Sulfur emission reduction in cargo ship manufacturers and shipping companies based on MARPOL Annex VI

Abraham, Londoño Pineda and Jose Alejandro, Cano Arenas and Lissett, Pulgarín Quiroz Sulfur emission reduction in cargo ship manufacturers and shipping companies based on MARPOL Annex VI. Espacios, 2020, vol. 41, n. 25, pp. 286-291. [Journal article (Paginated)]

[img]
Preview
Text
Marpol.pdf

Download (301kB) | Preview

English abstract

This article explores the challenges for the adoption of scrubbers and low sulfur fuels on ship manufacturers and shipping companies. Results show that ship manufacturers, must finance their working capital and operating costs, which implies an increase in the prices of the ships employing these new technologies. On the other hand, shipping companies must adopt the most appropriate technology according to the areas where ships navigate, the scale economies of trade routes, and the cost-benefit analysis of ship modernization.

English abstract

Este artículo explora los retos de implementar depuradores y combustibles con bajo contenido de azufre en fabricantes de barcos y navieras. Los resultados muestran que los fabricantes de barcos deben financiar su capital de trabajo y sus costos operativos, implicando un aumento de precios en los barcos que utilicen estas tecnologías. Las navieras deben elegir la tecnología más apropiada según las áreas donde navegan los barcos, economías de escala de las rutas comerciales y análisis de costo-beneficio de dichas tecnologías

Item type: Journal article (Paginated)
Keywords: scrubbers; low sulfur fuels; ship manufacturers; shipping companies
Subjects: A. Theoretical and general aspects of libraries and information. > AB. Information theory and library theory.
Depositing user: Dr Abraham Londoño
Date deposited: 28 Sep 2020 22:07
Last modified: 28 Sep 2020 22:07
URI: http://hdl.handle.net/10760/40465

References

Acciaro, M. (2014). Real option analysis for environmental compliance: LNG and emission control areas.

Transportation Research Part D: Transport and Environment, 28, 41–50.

Adland, R., Fonnes, G., Jia, H., Lampe, O. D., & Strandenes, S. P. (2017). The impact of regional environmental

regulations on empirical vessel speeds. Transportation Research Part D: Transport and Environment, 53,

37–49.

Allal, A. A., Mansouri, K., Youssfi, M., & Qbadou, M. (2019). Toward an evaluation of marine fuels for a clean

and efficient autonomous ship propulsion energy. Materials Today: Proceedings, 13, 486–495.

Animah, I., Addy-Lamptey, A., Korsah, F., & Sackey, J. S. (2018). Compliance with MARPOL Annex VI regulation

14 by ships in the Gulf of Guinea sub-region: Issues, challenges and opportunities. Transportation Research

Part D: Transport and Environment, 62, 441–455.

Antturi, J., Hänninen, O., Jalkanen, J.-P., Johansson, L., Prank, M., Sofiev, M., & Ollikainen, M. (2016). Costs and

benefits of low-sulphur fuel standard for Baltic Sea shipping. Journal of Environmental Management, 184,

431–440.

Armellini, A., Daniotti, S., Pinamonti, P., & Reini, M. (2018). Evaluation of gas turbines as alternative energy

production systems for a large cruise ship to meet new maritime regulations. Applied Energy, 211, 306–

317.

Calderón, M., Illing, D., & Veiga, J. (2016). Facilities for Bunkering of Liquefied Natural Gas in Ports.

Transportation Research Procedia, 14, 2431–2440.

Cano, J.A., Panizo, C.A., Garcia, F.H. & Rodriguez, J.E. (2015a). Competitive Strategies Development For The

Coal Industry In Norte De Santander [Desarrollo de Estrategias Competitivas para la Industria del Carbón

en Norte de Santander]. Revista Espacios, 36(15), 5. Retrieved from:

http://www.revistaespacios.com/a15v36n15/15361506.html

Cano, J.A., Panizo, C.A., Garcia, F.H. & Rodriguez, J.E. (2015b). Estrategias para el mejoramiento la cadena de

suministro del carbón en Norte de Santander, Colombia. Boletín de Ciencias de la Tierra, 1(38), 65-74.

Cullinane, K., & Bergqvist, R. (2014). Emission control areas and their impact on maritime transport.

Transportation Research Part D: Transport and Environment, 28, 1–5.

