Drivers for the development of computational thinking in Costa Rican students

Picado-Arce, Karol and Matarrita-Muñoz, Stefani and Núñez-Sosa, Olmer and Zúñiga-Céspedes, Magaly Drivers for the development of computational thinking in Costa Rican students. Comunicar, 2021, vol. 29, n. 68, pp. 85-96. [Journal article (Paginated)]

[img]
Preview
Text (Research article (English))
c6807en.pdf - Published version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview
[img]
Preview
Text (Research article (Español))
c6807es.pdf - Published version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview

English abstract

This study provides evidence about factors that facilitate the development of computational thinking (CT) in Costa Rican elementary school students, including the description of the contribution of the LIE++ proposal that addresses CT knowledge and practices through programming and physical computing projects. A quasi-experimental design was used to compare a group of students from the LIE++ educational proposal with a group of students from another proposal called LIE-Guides, which emphasizes learning with digital technologies. The study sample comprised 14,795 voluntary students, who answered an online test that was constructed and validated to estimate the scores achieved in CT. The results showed that the students participating in the LIE++ proposal obtained better scores compared to the LIE-Guides group. A multilevel regression model demonstrated that students’ personal and social variables, as well as the proposal’s execution scheme, positively affected student learning in CT. This research is a first approach to the subject in this context. It refers to the importance of providing educational opportunities that focus on more advanced computing knowledge and skills, as well as the relevance of continuing to develop tools and methodologies that help generate evidence about CT in education in order to improve educational interventions.

Spanish abstract

Este estudio proporciona evidencia sobre factores que facilitan el desarrollo del pensamiento computacional (PC) en estudiantes costarricenses de primaria, incluyendo el aporte de la propuesta de LIE++ que aborda conocimientos y prácticas del PC mediante proyectos de programación y computación física. Se utilizó un diseño cuasiexperimental para comparar un grupo de estudiantes de LIE++ con un grupo de estudiantes de otra propuesta llamada LIE-Guías que enfatiza aprendizajes con tecnologías digitales. En el estudio participaron 14.795 estudiantes, respondiendo voluntariamente una prueba en línea que se construyó y validó para estimar los puntajes alcanzados en PC. Los resultados mostraron que los estudiantes participantes de LIE++ obtuvieron mejores puntajes en comparación con el grupo de LIE-Guías y mediante un modelo de regresión multinivel se identificaron que variables personales y sociales de los estudiantes y de la misma ejecución de la propuesta inciden en el favorecimiento de estos aprendizajes. Esta investigación es un primer acercamiento al tema en este contexto, que se refiere a la importancia de brindar oportunidades educativas que apunten a conocimientos y habilidades más avanzadas de la computación, así como a la relevancia de seguir desarrollando herramientas y metodologías que ayuden a generar evidencias sobre el PC en el ámbito educativo y así mejorar las intervenciones educativas.

Item type: Journal article (Paginated)
Keywords: Learning; computational thinking; assessment; elementary education; informatics; programming; Aprendizaje; pensamiento computacional; evaluación; educación primaria; informática; programación
Subjects: B. Information use and sociology of information > BJ. Communication
G. Industry, profession and education.
G. Industry, profession and education. > GH. Education.
Depositing user: Alex Ruiz
Date deposited: 21 Dec 2021 09:46
Last modified: 21 Dec 2021 09:46
URI: http://hdl.handle.net/10760/42704

References

Ambrosio, A.P., Xavier, C., & Georges, F. (2014). Digital ink for cognitive assessment of computational thinking [Conference]. Education Conference (FIE) Proceedings. https://doi.org/10.1109/FIE.2014.7044237

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education-implications for policy and practice. European Union. https://bit.ly/3jpc7Ut

Bourdieu, P. (1998). Capital cultural, escuela y espacio social. Siglo XXI.

Brennan, K., & Resnick, M. (2012). Entrevistas basadas en artefactos para estudiar el desarrollo del Pensamiento Computacional (PC) en el diseño de medios interactivos [Conference]. American Educational Research Association (AERA). https://bit.ly/3qNPw81

Caballero-González, Y.A., & García-Valcárcel, A. (2020). Learning with robotics in primary education? A means of stimulating computa-tional thinkin. Education in the Knowledge Society, 21(10), 1-15. https://doi.org/10.14201/eks.21443

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162-175. https://doi.org/10.1016/j.compedu.2017.03.001

Dagiene, V., & Stupuriene, G. (2016). Bebras - A sustainable community building model for the concept-based learning of informatics and computational thinking. Informatics in Education, 15(1), 25-44. https://doi.org/10.15388/infedu.2016.02

Dagiene, V., Mannila, L., Poranen, T., Rolandsson, L., & Stupuriene, G. (2014). Reasoning on children’s cognitive skills in an informatics contest: findings and discoveries from Finland, Lithuania, and Sweden. In Y. Gülbahar & E. Karata? (Eds.), Informatics in schools. Teaching and learning perspectives (pp. 66-77). Springer. https://doi.org/10.1007/978-3-319-09958-3_7

Desjardins, R., & Ederer, P. (2015). Socio-demographic and practice-oriented factors related to proficiency in problem solving: A lifelong learning perspective. International Journal of Lifelong Education, 34(4), 468-486. https://doi.org/10.1080/02601370.2015.1060027

Espino, E.E., & González, C. (2016). Gender and computational thinking: Review of the literature and applications [Conference]. Proceedings of the XVII International Conference on Human Computer Interaction. https://doi.org/10.1145/2998626.2998665

Fallas, I., & Zúñiga, M. (2010). Las tecnologías digitales de la información y la comunicación en la educación costarricense: informe final. In Programa Estado de la Nación (Ed.), Tercer Informe Estado de la Educación [Conference]. PEN. https://bit.ly/37J7kK3

Fundación Omar Dengo (Ed.) (2009). Estándares de desempeño de estudiantes en el aprendizaje con tecnologías digitales. FOD. https://bit.ly/30nteOU

Fundación Omar Dengo (Ed.) (2016). Tecnologías digitales y capacidades para construir el futuro: Aportes del Programa Nacional de Informática Educativa MEP-FOD. Área de Investigación y Evaluación, FOD.

