bilimler Araştırma Grubu - Proje No: SOBAG 110K044). Hacettepe Üniversitesi Bilgi ve Belge Yönetimi Bölümü. Ankara. Erişim Adresi: http://www.bby.hacettepe.edu.tr/bilgibelge/file/SOBAG-110K044.pdf

Al, U., ve Tonta, Y. (2004). Atıf analizi: Hacettepe Üniversitesi Kütüphanecilik Bölümü tezlerinde atıf yapılan kaynaklar. Bilgi Dünyası, 5(1),19-47. Erişim adresi: http://bd.org.tr/index.php/bd/article/view/220/206

Allott, N. (2013). Relevance theory. A. Capone, F. Lo Piparo ve M. Carapezza (Yay. haz.). Perspectives on pragmatics and philosophy içinde (s. 57-98). Berlin/New York: Springer.

Ateş, T. K., Özkan, S., Soysal, M. ve Alatan, A. A. (2011). Relevance feedback for semantic classification: A comparative study. 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU), 22-24 Haziran 2011, Ontario, Canada. Erişim adresi: http://www.junjanes.com/files/research/relevance-feedback-for-semantic-classification-a-comparative-study.pdf

Bagley, P. (1951). Electronic digital machines for high-speed information searching. (Yüksek Lisans Tezi, Massachusetts Teknoloji Enstitüsü, Cambridge). Erişim adresi: http://dspace.mit.edu/handle/1721.1/12185#files-area

Bauer, K. ve Bakkalbasi, N. (2005). An examination of citation counts in a new scholarly communication environment. D-Lib Magazine, 11(9). Erişim adresi: http://dlib.org/dlib/september05/ bauer/09bauer.html

Beel, J., Gipp, B., Langer, S., ve Breitinger, C. (2015). Research-paper recommender systems: A literature survey. International Journal on Digital Libraries, 73(2), 1-34.

Blair, D. C. ve Maron, M. E. (1985). An evaluation of retrieval effectiveness for a full-text document-retrieval system. Communications of the ACM, 28(3), 289–299.

Brin, S. ve Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. doi: 10.1016/s0169-7552(98)00110-x

Bodoff, D. (1999). A re-unification of two competing models for document retrieval. Journal of the American Society for Information Science, 50(1), 49–64.

Bodoff, D. ve Robertson, S. E. (2004). New unified probabilistic model. Journal of the American Society for Information Science and Technology, 55(6), 471–487.

Bookstein, A. (1983). Outline of a general probabilistic retrieval model. Journal of Documentation, 39(2), 63-72.

Buchanan, L. ve O Connell, A. (2006). A brief history of decision making. Harvard Business Review, 84(1), 32-36. Erişim adresi: http://thegrcbluebook.com/wp-content/uploads/2013/02/A-Brief-History-of-Decision-Making-by-Leigh-Buchanan-and-Andrew-OConnell.pdf

Bush, V. (1945). As we may think. Atlantic Monthly, 176(1), 101-108. Erişim adresi: http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

Buzydlowski, J. (2002). A comparison of self-organizing maps and pathfinder networks for the mapping of co-cited authors. (Doktora Tezi, Drexel Üniversitesi, Philadelphia). Erişim adresi: http://opim.wharton.upenn.edu/~sok/papers/b/janbuz-thesis.pdf

Carevic, Z. ve Mayr, P. (2014). Recommender systems using pennant diagrams in digital libraries. (arXiv:1407.7276). Erişim adresi: http://arxiv.org/pdf/1407.7276v1.pdf

Carevic, Z. ve Schaer, P. (2014). On the connection between citation-based and topical relevance ranking: Results of a pretest using iSearch. Proceedings of the first workshop on bibliometric-enhanced information retrieval içinde (s. 37-44). Amsterdam, The Netherlands. Erişim adresi: http://ceur-ws.org/Vol-1143/paper5.pdf

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57, 359–377.

Chisholm, E. ve Kolda, T. G. (1999). New term weighting formulas for the vector space method in information retrieval. (Rapor No. ORNL/TM-13756) Computer Science and Mathematics Division, Oak Ridge National Laboratory. Oak Ridge, TN. Erişim adresi: http://www.sandia.gov/~tgkolda/pubs/pubfiles/ornl-tm-13756.pdf

Clark, B. (2013). Relevance theory. Cambridge: Cambridge University Press.

