When negativity is the fuel. Bots and Political Polarization in the COVID-19 debate

Robles, José-Manuel, Guevara, Juan-Antonio, Casas-Mas, Belén and Gómez, Daniel When negativity is the fuel. Bots and Political Polarization in the COVID-19 debate. Comunicar, 2022, vol. 30, n. 71, pp. 63-75. [Journal article (Paginated)]

[thumbnail of Research article (English)]
Preview
Text (Research article (English))
c7105en.pdf - Published version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (399kB) | Preview
[thumbnail of Research article (Español)]
Preview
Text (Research article (Español))
c7105es.pdf - Published version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (328kB) | Preview

English abstract

The contexts of social and political polarization are generating new forms of communication that affect the digital public sphere. In these environments, different social and political actors contribute to extreme their positions, using bots to create spaces for social distancing where hate speech and incivility have a place, a phenomenon that worries scientists and experts. The main objective of this research is to analyze the role that these automated agents played in the debate on social networks about the Spanish Government’s management of the global COVID-19 pandemic. For this, “Social Big Data Analysis” techniques were applied: “machine learning algorithms to know the positioning of users; bot detection algorithms; “topic modeling” techniques to learn about the topics of the debate on the web, and sentiment analysis. We used a database comprised of Twitter messages published during the confinement, as a result of the Spanish state of alarm. The main conclusion is that the bots could have served to design a political propaganda campaign initiated by traditional actors with the aim of increasing tension in an environment of social emergency. It is argued that, although these agents are not the only actors that increase polarization, they do contribute to deepening the debate on certain key issues, increasing negativity.

Spanish abstract

Los contextos de polarización social y política están generando nuevas formas de comunicar que inciden en la esfera pública digital. En estos entornos, distintos actores sociales y políticos estarían contribuyendo a extremar sus posicionamientos, utilizando «bots» para crear espacios de distanciamiento social en los que tienen cabida el discurso del odio y la «incivility», un fenómeno que preocupa a científicos y expertos. El objetivo principal de esta investigación es analizar el rol que desempeñaron estos agentes automatizados en el debate en redes sociales sobre la gestión del Gobierno de España durante la pandemia global de COVID-19. Para ello, se han aplicado técnicas de «Social Big Data Analysis»: algoritmos de «machine learning» para conocer el posicionamiento de los usuarios; algoritmos de detección de «bots»; técnicas de «topic modeling» para conocer los temas del debate en la red, y análisis de sentimiento. Se ha utilizado una base de datos compuesta por mensajes de Twitter publicados durante el confinamiento iniciado a raíz del estado de alarma español. La principal conclusión es que los «bots» podrían haber servido para diseñar una campaña de propaganda política iniciada por actores tradicionales con el objetivo de aumentar la crispación en un ambiente de emergencia social. Se sostiene que, aunque dichos agentes no son los únicos actores que aumentan la polarización, sí coadyuvan a extremar el debate sobre determinados temas clave, incrementando la negatividad.

Item type: Journal article (Paginated)
Keywords: COVID-19; political bots; political polarization; digital propaganda; public opinion; social networks analysis; COVID-19; bots políticos; polarización política; propaganda digital; opinión pública; análisis de redes sociales
Subjects: B. Information use and sociology of information > BJ. Communication
G. Industry, profession and education.
G. Industry, profession and education. > GH. Education.
Depositing user: Alex Ruiz
Date deposited: 21 Mar 2022 07:14
Last modified: 21 Mar 2022 07:14
URI: http://hdl.handle.net/10760/42973

References

Abramowitz, A.I. (2010). The disappearing center. Yale University Press. https://bit.ly/3s7UlwC

Adlung, S., Lünenborg, M., & Raetzsch, C. (2021). Pitching gender in a racist tune: The affective publics of the# 120decibel campaign. Media and Communication, 9(2), 16-26. https://doi.org/10.17645/mac.v9i2.3749

Al-Rawi, A., & Shukla, V. (2020). Bots as active news promoters: A digital analysis of COVID-19 tweets. Information, 11(10), 461. https://doi.org/10.3390/info11100461

Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-36. https://doi.org/10.1257/jep.31.2.211

Barberá, P., Jost, J.T., Nagler, J., Tucker, J.A., & Bonneau, R. (2015). Tweeting from left to right: Is online political communication more than an echo chamber? Psychological science, 26(10), 1531-1542. https://doi.org/10.1177/0956797615594620