García-Válcarcel, A., & Caballero-González, Y. (2019). Robotics to develop computational thinking in early Childhood Education. [Robótica para desarrollar el pensamiento computacional en Educación Infantil]. Comunicar, 59, 63-72. https://doi.org/10.3916/C59-2019-06

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25(2), 199-237. https://doi.org/10.1080/08993408.2015.1033142

Holmes, W., Bolin, J.E., & Kelley, K. (2014). Multilevel modeling using R. CRC Press. https://bit.ly/30lEPOz

Jara, I., Claro, M., Hinostroza, J.E., San-Martín, E., Rodríguez, P., Cabello, T., Ibieta, A., & Labbé, C. (2015). Understanding factors related to Chilean students’ digital skills: A mixed methods analysis. Computers & Education, 88, 387-398. https://doi.org/10.1016/j.compedu.2015.07.016

Jun, S., Han, S., & Kim, S. (2017). Effect of design-based learning on improving computational thinking. Behaviour & Information Technology, 36(1), 43-53. https://doi.org/10.1080/0144929X.2016.1188415

Kalas, I., & Tomcsányiová, M. (2009). Students’ attitude to programming in modern informatics [Conference]. 9th IFIP TC 3 World Conference on Computers in Education (WCCE). https://bit.ly/35IZ8b7

Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O.S., Hubert, T., & Almughyirah, S. (2016). Using robotics and game design to enhance children’s self-efficacy, STEM attitudes, and computational thinking skills. Journal of Science Education and Technology, 25, 860-876. https://doi.org/10.1007/s10956-016-9628-2

Linacre, J.M. (2002). What do infit and outfit, mean-square and standardized mean? Rasch Measurement Transactions, 16, 878. https://bit.ly/3hEFZvC

Magis, D., Béland, S., Tuerlinckx, F., & De-Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior research methods, 42(3), 847-862. https://doi.org/10.3758/BRM.42.3.847

Martínez-Restrepo, S., Ramos-Jaimes, L., Maya, N., & Parra, L. (2018). Guía metodológica para medir las TIC en educación. IDRC – FEDESARROLLO. https://bit.ly/2ZKqHhu

Ministerio de Educación Pública (Ed.) (2019). Exclusión intra anual en el sistema educativo costarricense. MEP. https://bit.ly/2TegPt7

Ministerio de Planificación Nacional y Política Económica (Ed.) (2018). Costa Rica índice de desarrollo social (IDS) 2017. MIDEPLAN. https://bit.ly/34fEq2R

Muñoz, L., Brenes, M., Bujanda, M., Mora, M., Núñez, O., & Zúñiga, M. (2014). Las políticas TIC en los sistemas educativos de América Latina: Caso Costa Rica. UNICEF. https://bit.ly/3kpZydg

Palts, T., Pedaste, M., Vene, V., & Vinikien?, L. (2017). Tasks for assessing skills of computational thinking [Conference]. 10th annual International Conference of Education, Research and Innovation. https://doi.org/10.21125/iceri.2017.0784

Papert, S. (1987). Information technology and education: Computer criticism vs. technocentric thinking. Educational Researcher, 16(1), 22-30. https://doi.org/10.3102/0013189X016001022

Papert, S. (1998). Child power: Keys to the new learning of the digital century [Conference].11th Colin Cherry Memorial Lecture on Communication. https://bit.ly/2QB2BB7

Resnick, M. (2013, May 8). Learn to code, code to learn. EdSurge. https://bit.ly/3m3gtlo

Román-González, M. (2015). Test de pensamiento computacional: Principios de diseño, validación de contenido y análisis de ítems Computational Thinking Test: design guidelines, content validation and item analysis [Conference]. EDULEARN15 the 7th International Conference on Education and New Learning Technologies. https://doi.org/10.13140/RG.2.1.3056.5521

Román-González, M. (2016). Código alfabetización y pensamiento computacional en Educación Primaria y Secundaria: validación de un instrumento y evaluación de programas. [Doctoral Dissertion, Universidad Nacional de Educación a Distancia]. UNED e-Spacio. https://bit.ly/32kzhDD

Salkind, N. (2010). Encyclopedia of research design. SAGE. https://doi.org/10.4135/9781412961288.n381

Sullivan, A., & Bers, M.U. (2018). Dancing robots: Integrating art, music, and robotics in Singapore’s early childhood centers. International Journal of Technology and Design Education, 28(2), 325-346. https://doi.org/10.1007/s10798-017-9397-0

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 1-22. https://doi.org/10.1016/j.compedu.2019.103798

Webb, M., Davis, N., Bell, T., Katz, Y.J., Reynolds, N., Chambers, D.P., & Sys?o, M.M. (2017). Computer science in K-12 school curricula of the 21st century: Why, what and when? Education and Information Technologies, 22, 445-468. https://doi.org/10.1007/s10639-016-9493-x

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-36. https://doi.org/10.1145/1118178.1118215

Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. Revista de Educación a Distancia, 46 (4). https://doi.org/10.6018/red/46/4

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141. https://doi.org/10.1016/j.compedu.2019.103607


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item