Cole, J. R. (2000). A short history of the use of citations as a measure of the impact of scientific and scholarly work. The Web of Knowledge: A festschrift in honor of Eugene Garfield içinde (s. 281-298). New Jersey: Information Today, Inc.

Comins, J. A. ve Leydesdorff, L. (2016a). Identification of long-term concept-symbols among citations: Can documents be clustered in terms of common intellectual histories? (arXiv:1601.00288.) Erişim adresi: http://arxiv.org/abs/1601.00288

Comins, J. A. ve Leydesdorff, L. (2016b). RPYS i/o: A web-based tool for the historiography and visualization of citation classics, sleeping beauties, and research fronts. (arXiv:1602.01950). Erişim adresi: http://arxiv.org/abs/1602.01950

Cooper, W. S. (1978). Indexing documents by gedanken experimentation. Journal of the American Society for Information Science, 29(3), 107-119.

Cooper, W. S. ve Maron, M. E. (1978). Foundations of probabilistic and utility-theoretic indexing. Journal of the ACM, 25(1), 67–80.

Cortes, C. ve Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Croft, W. B. (2000). Combining approaches to information retrieval. W. B. Croft (Yay. haz.), Advances in information retrieval: Recent research from the center for intelligent information retrieval içinde (s.1-36). Boston: Kluwer.

Croft, W. B. ve Harper, D. J. (1979). Using probabilistic models of document retrieval without relevance information. Journal of Documentation, 35(4), 285-295.

Croft, W. B. ve Lafferty, J. (Yay. haz.). (2003). Language modeling for information retrieval. Boston: Kluwer Academic.

Çapkın, Ç. (2011) Türkçe metin tabanlı açık arşivlerde kullanılan dizinleme yönteminin değerlendirilmesi. (Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara). Erişim adresi: http://eprints.rclis.org/28804/1/Cagdas_CAPKIN_Yuksek_Lisans_tezi.pdf

De Solla Price, D. (1965). Networks of scientific papers. Science, 149(3683), 510-515.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. ve Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407.

Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X. ve Zhai, C. (2014). Content-based citation analysis: The next generation of citation analysis. Journal of the Association for Information Science and Technology, 65(9), 1820-1833.

Düzyol, G. (2011). Türkiye kütüphanecilik ve bilgibilim literatürünün entellektüel haritasının çıkarılması: Bir yazar ortak atıf analizi çalışması. (Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara). Erişim adresi: http://www.bby.hacettepe.edu.tr/akademik/guledaduzyoldogan/file/Guleda-Duzyol_Yukseklisans-Tezi.pdf

Emirzade, E. ve Bitirim, Y. (2008). Resim arama motorlarının sorgu sözcük sayısına göre performans değerlendirmeleri. Bilgi Dünyası, 9(1), 126-139. Erişim adresi: http://bd.org.tr/index.php/bd/article/view/174/157

Fairthorne, R. (1961). Towards information retrieval. London: Butterworths.

Fenton, J. E., Roy, D., Hughes, J. P. ve Jones, A. S. (2002). A century of citation classics in otolaryngology-head and neck surgery journals. The Journal of Laryngology and Otology, 116, 494-498.

Fuhr, N. (1986). Two models of retrieval with probabilistic indexing. F. Rabitti (Yay. haz.), ACM Conference on research and development in information retrieval (s. 249–257), 8–10 September 1986, Pisa, Italy.

Fuhr, N. (1989). Models for retrieval with probabilistic indexing. Information Processing and Management, 22(1), 55–72.

Funkhouser, E. T. (1996). The evaluative use of citation analysis for communication journals. Human Communication Research, 22(4), 563-574.

Galvez, C. ve Moya-Anegón, F. (2006). The unification of institutional addresses applying parametrized finite-state graphs (P-FSG). Scientometrics, 69(2), 323-345.

Garfield, E. (1972). Citation analysis as a tool in journal evaluation - Journals can be ranked by frequency and impact of citations for science policy studies. Science, 178(4060), 471-479. doi: 10.1126/science.178.4060.471

Glushko, R. J. (Yay. haz.). (2015). The discipline of organizing: Professional edition (3.bs) Sebastopol, CA.: O'Reilly Media.

Good, I. J. (1958). Speculations concerning information retrieval. IBM Research Report RC-78, 10 Aralık 1958.

Göker, A. ve Davies, J. (Yay. haz.). (2009). Information retrieval: searching in the 21st century. Chichester, UK: John Wiley & Sons.

Harter, S. (1992). Psychological relevance and information science. Journal of the American Society for Information Science. 43(9), 602-615.

