Scientific specialties in Green Chemistry

Victor Marcelino, Leonardo, Luiz Pinto, Adilson and Marques, Carlos Alberto Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 2020, vol. 1, n. 1. [Journal article (Unpaginated)]

[thumbnail of 1_Original research 1.pdf]
Preview
Text
1_Original research 1.pdf

Download (713kB) | Preview

English abstract

Objective. This paper presents an overview of Green Chemistry research from 1990 to 2017, identifying its specialties, comparing their relative importance, and inferring emergent trends. Design/Methodology/Approach. Co-citation analysis of 14,142 documents retrieved in Web of Science by CiteSpace software, using network analysis to describe research fronts by clustering, their relevance by clusters indicators, and emergence by citation burstiness. Results/Discussion. Sixteen clusters were found and then grouped into six big specialties. Some specialties are more persistent and general (e.g. GC Characterization, Metal Catalysis, and Microwave Activation) and others are more recent and focused (e.g. Deep Eutectic Solvents). Mechanochemical and Photochemistry are emergent trends in Green Chemistry. Conclusions. This paper presents a more quantitative/objective panorama of GC research, comparing the relevance of research fronts inside the field, and helping future researchers and decision-makers in further developments of GC. CiteSpace showed some limitations in clustering. Data collection was hurdled by changes in the Keyword Plus algorithm in Web of Science and by the lack of authors keywords in main journals of the field. Although large, the dataset was restricted to the Web of Science database. Originality/Value. To the best of our knowledge, this is the first quantitative analysis of research specialties of GC. It advances past peer evaluation of the field by using indicators and metrics to describe the emergence, extension, and decay of specialties.

Item type: Journal article (Unpaginated)
Keywords: Green Chemistry, Research front, Knowledge mapping, Co-citation Analysis, CiteSpace
Subjects: B. Information use and sociology of information > BB. Bibliometric methods
Depositing user: Unnamed user with email ijsmc@colnes.org
Date deposited: 05 Jul 2020 12:56
Last modified: 05 Jul 2020 12:56
URI: http://hdl.handle.net/10760/40100

References

Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1), 70-71. https://doi.org/10.1039/B210714G

Abramo, G., D’Angelo, C. A., & Reale, E. (2019). Peer review versus bibliometrics: Which method better predicts the scholarly impact of publications?. Scientometrics, 121(1), 537-554. https://doi.org/10.1007/s11192-019-03184-y

ACS. (2015). History of Green Chemistry. American Chemical Society Home Page. Available at https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/history-of-green-chemistry.html

Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green chemistry, 12(9), 1493-1513. https://doi.org/10.1039/C004654J

Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15(3), 584-595. https://doi.org/10.1039/C3GC37065H

Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312. https://doi.org/10.1039/B918763B

Erythropel, H. C., Zimmerman, J. B., de Winter, T. M., Petitjean, L., Melnikov, F., Lam, C. H., ... & Pincus, L. N. (2018). The Green ChemisTREE: 20 years after taking root with the 12 principles. Green chemistry, 20(9), 1929-1961. https://doi.org/10.1039/C8GC00482J

Anastas, P., Han, B., Leitner, W., & Poliakoff, M. (2016). “Happy silver anniversary”: Green Chemistry at 25. Green Chemistry, 18(1), 12-13. https://doi.org/10.1039/C5GC90067K

Anastas, P. T., & Kirchhoff, M. M. (2002). Origins, current status, and future challenges of green chemistry. Accounts of chemical research, 35(9), 686-694. https://doi.org/10.1021/ar010065m

Anastas, P. T., & Warner, J.C. (1998). Green Chemistry: Theory and Practice. New York, N.Y: Oxford University Press.

Anastas, P. T., & Williamson, T. C. (1996). Green Chemistry: An Overview. In P. T. Anastas & T. C. Williamson (Eds.), Green Chemistry: Designing Chemistry for the Environment (pp. 1–17), vol. 626. Washington, DC: American Chemical Society.