Cullinane, K., & Cullinane, S. (2019). Policy on Reducing Shipping Emissions: Implications for “Green Ports.” In R.

Bergqvist & J. Monios (Eds.), Green Ports (pp. 35–62). Elsevier.

de Oliveira Lima Filho, D., Prado Sogabe, V., & Costa Calarge, T. (2008). Biodiesel market: A word-wide

panorama [Mercado de biodiesel: Un panorama mundial]. Revista Espacios, 29 (1), 5-27. Retrieved from:

https://www.revistaespacios.com/a08v29n01/08290102.html

Endres, S., Maes, F., Hopkins, F., Houghton, K., Mårtensson, E. M., Oeffner, J., … Turner, D. (2018). A new

perspective at the ship-air-sea-interface: The environmental impacts of exhaust gas scrubber discharge.

Frontiers in Marine Science, 5(APR). http://doi.org/10.3389/fmars.2018.00139

Grant, D. B., & Elliott, M. (2018). A proposed interdisciplinary framework for the environmental management

of water and air-borne emissions in maritime logistics. Ocean & Coastal Management, 163, 162–172.

Gu, Y., & Wallace, S. W. (2017). Scrubber: A potentially overestimated compliance method for the Emission

Control Areas: The importance of involving a ship’s sailing pattern in the evaluation. Transportation

Research Part D: Transport and Environment, 55, 51–66.

Halff, A., Younes, L., & Boersma, T. (2019). The likely implications of the new IMO standards on the shipping

industry. Energy Policy, 126, 277–286.

Han, C. (2010). Strategies to Reduce Air Pollution in Shipping Industry. The Asian Journal of Shipping and

Logistics, 26(1), 7–29.

Holmgren, J., Nikopoulou, Z., Ramstedt, L., & Woxenius, J. (2014). Modelling modal choice effects of regulation

on low-sulphur marine fuels in Northern Europe. Transportation Research Part D: Transport and

Environment, 28, 62–73.

House, D. J. (2004). Tanker Operations. In D. J. HOUSE (Ed.), Seamanship Techniques (Third Edition) (Third Edit,

pp. 616–658). Oxford: Elsevier.

Kim, A.-R., & Seo, Y.-J. (2019). The reduction of SOx emissions in the shipping industry: The case of Korean

companies. Marine Policy, 100, 98–106.

Koski, M., Stedmon, C., & Trapp, S. (2017). Ecological effects of scrubber water discharge on coastal plankton:

Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa.

Marine Environmental Research, 129, 374–385.

Lähteenmäki-Uutela, A., Repka, S., Haukioja, T., & Pohjola, T. (2017). How to recognize and measure the

economic impacts of environmental regulation: The Sulphur Emission Control Area case. Journal of Cleaner

Production, 154, 553–565.

Lister, J., Poulsen, R. T., & Ponte, S. (2015). Orchestrating transnational environmental governance in maritime

shipping. Global Environmental Change, 34, 185–195.

Londoño, A. (2014).Elementos para la construcción colectiva de modelos tecno-científicos en el contexto de la

relación entre la universidad, la empresa y el Estado. Revista Ciencia, Tecnología y Sociedad-CTS, 9(26), 55-

77.

Londoño, A., & Baena, J. J. (2017). Análisis de la relación entre los subsidios al sector energético y algunas

variables vinculantes en el desarrollo sostenible en México en el periodo 2004-2010. Gestión y Política

Pública, 26(2), 491–526.

Nikopoulou, Z. (2017). Incremental costs for reduction of air pollution from ships: a case study on North

European emission control area. Maritime Policy and Management, 44(8), 1056–1077.

Notteboom, T. E., & Vernimmen, B. (2009). The effect of high fuel costs on liner service configuration in

container shipping. Journal of Transport Geography, 17(5), 325–337.

Ochoa, F. A. (2015). El dogma de la competitividad frente a la utopía de la sustentabilidad: análisis crítico del

ethos desarrollista y economicista. Semestre Económico, 19(41), 167-190.

Olaniyi, E. O., Atari, S., & Prause, G. (2018). Maritime energy contracting for clean shipping. Transport and

Telecommunication, 19(1), 31–44.

Panasiuk, I., & Turkina, L. (2015). The evaluation of investments efficiency of SOx scrubber installation.

Transportation Research Part D(40), 87–96.

Rehmatulla, N., Calleya, J., & Smith, T. (2017). The implementation of technical energy efficiency and CO2

emission reduction measures in shipping. Ocean Engineering, 139, 184–197.

