Education, Big Data and Artificial Intelligence: Mixed methods in digital platforms

Bonami, Beatrice and Piazentini, Luiz and Dala-Possa, André Education, Big Data and Artificial Intelligence: Mixed methods in digital platforms. Comunicar, 2020, vol. 28, n. 65, pp. 43-52. [Journal article (Paginated)]

Text (Research article (English))
c6504en.pdf - Published version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (370kB) | Preview
Text (Research article (Español))
c6504es.pdf - Published version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (385kB) | Preview

English abstract

Digital technology has provided users with new connections that have reset our understanding of social architectures. As a reaction to Artificial Intelligence (AI) and Big Data, the educational field has rearranged its structure to consider human and non-human stakeholders and their actions on digital platforms. In light of this increasingly complex scenario, this proposal aims to present definitions and discussions about AI and Big Data from the academic field or published by international organizations. The study of AI and Big Data goes beyond the search for mere computational power and instead focuses upon less difficult (yet perhaps more complex) areas of the study social impacts in Education. This research suggests an analysis of education through 21st century skills and the impact of AI development in the age of platforms, undergoing three methodological considerations: research, application and evaluation. To accomplish the research, we relied upon systematic reviews, bibliographic research and quality analyses conducted within case studies to compose a position paper that sheds light on how AI and Big Data work and on what level they can be applied in the field of education. Our goal is to offer a triangular analysis under a multimodal approach to better understand the interface between education and new technological prospects, taking into consideration qualitative and quantitative procedures.

Spanish abstract

La tecnología digital ha traído características de conexión que restablecen nuestra comprensión de arquitecturas sociales. Sobre la Inteligencia Artificial (IA) y Big Data, el campo educativo reorganiza su estructura para considerar a los actores humanos y no humanos y sus acciones en plataformas digitales. En este escenario cada vez más complejo, esta propuesta tiene como objetivo presentar definiciones y debates sobre IA y Big Data de naturaleza académica o publicados por organizaciones internacionales. El estudio de IA y Big Data puede ir más allá de la búsqueda de poder computacional / lógico y entrar en áreas menos difíciles (y quizás más complejas) del campo científico para responder a sus impactos sociales en la educación. Esta investigación sugiere un análisis de la educación a través de las habilidades del siglo XXI y los impactos del desarrollo de IA en la era de las plataformas, pasando por tres ejes de grupos metodológicos: investigación, aplicación y evaluación. Para llevar a cabo la investigación, confiamos en revisiones sistemáticas, investigaciones bibliográficas y análisis de calidad de estudios de casos para componer un documento de posición que arroje luz sobre cómo funcionan la IA y el Big Data y en qué nivel se pueden aplicar en el campo de la educación. Nuestro objetivo es ofrecer un análisis triangular bajo un enfoque multimodal para comprender mejor la interfaz entre la educación y las nuevas perspectivas tecnológicas.

Item type: Journal article (Paginated)
Keywords: Artificial intelligence; big data; education; mixed methods; multimodality; digital technology; platform society; digital connection; Inteligencia artificial; macrodatos; educación; metodologías mixtas; multimodalidad; tecnología digital; sociedad de las pantallas; conexión digital
Subjects: B. Information use and sociology of information > BJ. Communication
G. Industry, profession and education.
G. Industry, profession and education. > GH. Education.
Depositing user: Alex Ruiz
Date deposited: 09 Jan 2021 06:44
Last modified: 09 Jan 2021 06:44


Bakhshi, H., Downing, J., Osborne, M., & Schneider, P. (2017). The future of skills: Employment in 2030. Pearson.

Barrett, A.R., & Edwards, J. (1995). Knowledge elicitation and knowledge representation in a large domain with multiple experts. Expert Systems with Applications, 8(1), 169-176.

Bosch, N., Chen, H., D'Mello, S., Baker, R., & Shute, V. (2015). Accuracy vs. availability heuristic in multimodal affect detection in the wild. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (pp. 267-274).

Clark, F. (1976). Characteristics of the competency-based curriculum. Competency-based education for social work: Evaluation and curriculum issues.

Cloud Security Alliance (Ed.) (2014). Big data taxonomy. Cloud Security Alliance.

Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13.

Cukurova, M., Luckin, R., & Kent, C. (2019). Impact of an artificial intelligence research frame on the perceived credibility of educational research evidence. International Journal of Artificial Intelligence in Education, 1-31.

European Union Comission (Ed.) (2012). General data protection regulation (GDPR - COD - 2012/0011 -

Fadel, C., & Groff, J. (2019). Four-dimensional education for sustainable societies. In Sustainability, human well-being, and the future of education (pp. 269-281). Palgrave Macmillan.