Aupoix, A., Pégot, B., & Vo-Thanh, G. (2010). Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron, 66(6), 1352-1356. https://doi.org/10.1016/j.tet.2009.11.110

Baker, S. N., Baker, G. A., & Bright, F. V. (2002). Temperature-dependent microscopic solvent properties of ‘dry’and ‘wet’1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET (30) and Kamlet–Taft polarity scales. Green Chemistry, 4(2), 165-169. https://doi.org/10.1039/B111285F

Barwinski, B., Migowski, P., Gallou, F., Franciò, G., & Leitner, W. (2017). Continuous-Flow Hydrogenation of 4-Phenylpyridine to 4-Phenylpiperidine with Integrated Product Isolation Using a CO 2 Switchable System. Journal of Flow Chemistry, 7(2), 41-45. https://doi.org/10.1556/1846.2017.00003

Besson, M., Gallezot, P., & Pinel, C. (2014). Conversion of biomass into chemicals over metal catalysts. Chemical reviews, 114(3), 1827-1870. https://doi.org/10.1021/cr4002269

Bhar, S., & Panja, C. (1999). Pinacol coupling of aromatic aldehydes and ketones.. An improved method in an aqueous medium. Green Chemistry, 1(6), 253-256. https://doi.org/10.1039/A907796K

Van den Bosch, S., Renders, T., Kennis, S., Koelewijn, S. F., Van den Bossche, G., Vangeel, T., ... & Schutyser, W. (2017). Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation. Green Chemistry, 19(14), 3313-3326. https://doi.org/10.1039/C7GC01324H

Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539-554. https://doi.org/10.1039/B922014C

Branco, L. C., Rosa, J. N., Moura Ramos, J. J., & Afonso, C. A. (2002). Preparation and characterization of new room temperature ionic liquids. Chemistry–A European Journal, 8(16), 3671-3677. https://doi.org/10.1002/1521-3765(20020816)8:16%3C3671::AID-CHEM3671%3E3.0.CO;2-9

Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green chemistry, 15(3), 550-583. https://doi.org/10.1039/C2GC36364J

Busetti, A., Crawford, D. E., Earle, M. J., Gilea, M. A., Gilmore, B. F., Gorman, S. P., ... & Seddon, K. R. (2010). Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chemistry, 12(3), 420-425. https://doi.org/10.1039/B919872E

Cadierno, V., Francos, J., & Gimeno, J. (2010). Ruthenium-catalyzed synthesis of β-oxo esters in aqueous medium: Scope and limitations. Green Chemistry, 12(1), 135-143. https://doi.org/10.1039/B914774H

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for information Science and Technology, 57(3), 359-377. https://doi.org/10.1002/asi.20317

Chen, C. (2017). Science mapping: a systematic review of the literature. Journal of Data and Information Science, 2(2), 1-40. https://doi.org/10.1515/jdis-2017-0006

Chidambaram, M., & Bell, A. T. (2010). A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids. Green Chemistry, 12(7), 1253-1262. https://doi.org/10.1039/C004343E

Chinese Academy of Sciences, and Clarivate Analytics. (2018). Research Fronts 2018. Beijing: Clarivate Analytics.

Clarivate Analytics, and Chinese Academy of Sciences. (2019). Research Fronts 2019. Beijing: CAS.

Clark, J. H. (1999). Green chemistry: challenges and opportunities. Green Chemistry, 1(1), 1-8. https://doi.org/10.1039/A807961G

Clark, J. H. (2002). Solid acids for green chemistry. Accounts of chemical research, 35(9), 791-797. https://doi.org/10.1021/ar010072a

Clark, J., Sheldon, R., Raston, C., Poliakoff, M., & Leitner, W. (2014). 15 years of Green Chemistry. Green Chemistry, 16(1), 18-23. https://doi.org/10.1039/C3GC90047A

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516-547. https://doi.org/10.1039/C3GC41492B

Collinson, S. R., & Thielemans, W. (2010). The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coordination chemistry reviews, 254(15-16), 1854-1870. https://doi.org/10.1016/j.ccr.2010.04.007

Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical reviews, 107(6), 2411-2502. https://doi.org/10.1021/cr050989d

Delidovich, I., & Palkovits, R. (2016). Catalytic versus stoichiometric reagents as a key concept for Green Chemistry. Green Chemistry, 18(3), 590-593. https://doi.org/10.1039/C5GC90070K

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. https://doi.org/10.1016/j.apcata.2010.01.042