Rehn, C. F., Haugsdal, A., & Erikstad, S. O. (2016). Flexible strategies for maritime sulphur emission regulation

compliance. In PRADS 2016 - Proceedings of the 13th International Symposium on PRActical Design of

Ships and Other Floating Structures.

Sanabria, N., Acosta, J. C., & Rodríguez, G. (2015). Condiciones para la innovación, cultura organizacional y

sostenibilidad de las organizaciones. Semestre Económico, 18(37), 157-176.

Sato, A. (2018). Growing role of residue upgrading process - Responding to the IMO 2020 SOx regulation -. In

King Fahd University of Petroleum and Minerals, Research Institute - Annual Catalysts in Petroleum

Refining and Petrochemicals Symposium Papers (Vol. 2018-Novem, pp. 15–24).

Schinas, O., & Stefanakos, C. N. (2012). Cost assessment of environmental regulation and options for marine

operators. Transportation Research Part C: Emerging Technologies, 25, 81–99.

Scott, T. (2017). The maritime industry responds to upcoming regulations. Maritime by Holland, 66(4), 16–20.

Sheng, D., Meng, Q., & Li, Z.-C. (2019). Optimal vessel speed and fleet size for industrial shipping services under

the emission control area regulation. Transportation Research Part C: Emerging Technologies, 105, 37–53.

Solakivi, T., Laari, S., Kiiski, T., Töyli, J., & Ojala, L. (2019). How shipowners have adapted to sulphur regulations

– Evidence from Finnish seaborne trade. Case Studies on Transport Policy, 7(2), 338–345.

Stevens, L., Sys, C., Vanelslander, T., & van Hassel, E. (2015). Is new emission legislation stimulating the

implementation of sustainable and energy-efficient maritime technologies? Research in Transportation

Business & Management, 17, 14–25.

Svanberg, M., Ellis, J., Lundgren, J., & Landälv, I. (2018). Renewable methanol as a fuel for the shipping industry.

Renewable and Sustainable Energy Reviews, 94, 1217–1228.

Theocharis, D., Rodrigues, V. S., Pettit, S., & Haider, J. (2019). Feasibility of the Northern Sea Route: The role of

distance, fuel prices, ice breaking fees and ship size for the product tanker market. Transportation

Research Part E: Logistics and Transportation Review, 129, 111–135.

van Biert, L., Godjevac, M., Visser, K., & Aravind, P. V. (2016). A review of fuel cell systems for maritime

applications. Journal of Power Sources, 327, 345–364.

van Hassel, E., Meersman, H., de Voorde, E. Van, & Vanelslander, T. (2016). North–South container port

competition in Europe: The effect of changing environmental policy. Research in Transportation Business &

Management, 19, 4–18.

Vierth, I., Karlsson, R., & Mellin, A. (2015). Effects of More Stringent Sulphur Requirements for Sea Transports.

Transportation Research Procedia, 8, 125–135.

Walker, T. R., Adebambo, O., Feijoo, M. C. D. A., Elhaimer, E., Hossain, T., Edwards, S. J., … Zomorodi, S. (2019).

Environmental Effects of Marine Transportation. In C. Sheppard (Ed.), World Seas: an Environmental

Evaluation (Second Edition) (Second Edi, pp. 505–530). Academic Press.

Winther, M., Christensen, J. H., Plejdrup, M. S., Ravn, E. S., Eriksson, Ó. F., & Kristensen, H. O. (2014). Emission

inventories for ships in the arctic based on satellite sampled AIS data. Atmospheric Environment, 91, 1–14.

Woodyard, D. (Ed.). (2004). Exhaust emissions and control. In Pounder’s Marine Diesel Engines (Eighth Edition)

(Eighth Edi, pp. 64–87). Oxford: Butterworth-Heinemann.

Zheng, S., & Chen, S. (2018). Fleet replacement decisions under demand and fuel price uncertainties.

Transportation Research Part D: Transport and Environment, 60, 153–173.

Zhu, M., Li, K. X., Shi, W., & Lam, J. S. L. (2017). Incentive policy for reduction of emission from ships: A case

study of China. Marine Policy, 86, 253–258.

Zis, T. P. V. (2019). Prospects of cold ironing as an emissions reduction option. Transportation Research Part A:

Policy and Practice, 119, 82–95.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item