Hersh, W. ve Voorhees, E. (2009). TREC genomics special issue overview. Information Retrieval, 12(1), 1-15.

Hiemstra, D. (2000). A probabilistic justification for using tf×idf term weighting in information retrieval. International Journal on Digital Libraries, 3(2), 131-139.

Jeong, Y. K., Song, M. ve Ding, Y. (2014). Content-based author co-citation analysis. Journal of Informetrics, 8(1), 197-211.

Kahneman, D. (2011). Hızlı ve Yavaş Düşünme. İstanbul: Varlık Yayınları.

Kleinberg, J. M. (1998). Authoritative sources in a hyperlinked environment. Proceedings of the ACM-SIAM Symposium on discrete algorithms içinde (s.1-33). Erişim adresi: https://www.cs.cornell.edu/home/kleinber/auth.pdf

Larsen, B. (2004). References and citations in automatic indexing and retrieval systems-experiments with the boomerang effect (Doktora tezi, Kopenhag Üniversitesi). Erişim adresi: http://pure.iva.dk/files/31034810/birger_larsen_phd.pdf

Lin, X., White, H. D. ve Buzydlowski, J. (2003). Real-time author co-citation mapping for online searching. Information Processing and Management, 39, 689–706. Erişim adresi: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.4125&rep=rep1&type=pdf

Luhn, H. P. (1961). The automatic derivation of information retrieval encodements from machine-readable texts. A. Kent (Yay. haz). Information retrieval and machine translation içinde (Cilt 3, Bölüm 2, ss. 1021–1028). New York: Interscience Publication.

Manning, C. ve Nayak, P. (2015). Scoring, term weighting and the vector space model [Ders slaytları]. Erişim adresi: http://goo.gl/41iVs9

Manning, C., Raghavan, P. ve Schütze, H. (2008). An introduction to information retrieval. Cambridge: Cambridge University Press. Erişim adresi: http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf

Manning, C. ve Schütze, H. (2000). Foundations of statistical natural language processing. Cambridge, MA: MIT Press. Erişim adresi: http://ics.upjs.sk/~pero/web/documents/pillar/Manning_Schuetze_StatisticalNLP.pdf

Maron, M. E. (1977). On indexing, retrieval and the meaning of about. Journal of the American Society for Information Science, 28(1), 38–43.

Maron, M. E. (1984). Probabilistic retrieval models. B. Dervin ve M. J. Voigt (Yay. haz), Progress in communication sciences içinde (Vol. 5, pp. 145–176).

Maron, M. E. ve Kuhns, J. L. (1960). On relevance, probabilistic indexing and information retrieval. Journal of the ACM, 7, 216-244.

Maron, M. E., Curry, S. ve Thompson, P. (1986). An inductive search system: Theory, design and implementation. IEEE Transactions on Systems, Man, and Cybernetics, SMC-16(1), 21–28.

Maron, M. E., Kuhns, J. L ve Ray, L. (1958). Some experiments with probabilistic indexing. Los Angeles, CA: Thomson Ramo-Wooldridge Inc.

Mayr, P. ve Scharnhorst, A. (2015). Scientometrics and information retrieval: weak-links revitalized. Scientometrics, 102(3), 2193-2199.

McHale, M. (1998). A comparison of WordNet and Roget’s taxonomy for measuring semantic similarity. Proceedings of the workshop on usage of WordNet in natural language processing systems içinde (s. 115–120). Erişim adresi: http://www.aclweb.org/anthology/W98-0716

McNee, S. M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S. K., Rashid, A. M. ve Riedl, J. (2002). On the recommending of citations for research papers. Proceedings of the 2002 ACM Conference on computer supported cooperative work içinde (s. 116-125). Erişim adresi: http://www-users.cs.umn.edu/~mcnee/mcnee-cscw2002.pdf

Merton, R. K. (1968). The Matthew effect in science. Science. 159(3810), 56–63.

Merton, R. K. (1988). The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. ISIS, 79, 606-623.

Miller (1971). A probabilistic search strategy for Medlars. Journal of Documentation, 27, 254–266. Erişim adresi: http://www.ictir2013.org/miller.pdf

Papp, I., Ercsey-Ravasz, M., Deritei, D., Sumi, R., Járai-Szabó, F., Florian, R.V. ve diğerleri (2013). The P-Index: Hirsch Index of Individual Publications. Proceedings of ISSI 2013 Vienna içinde (s. 2086-2088). Vienna, Austria, July 15-19, 2013.