Dunn, P. J. (2012). The importance of green chemistry in process research and development. Chemical Society Reviews, 41(4), 1452-1461. https://doi.org/10.1039/C1CS15041C

Epicoco, M., Oltra, V., & Saint Jean, M. (2014). Knowledge dynamics and sources of eco-innovation: Mapping the Green Chemistry community. Technological Forecasting and Social Change, 81, 388-402. https://doi.org/10.1016/j.techfore.2013.03.006

Farmer, V., & Welton, T. (2002). The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts. Green chemistry, 4(2), 97-102. https://doi.org/10.1039/B109851A

Francisco, M., van den Bruinhorst, A., & Kroon, M. C. (2013). Low‐transition‐temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie international edition, 52(11), 3074-3085. https://doi.org/10.1002/anie.201207548

Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical Society Reviews, 41(4), 1538-1558. https://doi.org/10.1039/C1CS15147A

Gawande, M. B., Bonifácio, V. D., Luque, R., Branco, P. S., & Varma, R. S. (2013). Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chemical Society Reviews, 42(12), 5522-5551. https://doi.org/10.1039/C3CS60025D

Gilding, M., & Pickering, J. (2011). May contain traces of biotech”:(re) defining the biotechnology field in Australia. In Proceedings of Australian Sociological Association Conference (p. 1). Available at https://pdfs.semanticscholar.org/2a05/3a23a11a1e4c8dc2afb6f533da9715dd81a9.pdf

Gillet, S., Aguedo, M., Petitjean, L., Morais, A. R. C., da Costa Lopes, A. M., Łukasik, R. M., & Anastas, P. T. (2017). Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chemistry, 19(18), 4200-4233. https://doi.org/10.1039/C7GC01479A

Gordon, C. M., & Ritchie, C. (2002). Indium and tin-mediated allylation in ionic liquids. Green chemistry, 4(2), 124-128. https://doi.org/10.1039/B110224A

Gu, Y., & Jérôme, F. (2013). Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 42(24), 9550-9570. https://doi.org/10.1039/C3CS60241A

Hara, M. (2010). Biomass conversion by a solid acid catalyst. Energy & environmental science, 3(5), 601-607. https://doi.org/10.1039/B922917E

Hernaiz, M. J., Alcantara, A. R., Garcia, J. I., & Sinisterra, J. V. (2010). Applied biotransformations in green solvents. Chemistry–A European Journal, 16(31), 9422-9437. https://doi.org/10.1002/chem.201000798

Ho, K. P., Wong, W. L., Lee, L. Y. S., Lam, K. M., Chan, T. H., & Wong, K. Y. (2010). Manganese acetate in pyrrolidinium ionic liquid as a robust and efficient catalytic system for epoxidation of aliphatic terminal alkenes. Chemistry–An Asian Journal, 5(9), 1970-1973. https://doi.org/10.1002/asia.201000109

Holbrey, J. D., Reichert, W. M., Swatloski, R. P., Broker, G. A., Pitner, W. R., Seddon, K. R., & Rogers, R. D. (2002). Efficient, halide free synthesis of new, low cost ionic liquids: 1, 3-dialkylimidazolium salts containing methyl-and ethyl-sulfate anions. Green Chemistry, 4(5), 407-413. https://doi.org/10.1039/B204469B

Holbrey, J. D., & Rogers, R. D. (2002). Green Chemistry and Ionic Liquids: Synergies and Ironies. In R. D. Rogers & K. R. Seddon, Ionic Liquids (pp. 2–14). Washington, DC: American Chemical Society.

Hou, Z., Han, B., Liu, Z., Jiang, T., & Yang, G. (2002). Synthesis of dimethyl carbonate using CO 2 and methanol: enhancing the conversion by controlling the phase behavior. Green Chemistry, 4(5), 467-471. https://doi.org/10.1039/B203083G

Hu, B., Li, C., Zhao, S. X., Rong, L. M., Lv, S. Q., Liang, X., & Qi, C. (2010). Highly efficient procedure for the synthesis of fructone fragrance using a novel carbon based acid. Molecules, 15(8), 5369-5377. https://doi.org/10.3390/molecules15085369

Huang, X., Gonzalez, O. M. M., Zhu, J., Korányi, T. I., Boot, M. D., & Hensen, E. J. (2017). Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis. Green Chemistry, 19(1), 175-187. https://doi.org/10.1039/C6GC02962K

