Applied mathematics in crisis scenarios (Covid-19)

Morales, Milagros Applied mathematics in crisis scenarios (Covid-19). Revista EDUCARE - UPEL-IPB - Segunda Nueva Etapa 2.0, 2020, vol. 24, n. 2, pp. 353-366. [Journal article (Paginated)]

1335-Texto del artículo-1713-1-10-20200812.pdf

Download (1MB) | Preview

English abstract

Applied mathematics is part of undergraduate and postgraduate university education. From this perspective, this essay aims to study the psychological effects, economic and, educational effects upon the population caused by a crisis scenario as COVID-19. The mathematical theories developed in this essay are Chaos Theory, Markov Chains, and Nash Theory. COVID-19 has spread throughout the world, affecting populations, and countries, without distinction of race, economic, political, or socio-cultural position. The impact that COVID-19 has caused on the world population could be measured, in the medium and long term, through changes in psychological behavior, social, health, economic and educational habits. This impact will leave deep traces and moral dilemmas that will permit prioritize which areas address and the political effort directed to each one. Keywords: covid-19, applied mathematics, educational scenarios, economy

Spanish abstract

Las matemáticas aplicadas forman parte de la formación universitaria en pregrado y posgrado. Desde esta perspectiva este ensayo tiene como objetivo estudiar los efectos psicológicos, económicos y educativos ocasionados sobre la población por un escenario de crisis como el COVID-19. Las teorías matemáticas desarrolladas en este ensayo son: Teoría del Caos, Cadenas de Markov y Teoría de Nash. El COVID-19 se ha extendido a través del mundo, afectando poblaciones y países, sin distinción de raza, posición económica, política o sociocultural. El impacto que el COVID-19 ha causado en la población mundial se podrá medir, a mediano y largo plazo, a través de cambios en el comportamiento psicológico, hábitos sociales, de salud, económicos y educativos. Este impacto dejará profundas huellas y dilemas morales como priorizar qué áreas deben atenderse y cuál será el esfuerzo político dirigido a cada una de ellas. Descriptores: covid-19, matemáticas aplicadas, escenario educativo, economía

Item type: Journal article (Paginated)
Keywords: covid-19, applied mathematics, educational scenarios, economy
Subjects: B. Information use and sociology of information > BA. Use and impact of information.
B. Information use and sociology of information > BE. Information economics.
B. Information use and sociology of information > BG. Information dissemination and diffusion.
G. Industry, profession and education.
G. Industry, profession and education. > GH. Education.
Depositing user: PH.D. Milagros Morales
Date deposited: 10 Jul 2021 05:31
Last modified: 10 Jul 2021 05:31


Britannica, T. (2020). Encyclopedia Britannica.

Center for Disease Control and Prevention, (2020). COVID-19 Data and Statistics.

CDC, (2020). Plague History.

CDC, (2017). Community Mitigation Guidelines to Prevent Pandemic Influenza. Morbidity and Mortality Weekly Report, 66(1), 1–34.

Chung, W. (2009). Review of School Closure as a Pandemic Mitigation Strategy. Texas Medicine, 105(7), 21-26.

Clay, R. (2020). COVID-19, and suicide: How the pandemic will affect suicide rates is still unknown, but there are many psychologists can do to mitigate its impact. The Special Report, American Psychology Association, 51(4).

Crutchfield, James P., Farmer, J. Doyne Packard, Norman H., y Shaw, Robert S. (1986). Chaos. Scientific American, 254(12), 46-57.

Edward, L. (1996). The Essence of Chaos. University of Washington Press.

Edward, L. (1969). Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric Sciences, 26(4), 636–646.

Edward, L. (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2) 130–141.

Fauci, A. (2007). The 1918 influenza pandemic: insights for the 21st century. J Infect Dis. 195(7) 1018-1028.

Grinblatt, M. (2000). The investment behavior and performance of various investor types: A study of Fin-land’s unique data set. Journal of Financial Economics, 55(1), 43–67.

Hayles, N. (1998). The evolution of chaos Order within disorder in contemporary science. Gedisa, Barcelona.

National Center for Education Statistics, (2020). 2019-20 Common Core of Data.

Neuzil, K. (2002). Illness among schoolchildren during influenza season: effect on school absenteeism, parental absenteeism from work, and secondary illness in families. Arch Pediatr Adolesc Med, 156(10), 986-991.

Norris, J. R. (1998). Markov chains. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press. Cambridge, RU.

NSBA, (2020). COVID-19: preparing for widespread illness in your school community. A Legal Guide for School Leaders.

Olivero, W. (2019). La complejidad paradigmática en el aprendizaje significativo de las matemáticas. Revista Educare, 23 (2), 77-91.

Pietrangelo, A. (2017). The top 10 deadliest diseases.

Roth, C. (2004). Proceeding of the National Academy of Sciences of the United States of America.

UNICEF, (2020). Key Messages and Actions for COVID-19 Prevention and Control in Schools. New York.

United States Census Bureau, (2020). Table 8. Enrollment Status for Families with Children 5 to 24 Years Old, by Control of School, Race, Type of Family, and Family Income: October 2018”.

U.S Department of Education, (2020). COVID-19 ("Coronavirus") Information and Resources for Schools and School Personnel.

WHO, (2020). World health organization, Coronavirus topics.


Downloads per month over past year

Actions (login required)

View Item View Item