Poetz, M. K. ve Prügl, R. (2010). Crossing domain-specific boundaries in search of innovation: Exploring the potential of pyramiding. Journal of Product Innovation Management, 27(6), 897-914.

Prevedelli, D., Simonini, R. ve Ansaloni, I. (2001). Relationship of non-specific commensalism in the colonization of the deep layers of sediment. Journal of the Marine Biological Association of the UK, 81, 897-901. doi:10.1017/S0025315401004817.

Robertson, S. E. (2003). The unified model revisited. Workshop on the mathematical foundations of information retrieval, SIGIR 2003, Toronto, Canada. Erişim adresi: http://www.staff.city.ac.uk/~sb317/papers/UM_revisited.pdf

Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documentation, 33(4), 294–304. Erişim adresi: http://parnec.nuaa.edu.cn/xtan/IIR/readings/jdRobertson1977.pdf

Robertson, S. E., Maron, M. E. ve Cooper, W. S. (1982). Probability of relevance: A unification of two competing models for document retrieval. Information Technology: Research and Development, 1, 1–21.

Robertson, S. E., Maron, M. E., ve Cooper, W. S. (1983). The unified probabilistic model for IR. Research and development in information retrieval içinde (s. 108-117). Berlin, Heidelberg: Springer.

Robertson, S. E. ve Sparck Jones, K. (1976). Relevance weighting of search terms. Journal of the American Society for Information Science, 27(3), 129-146.

Rocchio, J. J. (1966). Document retrieval systems: Optimization and evaluation. (Doktora Tezi, Harvard Üniversitesi), Rapor No. ISR-10 to the National Science Foundation, Harvard Computation Laboratory.

Salton, G. ve Lesk, M. E. (1968). Computer evaluation of indexing and text processing. Journal of the ACM, 15, 8–36.

Salton, G. ve McGill, M. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.

Salton, G., Wong, A. ve Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18 (11), 613-620.

Salton, G. ve Yang, C. S. (1973). On the specification of term values in automatic indexing. Journal of Documentation, 29, 351–372.

Saracevic, T. (1975). Relevance: A review of and a framework for thinking on the notion in information science. Journal of the American Society for Information Science, 26, 321–343.

Saracevic, T. (1996). Relevance reconsidered. Proceedings of the second conference on conceptions of library and information science içinde (s. 201-218). Lokve, Croatia: Benja Publishing.

Saracevic, T. ve Kantor, P. (1988a). A study of information seeking and retrieving. II. Users, questions and effectiveness. III. Searchers, searches and overlap. Journal of the American Society for Information Science, 39(3), 177–196.

Saracevic, T. ve Kantor, P. (1988b). A study of information seeking and retrieving. III. Searchers, searches and overlap. Journal of the American Society for Information Science, 39(3), 197–216.

Saracevic, T., Kantor, P., Chamis, A. Y. ve Trivison, D. (1988). A study of information seeking and retrieving. I. Background and methodology. Journal of the American Society for Information Science, 39(3), 161–176.

Shah, C. (Yapımcı). (2009, 6 Ekim). INLS490-154W: Information retrieval systems design and implementation [Podcast]. Erişim adresi: https://itunes.apple.com/us/podcast/inls490-154w-information-retrieval/id327757721?mt=2

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423.

Shannon, C. E. ve Weaver, W. (1949). The mathematical theory of communication. Urbana, Ill: University of Illinois Press.

Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265-269.

Smucker, M. D. (2008) Evaluation of find-similar with simulation and network analysis. (Doktora Tezi, University of Massachusetts, Amherst). Erişim adresi: http://www.mansci.uwaterloo.ca/~msmucker/publications/smucker-dissertation.pdf

Soll, J. B., Milkman, K. L., ve Payne, J. W. (2015). Outsmart your own biases. Harvard Business Review, 93(5), 64-71.

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28(1): 11–21. doi: 10.1108/eb026526.

Sparck Jones, K. (1973). Index term weighting. Information Storage and Retrieval, 9(11), 619-633.

Sperber, D. ve Wilson, D. (1995). Relevance: Communication and cognition. Oxford: Blackwell. Erişim adresi: http://monoskop.org/images/e/e6/Sperber_Dan_Wilson_Deirdre_Relevance_Communica_and_Cognition_2nd_edition_1996.pdf

Stanford. (2012, Ocak). Jurafsky, D. ve Manning, C.: Ranked information retrieval [Çevrimiçi ders videosu]. Erişim adresi: https://class.coursera.org/nlp/lecture/179

Strohman, T., Croft, W. B. ve Jensen, D. (2007). Recommending citations for academic papers. Proceedings of the 30th Annual International ACM SIGIR Conference on research and development in information retrieval içinde (s. 705-706). Amsterdam, The Netherlands: ACM.