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical reviews, 106(9), 4044-4098. https://doi.org/10.1021/cr068360d

Ivanković, A., Dronjić, A., Bevanda, A. M., & Talić, S. (2017). Review of 12 principles of Green chemistry in practice. International Journal of Sustainable and Green Energy, 6(3), 39-48. http://dx.doi.org/10.11648/j.ijrse.20170603.12

Jackson, W. R., Campi, E. M., & Hearn, M. T. (2016). Closing Pandora's box: chemical products should be designed to preserve efficacy of function while reducing toxicity. Green Chemistry, 18(15), 4140-4144. https://doi.org/10.1039/C6GC90073A

James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., ... & Krebs, A. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1), 413-447. https://doi.org/10.1039/C1CS15171A

Jérôme, F., Ferreira, M., Bricout, H., Menuel, S., Monflier, E., & Tilloy, S. (2014). Low melting mixtures based on β-cyclodextrin derivatives and N, N′-dimethylurea as solvents for sustainable catalytic processes. Green Chemistry, 16(8), 3876-3880. https://doi.org/10.1039/C4GC00591K

Jessop, P. G. (2016). The use of auxiliary substances (eg solvents, separation agents) should be made unnecessary wherever possible and innocuous when used. Green Chemistry, 18(9), 2577-2578. https://doi.org/10.1039/C6GC90039A

Jessop, P. G., & Leitner, W. (1999). Supercritical fluids as media for chemical reactions. Chemical Synthesis Using Supercritical Fluids, 1-36. https://doi.org/10.1002/9783527613687.ch1

Juárez, R., Concepción, P., Corma, A., Fornés, V., & García, H. (2010). Gold‐Catalyzed Phosgene‐Free Synthesis of Polyurethane Precursors. Angewandte Chemie International Edition, 49(7), 1286-1290. https://doi.org/10.1002/anie.200905160

Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43(46), 6250-6284. https://doi.org/10.1002/anie.200400655

King, J., Holliday, R., & List, G. (1999). Hydrolysis of soybean oil. in a subcritical water flow reactor. Green Chemistry, 1(6), 261-264. https://doi.org/10.1039/A908861J

Kumaniaev, I., Subbotina, E., Sävmarker, J., Larhed, M., Galkin, M. V., & Samec, J. S. (2017). Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chemistry, 19(24), 5767-5771. https://doi.org/10.1039/C7GC02731A

Lancefield, C. S., Panovic, I., Deuss, P. J., Barta, K., & Westwood, N. J. (2017). Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chemistry, 19(1), 202-214. https://doi.org/10.1039/C6GC02739C

Lange, J. P., Van Der Heide, E., van Buijtenen, J., & Price, R. (2012). Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem, 5(1), 150-166. https://doi.org/10.1002/cssc.201100648

Li, C. J. (2005). Organic reactions in aqueous media with a focus on carbon− carbon bond formations: a decade update. Chemical Reviews, 105(8), 3095-3166. https://doi.org/10.1021/cr030009u

Li, C. J. (2016). Reflection and perspective on green chemistry development for chemical synthesis—Daoist insights. Green Chemistry, 18(7), 1836-1838. https://doi.org/10.1039/C6GC90029A

Li, C. J., & Chen, L. (2006). Organic chemistry in water. Chemical Society Reviews, 35(1), 68-82. https://doi.org/10.1039/B507207G

Li, C., Ji, X., & Luo, X. (2019). Phytoremediation of heavy metal pollution: a bibliometric and scientometric analysis from 1989 to 2018. International Journal of Environmental Research and Public Health, 16(23), 4755. https://doi.org/10.3390/ijerph16234755

Li, M., Chen, C., He, F., & Gu, Y. (2010). Multicomponent reactions of 1, 3‐cyclohexanediones and formaldehyde in glycerol: stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Advanced Synthesis & Catalysis, 352(2‐3), 519-530. https://doi.org/10.1002/adsc.200900770

Li, M., & Chu, Y. (2017). Explore the research front of a specific research theme based on a novel technique of enhanced co-word analysis. Journal of Information Science, 43(6), 725-741. https://doi.org/10.1177%2F0165551516661914