Boshmaf, Y., Muslukhov, I., Beznosov, K., & Ripeanu, M. (2013). Design and analysis of a social botnet. Computer Networks, 57(2), 556-578. https://doi.org/10.1016/j.comnet.2012.06.006

Boxell, L., Gentzkow, M., & Shapiro, & J.M. (2017). Is the internet causing political polarization? Evidence from demographics. National Bureau of Economic Research. https://doi.org/10.3386/w23258

Bradshaw, S., & Howard, P.N. (2019). The global disinformation order: 2019 global inventory of organised social media manipulation. Oxford Internet Institute. https://acortar.link/puyazU

Calvo, E., & Aruguete, N. (2020). Fake News, trolls y otros encantos. Cómo funcionan (para bien y para mal) las redes sociales. Siglo XXI. https://doi.org/10.22201/fcpys.24484911e.2020.29.76061

Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication, 64(2), 317-332, https://doi.org/10.1111/jcom.12084

Fernández, P. (1996). Determinación del tamaño muestral. Cad Aten Primaria, 3(138-14), 1-6. https://bit.ly/3DYcijz

Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96-104. https://doi.org/10.1145/2818717

Fiorina, M.P., & Abrams, S.J. (2008). Political polarization in the American public. Annual Review of Political Science, 11, 563-588. https://doi.org/10.1146/annurev.polisci.11.053106.153836

Grün, B., & Hornik, K. (2011). Topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1-30. https://doi.org/10.18637/jss.v040.i13

Guevara, J.A., Gómez, D., Robles, J M., & Montero, J. (2020). Measuring polarization: A fuzzy set theoretical approach. In M.J. Lesot, S. Vieira, M.z. Reformat, J.O. Carvalho, A. Wilbik, B. Bouchon-Meunier & R.R. Yager, (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 510-522). Springer. https://doi.org/10.1007/978-3-030-50143-3_40

Hansen, L.K., Arvidsson, A., Nielsen, F.A., Colleoni, E., & Etter, M. (2011). Good friends, bad news-affect and virality in twitter. In J.J. Park, L.T. Yang, C. Lee (Eds.), Future information technology (pp. 34-43). Springer. https://doi.org/10.1007/978-3-642-22309-9_5

Howard, P.N. (2006). New media campaigns and the managed citizen. Cambridge University Press. https://doi.org/10.1080/10584600701641532

Howard, P.N., Woolley, S., & Calo, R. (2018). Algorithms, bots, and political communication in the U.S. 2016 election: The challenge of automated political communication for election law and administration. Journal of Information Technology & Politics, 15(2), 81-93. https://doi.org/10.1080/19331681.2018.1448735

Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N., & Westwood, S.J. (2019). The origins and consequences of affective polarization in the United States. Annual Review of Political Science, 22(1), 129-146, https://doi.org/10.1146/annurev-polisci-051117-073034

Kearney, M.W. (2019). Rtweet: Collecting and analyzing Twitter data. Journal of Open Source Software, 4(42). 1829. https://doi.org/10.21105/joss.01829

Keller, F.B., Schoch, D., Stier, S., & Yang, J.H. (2019). Political astroturfing on Twitter: How to coordinate a disinformation campaign. Political Communication, 37(2), 256-280. https://doi.org/10.1080/10584609.2019.1661888

Keller, T.R., & Klinger, U. (2019). Social bots in election campaigns: Theoretical, empirical, and methodological implications. Political Communication, 36(1), 171-189. https://doi.org/10.1080/10584609.2018.1526238

Kovic, M., Rauchfleisch, A., Sele, M., & Caspar, C. (2018). Digital astroturfing in politics: Definition, typology, and countermeasures. Studies in Communication Sciences, 18(1), 69-85. https://doi.org/10.24434/j.scoms.2018.01.005

Lelkes, Y. (2016). Mass polarization: Manifestations and measurements. Public Opinion Quarterly, 80(1), 392-410. https://doi.org/10.1093/poq/nfw005

Luengo, O., García-Marín, J., & De-Blasio, E. (2021). COVID-19 on YouTube: Debates and polarisation in the digital sphere. [COVID-19 en YouTube: Debates y polarización en la esfera digital]. Comunicar, 69, 9-19. https://doi.org/10.3916/C69-2021-01

Martini, F., Samula, P., Keller, T.R., & Klinger, U. (2021). Bot, or not? Comparing three methods for detecting social bots in five political discourses. Big Data & Society, 8(2). https://doi.org/10.1177/20539517211033566

Moffitt, J.D., King, C., & Carley, K.M. (2021). Hunting conspiracy theories during the COVID-19 pandemic. Social Media+Society, 7(3). https://doi.org/10.1177/20563051211043212