Sylvia, M. J. (1998). Citation analysis as an unobtrusive method for journal collection evaluation using psychology student research bibliographies. Collection Building, 17(1), 20-28.

Taşkın, Z. (2012). Atıf dizinlerinde üniversite adreslerinin standardizasyon sorunu. (Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara). Erişim adresi: http://www.bby.hacettepe.edu.tr/yayinlar/dosyalar/thesis_zt.pdf

Thompson, P. (1988). Subjective probability and information retrieval: A review of the psychological literature. Journal of Documentation, 44(2), 119–143.

Thompson, P. (1990a). A combination of expert opinion approach to probabilistic information retrieval, Part 1: The conceptual model. Information Processing and Management, 26(3), 371–382.

Thompson, P. (1990b). A combination of expert opinion approach to probabilistic information retrieval, Part 2: Mathematical treatment of CEO model 3. Information Processing and Management, 26(3), 383–394.

Thompson, P. (2007). Looking back: On relevance, probabilistic indexing and information retrieval. Information Processing and Management, 44(2), 963-970.

Thomson Reuters (Yapımcı). (2015, 26 Mayıs). The Importance of bibliometrics in research evaluation [Podcast]. Erişim adresi: https://itunes.apple.com/us/podcast/mena-talks-ip-science/id992815770?mt=2

Tonta, Y. (1995). Bilgi erişim sistemleri. Türk Kütüphaneciliği, 9(3): 302-314.

Tonta, Y. (2001). Bilgi erişim sorunu. T. Fenerci ve O. Gürdal (Yay. haz), 21. Yüzyıla Girerken Enformasyon Olgusu: Ulusal Sempozyum Bildirileri, 19-20 Nisan 2001, Hatay içinde (s. 198-206). Ankara: Türk Kütüphaneciler Derneği, 2001.

Tonta, Y. (2002). Bilgi erişim sorunları ve Internet. Ali Can, M. T. Gülle, O. Gürdal ve E. Yılmaz (Yay. haz.). Kütüphanecilikte Yeni Gelişmeler, Kavramlar, Olgular... 37. Kütüphane Haftası bildirileri. 26 Mart - 01 Nisan 2001 içinde (s. 52-62). Ankara: TKD, 2002.

Tonta, Y., Bitirim, Y. ve Sever, H. (2002). Türkçe arama motorlarında performans değerlendirme. Ankara: Total Bilişim. Erişim adresi: http://yunus.hacettepe.edu.tr/~tonta/yayinlar/tonta-bitirim-sever-arama-motorlari.pdf

Tonta, Y. (2012). Bilgi sınıflama, bilgi düzenleme ve bilgi erişim. Ö. Külcü, T. Çakmak ve N. Özel (Yay. Haz.). Prof. Dr. K. Gülbün Baydur’a armağan içinde (s. 155-172). Ankara: Hacettepe Üniversitesi Bilgi ve Belge Yönetimi Bölümü, 2012. Erişim adresi: http://yunus.hacettepe.edu.tr/~tonta/yayinlar/tonta-bilgi-siniflama-duzenleme-erisim.pdf

Tonta, Y. ve Özkan Çelik, A. E. (2013). Cahit Arf: Exploring his scientific influence using social network analysis, author co-citation maps and single publication h index. Journal of Scientometric Research, 2:37-51.

Turtle, H. R ve Croft, W. B. (1991). Evaluation of an inference network-based retrieval model. ACM Transactions on Information Systems, 9(3), 187–222.

Turtle, H. R. ve Croft, W. B. (1997). Uncertainty in information retrieval systems. A. Motro, P. Smets (Yay. Haz.). Uncertainty management in information systems: From needs to solutions içinde (s. 189-224). Boston: Kluwer Academic.

Tversky, A. ve Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), s. 1124-1131.

Uçak, N. Ö. ve Al, U. (2009). Bilimsel iletişimin zamana göre değişimi: Bir atıf analizi çalışması. Bilgi Dünyası, 10(1), 1-22.

Van Rijsbergen, C. J. (2005). The emergence of probabilistic accounts of information retrieval. J. Tait (Yay. haz.), Charting a new course: Natural language processing and information retrieval essays in honour of Karen Sparck Jones içinde (s. 23–38). Dordrecht, The Netherlands: Springer.