Lindström, U. M. (2002). Stereoselective organic reactions in water. Chemical Reviews, 102(8), 2751-2772. https://doi.org/10.1021/cr010122p

Liu, D. D., & Chen, E. Y. X. (2014). Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry, 16(3), 964-981. https://doi.org/10.1039/C3GC41934G

Llevot, A., & Meier, M. A. (2016). Renewability–a principle of utmost importance!. Green Chemistry, 18(18), 4800-4803. https://doi.org/10.1039/C6GC90087A

Luo, R., Li, J., Zhao, Y., Fan, X., Zhao, P., & Chai, L. (2017). A critical review on the research topic system of soil heavy metal pollution bioremediation based on dynamic co-words network measures. Geoderma, 305, 281-292. https://doi.org/10.1016/j.geoderma.2017.06.019

MacFarlane, D. R., Zhang, X., & Kar, M. (2016). Measure and control: molecular management is a key to the Sustainocene!. Green Chemistry, 18(21), 5689-5692. https://doi.org/10.1039/C6GC90103D

Marion, P., Bernela, B., Piccirilli, A., Estrine, B., Patouillard, N., Guilbot, J., & Jérôme, F. (2017). Sustainable chemistry: how to produce better and more from less?. Green Chemistry, 19(21), 4973-4989. https://doi.org/10.1039/C7GC02006F

Meehan, N. J., Sandee, A. J., Reek, J. N., Kamer, P. C., van Leeuwen, P. W., & Poliakoff, M. (2000). Continuous, selective hydroformylation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Chemical Communications, (16), 1497-1498. https://doi.org/10.1039/B002526G

Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews, 95(7), 2457-2483. https://doi.org/10.1021/cr00039a007

Muldoon, M. J. (2010). Modern multiphase catalysis: new developments in the separation of homogeneous catalysts. Dalton Transactions, 39(2), 337-348. https://doi.org/10.1039/B916861N

Narayan, S., Muldoon, J., Finn, M. G., Fokin, V. V., Kolb, H. C., & Sharpless, K. B. (2005). “On water”: Unique reactivity of organic compounds in aqueous suspension. Angewandte Chemie International Edition, 44(21), 3275-3279. https://doi.org/10.1002/anie.200462883

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582. https://doi.org/10.1073/pnas.0601602103

North, M., Pasquale, R., & Young, C. (2010). Synthesis of Cyclic Carbonates from Epoxides and CO2. Green Chemistry 12(9), 1514–39. https://doi.org/10.1039/C0GC00065E

O’Neil, M., & Ackland, R. (2020). Online Field Theory. In J. Hunsinger, M.M. Allen, & L. Klastrup, Second International Handbook of Internet Research (pp. 445–67). Dordrecht: Springer Netherlands.

Pelckmans, M., Renders, T., Van de Vyver, S., & Sels, B. F. (2017). Bio-based amines through sustainable heterogeneous catalysis. Green Chemistry, 19(22), 5303-5331. https://doi.org/10.1039/C7GC02299A

Pena‐Pereira, F., & Namieśnik, J. (2014). Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem, 7(7), 1784-1800. https://doi.org/10.1002/cssc.201301192

Peng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., ... & Sels, B. F. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150(1-2), 140-146. https://doi.org/10.1016/j.cattod.2009.07.066

Peters, M., & von der Assen, N. (2016). It is better to prevent waste than to treat or clean up waste after it is formed–or: what Benjamin Franklin has to do with “Green Chemistry”. Green Chemistry, 18(5), 1172-1174. https://doi.org/10.1039/C6GC90023B

Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green chemistry: science and politics of change. Science, 297(5582), 807-810. https://doi.org/10.1126/science.297.5582.807

Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743-754. https://doi.org/10.1039/B921171C

Price, D. J. D. S. (1965). Networks of scientific papers. Science, 510-515.

