The pulsing structure of science: Ortega y Gasset, Saint Matthew, fractality and transfractality

Bailón-Moreno, Rafael and Jurado-Alameda, Encarnacion and Ruiz-Baños, Rosario and Courtial, Jean Pierre and Jimenez-Contreras, Evaristo The pulsing structure of science: Ortega y Gasset, Saint Matthew, fractality and transfractality. Scientometrics, 2007, vol. 71, n. 1, pp. 3-24. [Journal article (Paginated)]

[img]
Preview
PDF
Bailon-Moreno,_Rafael.pdf

Download (195kB) | Preview

English abstract

By a new fractal/transfractal geometry of the Unified Scientometric Model, it is possible to demonstrate that science presents an oscillating or pulsing dynamic. It goes alternatively through two types of phases. Some phases are fractal, with crystalline networks, where the Matthew effect clearly manifests itself with regard to the most notable actors and those that provide the best contributions. The other phases are transfractal, with deformed, amorphous networks, in which the actors, considered mediocre, present greater capacity to restructure the network than the more renowned actors. The result after any transfractal deformation is a new crystalline fractal network. Behind this vision lies the Kuhn paradigms. As examples, the scientific fields of surfactants and autism have been analysed.

Item type: Journal article (Paginated)
Keywords: Scientometrics
Subjects: B. Information use and sociology of information > BB. Bibliometric methods
Depositing user: Daniel Torres-Salinas
Date deposited: 30 Mar 2009
Last modified: 02 Oct 2014 11:56
URI: http://hdl.handle.net/10760/3866

References

"SEEK" links will first look for possible matches inside E-LIS and query Google Scholar if no results are found.

A. J. LOTKA, The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16 (12) (1926) 317–323.

D. J. DE SOLLA PRICE, Science since Babylon, Yale University Press, New Haven, CT, 1961.

R. K. MERTON, Matthew effect in Science. The reward and communication systems of science are considered. Science, 159 (3810) (1968) 56–63.

J. R. COLE, S. COLE, The Ortega hypothesis. Science, 178 (1972) 368–375.

J. ORTEGA Y GASSET, La rebelión de las masas, Editorial Tecnos (Grupo Anaya, S. A.), Madrid, 2003.

E. GARFIELD, Citation analysis as a tool in journal evaluation. Science, 178 (4060) (1972) 471–479.

T. S. KUHN, The Sttructure of Scientific Revolutions, University of Chicago Press, Chicago, 1962.

A. RIP, J. P. COURTIAL, Co-word maps of biotechnology: an example of cognitive scientometrics. Scientometrics, 6 (6) (1984) 381–400.

B. LATOUR, Nunca hemos sido modernos: Ensayo de antropología simétrica, Debate, Madrid, 1993.

M. CALLON, J. LAW, A. RIP, Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World, The McMillan Press LTD, London, 1986.

B. LATOUR, Ciencia en acción: Cómo seguir a los científicos e ingenieros a través de la sociedad, Labor, Barcelona, 1992.

CALLON, M., Representing nature, representing culture. Conference pour l’ouverture du Centre for Social Theory and Technology, 1995.

J. P. COURTIAL, L. GOURDON, A scientometric approach to autism based on translation sociology. Scientometrics, 40 (2) (1997) 333–355.

J. P. COURTIAL, L. GOURDON, Mapping the dynamics of research on autism or the cultural logic of science. Theory and Psychology, 9 (5) (1999) 579–604.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item