Morgan, S. (2018). Fake news, disinformation, manipulation and online tactics to undermine democracy. Journal of Cyber Policy, 3(1), 39-43. https://doi.org/10.1080/23738871.2018.1462395

Mueller, S.D., & Saeltzer, M. (2020). Twitter made me do it! Twitter's tonal platform incentive and its effect on online campaigning. Information, Communication & Society, 1-26. https://doi.org/10.1080/1369118X.2020.1850841

Neyazi, T.A. (2019). Digital propaganda, political bots and polarized politics in India. Asian Journal of Communication, 30(1), 39-57. https://doi.org/10.1080/01292986.2019.1699938

Papacharissi, Z. (2004). Democracy online: Civility, politeness, and the democratic potential of online political discussion groups. New media & society, 6(2), 259-283. https://doi.org/10.1177/1461444804041444

Pastor-Galindo, J., Nespoli, P., Gómez-Mármol, F., & Mártinez-Pérez, G. (2020). Spotting political social bots in Twitter: A use case of the 2019 Spanish general election. IEEE Transactions on Network and Service Management, 8, 10282-10304. https://doi.org/10.1109/access.2020.2965257

Persily, N. (2017). The 2016 U.S. election: Can democracy survive the internet? Journal of Democracy, 28(2), 63-76. https://doi.org/10.1353/jod.2017.0025

Price, K.R., Priisalu, J., & Nomin, S. (2019). Analysis of the impact of poisoned data within twitter classification models. IFAC-PapersOnLine, 52(19), 175-180. https://doi.org/10.1016/j.ifacol.2019.12.170

Prior, M. (2013). Media and political polarization. Annual Review of Political Science, 16, 101-127. https://doi.org/10.1146/annurev-polisci-100711-135242

Rowe, I. (2015). Civility 2.0: A comparative analysis of incivility in online political discussion. Information, Communication & Society, 18(2), 121-138. https://doi.org/10.1080/1369118X.2014.940365

Santana, L.E., & Huerta-Cánepa, G. (2019). ¿Son bots? Automatización en redes sociales durante las elecciones presidenciales de Chile 2017. Cuadernos.info, 44, 61-77. https://doi.org/10.7764/cdi.44.1629

Sartori, G. (2005). Parties and party systems: A framework for analysis. ECPR press.

Serrano-Contreras, I.J., García-Marín, J., & Luengo, O.G. (2020). Measuring online political dialogue: Does polarization trigger more deliberation? Media and Communication, 8(4), 63-72. https://doi.org/10.17645/mac.v8i4.3149

Shao, C., Ciampaglia, G.L., Varol, O., Flammini, A., Menczer, F., & Yang, K.C. (2018). The spread of low-credibility content by social bots. Nature Communication, 9(1), 1-10. https://doi.org/10.1038/s41467-018-06930-7

Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2020). Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big data, 8(3), 171-188. http://doi.org/10.1089/big.2020.0062

Sobieraj, S., & Berry, J.M. (2011). From incivility to outrage: Political discourse in blogs, talk radio, and cable news. Political Communication, 28(1), 19-41. https://doi.org/10.1080/10584609.2010.542360

Stella, M., Ferrara, E., & De-Domenico, M. (2018). Bots increase exposure to negative and inflammatory content in online social systems. In J. Kleinberg (Ed.), Proceedings of the National Academy of Sciences, 115(49), 12435-12440. https://doi.org/10.1073/pnas.1803470115

Sunstein, C.R. (2001). Designing democracy: What constitutions do? Oxford University Press.

Sunstein, C.R. (2018). #Republic. Princeton university press.

Taber, C.S., & Lodge, M. (2006). Motivated skepticism in the evaluation of political beliefs. American journal of political science, 50(3), 755-769. https://doi.org/10.1111/j.1540-5907.2006.00214.x

Uyheng, J., & Carley, K.M. (2020). Bots and online hate during the COVID-19 pandemic: Case studies in the United States and the Philippines. J Comput Soc Sc, 3, 445-468. https://doi.org/10.1007/s42001-020-00087-4

Walker, E.T. (2014). Grassroots for hire: Public affairs consultants in American democracy. Cambridge University Press. https://doi.org/10.1017/CBO9781139108829

Yan, H.Y., Yang, K., Menczer, F., & Shanahan, J. (2020). Asymmetrical perceptions of partisan political bots. New Media & Society, 23(10), 3016-3037. https://doi.org/10.1177/1461444820942744


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item