Prier, C. K., Rankic, D. A., & MacMillan, D. W. (2013). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chemical reviews, 113(7), 5322-5363. https://doi.org/10.1021/cr300503r

Procopio, A., De Nino, A., Nardi, M., Oliverio, M., Paonessa, R., & Pasceri, R. (2010). A new microwave-assisted organocatalytic solvent-free synthesis of optically enriched Michael adducts. Synlett, 2010(12), 1849-1853. http://dx.doi.org/10.1055%2Fs-0030-1258126

van Putten, R. J., Van Der Waal, J. C., De Jong, E. D., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical reviews, 113(3), 1499-1597. https://doi.org/10.1021/cr300182k

Quadrelli, E. A. (2016). 25 years of energy and green chemistry: saving, storing, distributing and using energy responsibly. Green Chemistry, 18(2), 328-330. https://doi.org/10.1039/C5GC90069G

Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., ... & Langan, P. (2014). Lignin valorization: improving lignin processing in the biorefinery. Science, 344(6185). https://doi.org/10.1126/science.1246843

Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., ... & Mielenz, J. R. (2006). The path forward for biofuels and biomaterials. science, 311(5760), 484-489. https://doi.org/10.1126/science.1114736

Sheldon, R. A., Lau, R. M., Sorgedrager, M. J., van Rantwijk, F., & Seddon, K. R. (2002). Biocatalysis in ionic liquids. Green Chemistry, 4(2), 147-151. https://doi.org/10.1039/B110008B

Rideout, D. C., & Breslow, R. (1980). Hydrophobic acceleration of Diels-Alder reactions. Journal of the American Chemical Society, 102(26), 7816-7817. https://doi.org/10.1021/ja00546a048

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7

Sakakura, T., Choi, J. C., & Yasuda, H. (2007). Transformation of carbon dioxide. Chemical Reviews, 107(6), 2365-2387. https://doi.org/10.1021/cr068357u

Scott, J. L., & Lee, J. (2016). Appropriate lifetimes, fitting deaths. Green Chemistry, 18(23), 6157-6159. https://doi.org/10.1039/C6GC90109C

Shaikh, A. A. G., & Sivaram, S. (1996). Organic carbonates. Chemical reviews, 96(3), 951-976. https://doi.org/10.1021/cr950067i

Sheldon, R. A., Arends, I., & Hanefeld, U. (2007). Green Chemistry and Catalysis. (1 ed.). Weinheim: Wiley-VCH.

Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: state of the art. Green Chemistry, 7(5), 267-278. https://doi.org/10.1039/B418069K

Sheldon, R. A. (2007). The E factor: fifteen years on. Green Chemistry, 9(12), 1273-1283. https://doi.org/10.1039/B713736M

Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4), 1437-1451. https://doi.org/10.1039/C1CS15219J

Sheldon, R. A. (2016). Green chemistry and resource efficiency: towards a green economy. Green Chemistry, 18(11), 3180-3183. https://doi.org/10.1039/C6GC90040B

Sheldon, R. A. (2017). The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 19(1), 18-43. https://doi.org/10.1039/C6GC02157C

Si, X., Lu, F., Chen, J., Lu, R., Huang, Q., Jiang, H., ... & Xu, J. (2017). A strategy for generating high-quality cellulose and lignin simultaneously from woody biomass. Green Chemistry, 19(20), 4849-4857. https://doi.org/10.1039/C7GC02492D

Simon, M. O., & Li, C. J. (2012). Green chemistry oriented organic synthesis in water. Chemical Society Reviews, 41(4), 1415-1427. https://doi.org/10.1039/C1CS15222J

Small, H. (1973). Co‐citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265-269. https://doi.org/10.1002/asi.4630240406

Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science studies, 4(1), 17-40. https://doi.org/10.1177%2F030631277400400102

Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical reviews, 114(21), 11060-11082. https://doi.org/10.1021/cr300162p

Sneddon, H. (2016). Safety First. Green Chemistry, 18(19), 5082–85. https://doi.org/10.1039/C6GC90086K

Soleimani, E., Khodaei, M. M., Batooie, N., & Baghbanzadeh, M. (2011). Water-prompted synthesis of alkyl nitrile derivatives via Knoevenagel condensation and Michael addition reaction. Green chemistry, 13(3), 566-569. https://doi.org/10.1039/C0GC00739K

Stark, A., Ott, D., Kralisch, D., Kreisel, G., & Ondruschka, B. (2010). Ionic liquids and green chemistry: a lab experiment. Journal of Chemical Education, 87(2), 196-201. https://doi.org/10.1021/ed8000396