Van Rijsbergen, C. J., Harper, D. J. ve Porter, M. F. (1981). The selection of good search terms. Information Processing and Management, 17(2), 77-91.

Wang, J. (2014). Unpacking the Matthew effect in citations. Journal of Informetrics, 8(2), 329-339.

Web of Science (2010). Related records. Erişim adresi: https://images.webofknowledge.com/WOK48B3/help/WOS/hp_related_records.html

White, H. D. (2003). Pathfinder networks and author co-citation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science and Technology, 54, 423-434.

White, H. D. (2007a). Combining bibliometrics, information retrieval, and relevance theory. Part 1: First examples of a synthesis. Journal of the American Society for Information Science and Technology, 58, 536-559.

White, H. D. (2007b). Combining bibliometrics, information retrieval, and relevance theory. Part 2: Some implications for information science. Journal of the American Society for Information Science and Technology, 58, 583-605.

White, H. D. (2009). Pennants for Strindberg and Persson. Celebrating scholarly communication studies: A festschrift for Olle Persson at his 60th birthday. Special volume of the E-newsletter of the International Society for Scientometrics and Informetrics, 5, 71-83.

White, H. D. (2010). Some new tests of relevance theory in information science. Scientometrics, 83, 653–667.

White, H. D. (2011). Relevance theory and citations. Journal of Pragmatics, 43, 3345–3361. Erişim adresi: http://www.researchgate.net/publication/229861357_Relevance_theory_and_citations

White, H. D. (2015). Co-cited author retrieval and relevance theory: examples from the humanities. Scientometrics, 102(3), 2275-2299.

White, H. D. (2016). Bag of works retrieval: TF*IDF weighting of co-cited works. Proceedings of the 3rd workshop on bibliometric-enhanced information retrieval (BIR2016) içinde (s. 63-72). Erişim adresi: http://ceur-ws.org/Vol-1567/paper7.pdf

White, H. D. ve Griffith, B. C. (1981). Author co-citation: a literature measure of intellectual structure. Journal of the American Society for Information Science, 32, 163-171.

White, H. D. ve McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972-1995. Journal of the American Society for Information Science, 49(4), 327-355.

White, H. D. ve Mayr, P. (2013). Pennants for descriptors. NKOS Workshop 2013. Valletta, Malta. Erişim adresi: http://arxiv.org/abs/1310.3808

White, H. D, Buzydlowski, J. ve Lin, X. (2000) Co-cited author maps as interfaces to digital libraries: Designing pathfinder networks in the humanities. Proceedings of the International Conference on Information Visualization (s. 25–30). London: Computer Society Press.

White, H. D., Lin, X. ve Buzydlowski, J. W. (2001). The endless gallery: Visualizing authors’ citation images in the humanities. Proceedings of the American Society of Information Science and Technology Annual Meeting içinde (s. 182–189). Washington, DC: ASIS&T.

Wilson, P. (1973). Situational relevance. Information Storage and Retrieval, 9, 457-471.

Wilson, D. ve Sperber, D. (2002). Relevance theory. G. Ward ve L. Horn (Yay. haz.) Handbook of pragmatics içinde. Oxford: Blackwell. Erişim adresi: http://cogprints.org/2317/1/relevance_theory.htm#_edn1

Wolfram, D. (2000). Applications of informetrics to information retrieval research. Informing Science, 3(2): 77-82.

Wolfram, D. (2015). The symbiotic relationship between information retrieval and informetrics. Scientometrics, 102(3), 2201-2214.

Wu, H. C., Luk, R. W. P., Wong, K. F. ve Kwok, K . L. (2008). Interpreting tf*idf term weights as making relevance decisions. ACM Transactions on Information Systems (TOIS), 26(3), 1-37.

Yıldırım, B. F. ve Yeşilyurt, C. (2014). Bulanık analitik hiyerarşi prosesi yaklaşımı ile proje değerlendirme kriterlerinin önceliklendirilmesi: Kalkınma ajansı örneği. Atatürk İletişim Dergisi, 6(1), 25-53. ISSN: 2146-1538.

Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of the Royal Statistical Society, 75(6), 579-652.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

Zhang, G., Ding, Y. ve Milojević, S. (2013). Citation content analysis (cca): A framework for syntactic and semantic analysis of citation content. Journal of the American Society for Information Science and Technology, 64(7), 1490-1503.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item