Fava, R. (2018). Trabalho, educação e inteligência artificial: a era do indivíduo versátil. Penso.

Floridi, L. (2014). The fourth revolution: How the infosphere is reshaping human reality. OUP Oxford.

Gervais, J. (2016). The operational definition of competency?based education. The Journal of Competency?Based Education, 1(2), 98-106.

Habermas, J. (1985). The theory of communication action. Heinemen Educ.

Hine, C. (1994). The virtual objects of ethnography. In 3th International Conference on Public Communication of Science and Technology (PCST), Montreal, Canada (pp. 10-13).

International Telecommunication Union (Ed.) (2017). AI for good global summit report.

International Telecommunication Union (Ed.) (2017). Artificial Intelligence for development series.

International Telecommunication Union (Ed.) (2018). AI for good summit webcast archives.

International Telecommunication Union (Ed.) (2018). Innovative Big Data approaches for capturing and analyzing data to monitor and achieve the SDGS.

Kelly, K. (2010). What technology wants. Penguin Editorial Publishing.

Kent, C., & Luckin, R. (2019). Artificial intelligence and multimodal data in the service of human decision?making: A case study in debate tutoring. British Journal of Educational Technology, 50(6), 3032-3046.

Kozinets, R.V. (2015). Netnography: Understanding networked communication society. Sage.

Kozinets, R.V., Pierre-Yann D., & Amanda E. (2014). Netnographic analysis: Understanding culture through social media data. In U. Flick (Ed.), Sage handbook of qualitative data analysis (pp. 262-275). Sage.

Legg, S., & Hutter, M. (2018). Universal intelligence: A definition of machine intelligence. Mind Mach 17(4), 391-444.

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L.B. (2016). Intelligence unleashed: An argument for AI in education.

Malinowski, B. (1922). Argonauts of the Pacific. New York, Holt, Reinhart and Winston.

Mantelero, A. (2018). AI and Big Data: A blueprint for a human rights, social and ethical impact assessment. Computer Law & Security Review, 34(4), 754-772.

Mead, M. (1979). Adolescencia y cultura en Samoa. Paidós.

Mick, D., & Fournier, S. (1998). Paradoxes of technology: Consumer cognizance, emotions, and coping strategies. Journal of Consumer Research, 25(2), 123-143.

Morin, E. (2015). Introdução ao pensamento complexo. Editora Sulina.

Nigay, L., & Coutaz, J. (1993). A design space for multimodal systems: Concurrent processing and data fusion. In Proceedings of the INTERACT'93 and CHI'93 conference on Human factors in computing systems (pp. 172-178).

Nigay, L., & Coutaz, J. (1993). A design space for multimodal systems: Concurrent processing and data fusion. In Proceedings of the INTERACT'93 and CHI'93 conference on Human factors in computing systems (pp. 172-178).

Organisation for Economic Co-operation and Development (Ed.) (2018). AI: Intelligent machines, smart policies.

Organisation for Economic Co-operation and Development (Ed.) (2020). Better Policies for lives – Learning Compass.

Riesman, D. (1979). Society's demands for competence. In G. Grant, P. Elbow, T. Ewens, Z. Gamson, W. Kohli, W. Neumann, V. Olesen, & D. Riesman (Eds.), On competence: A critical analysis of competence?based reforms in higher education (pp. 18–65). Jossey?Bass Inc.

Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach prentice-hall. Englewood cliffs.

Rychen, D.S., & Salganik, L.H. (2003). Key competencies for a successful life and well-functioning society. Hogrefe Publishing.

Scoular, C., Care, E., & Hesse, F.W. (2017). Designs for operationalizing collaborative problem solving for automated assessment. Journal of Educational Measurement, 54(1), 12–35.

Søe, S.O. (2018). Algorithmic detection of misinformation and disinformation: Gricean perspectives. Journal of Documentation, 74(2), 309-332.

Turing, A.M. (2009). Computing machinery and intelligence. In R. Epstein, G. Roberts, & G. Beber (Eds.), Parsing the turing test. Springer.

United Nations (Ed.) (2017). Innovative Big Data approaches for capturing and analysing data to monitor and achieve the SDGs.

Van-Dijck, J., Poell, T., & De-Waal, M. (2018). The platform society: Public values in a connective world. Oxford University Press.

Wilson, W. (1999). Consilience: The unity of knowledge. Vintage.

Zabala, A., & Arnau, L. (2015). Cómo aprender y enseñar competencias: 11 ideas clave. Graó.


Downloads per month over past year

Actions (login required)

View Item View Item