Subramaniam, B. (2010). Exploiting neoteric solvents for sustainable catalysis and reaction engineering: opportunities and challenges. Industrial & engineering chemistry research, 49(21), 10218-10229. https://doi.org/10.1021/ie101543a

Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sciences, 12(6), 1029-1034. https://doi.org/10.1016/j.solidstatesciences.2010.02.038

Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American chemical society, 124(18), 4974-4975. https://pubs.acs.org/doi/abs/10.1021/ja025790m

Swatloski, R. P., Visser, A. E., Reichert, W. M., Broker, G. A., Farina, L. M., Holbrey, J. D., & Rogers, R. D. (2002). On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chemistry, 4(2), 81-87. https://doi.org/10.1039/B108905F

Takagaki, A., Iwatani, K., Nishimura, S., & Ebitani, K. (2010). Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green chemistry, 12(4), 578-581. https://doi.org/10.1039/B925404H

Tanaka, K., & Toda, F. (2000). Solvent-free organic synthesis. Chemical Reviews, 100(3), 1025-1074. https://doi.org/10.1021/cr940089p

Tobiszewski, M., Namieśnik, J., & Pena-Pereira, F. (2017). Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chemistry, 19(4), 1034-1042. https://doi.org/10.1039/C6GC03424A

Trost, B. M. (1991). The atom economy--a search for synthetic efficiency. Science, 254(5037), 1471-1477. https://doi.org/10.1126/science.1962206

Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: deriving more value from waste. Science, 337(6095), 695-699. https://doi.org/10.1126/science.1218930

Tundo, P., & Selva, M. (2002). The chemistry of dimethyl carbonate. Accounts of chemical research, 35(9), 706-716. https://doi.org/10.1021/ar010076f

Varma, R. S. (1999). Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green chemistry, 1(1), 43-55. https://doi.org/10.1039/A808223E

Vidal, C., & García-Álvarez, J. (2014). Glycerol: a biorenewable solvent for base-free Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes. Highly efficient transformations and catalyst recycling. Green Chemistry, 16(7), 3515-3521. https://doi.org/10.1039/C4GC00451E

Wakaki, T., Oisaki, K., & Kanai, M. (2016). Elementary and systemic views of the generation of toxic substances. Green Chemistry, 18(13), 3681-3683. https://doi.org/10.1039/C6GC90058E

Wang, J., Jaenicke, S., & Chuah, G. K. (2014). Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. Rsc Advances, 4(26), 13481-13489. https://doi.org/10.1039/C4RA01120A

Wasserscheid, P., & Keim, W. (2000). Ionic liquids—new “solutions” for transition metal catalysis. Angewandte Chemie International Edition, 39(21), 3772-3789. https://doi.org/10.1002/1521-3773(20001103)39:21%3C3772::AID-ANIE3772%3E3.0.CO;2-5

Webb, P. B., Kunene, T. E., & Cole-Hamilton, D. J. (2005). Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chemistry, 7(5), 373-379. https://doi.org/10.1039/B416713A

Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 99(8), 2071-2084. https://doi.org/10.1021/cr980032t

Woodhouse, E. J., & Breyman, S. (2005). Green chemistry as social movement?. Science, Technology, & Human Values, 30(2), 199-222. https://doi.org/10.1177%2F0162243904271726

Liang, X., & Yang, J. (2009). Synthesis of a novel carbon based strong acid catalyst through hydrothermal carbonization. Catalysis letters, 132(3-4), 460. https://doi.org/10.1007/s10562-009-0109-6

Yan, N., Xiao, C., & Kou, Y. (2010). Transition metal nanoparticle catalysis in green solvents. Coordination Chemistry Reviews, 254(9-10), 1179-1218. https://doi.org/10.1016/j.ccr.2010.02.015

Zakzeski, J., Jongerius, A. L., & Weckhuysen, B. M. (2010). Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green chemistry, 12(7), 1225-1236. https://doi.org/10.1039/C001389G

Zhang, Q., Vigier, K. D. O., Royer, S., & Jerome, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108-7146. https://doi.org/10.1039/C2CS35178A

Zhang, Y., Li, C., Ji, X., Yun, C., Wang, M., & Luo, X. (2020). The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace. Environmental Science and Pollution Research, 27(13), 1-22. https://doi.org/10.1007/s11356-020-07646-2


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item