Comparing the Performance of Information Retrieval of Semantic and Keyword Search Engines Based on Phrase Search

Bahari Varzaneh, Hosein Comparing the Performance of Information Retrieval of Semantic and Keyword Search Engines Based on Phrase Search. Journal of Knowledge-Research Studies, 2022, vol. 1, n. 2, pp. 102-117. [Journal article (Paginated)]

[thumbnail of JKRS_Volume 1_Issue 2_Pages 102-117.pdf]
Preview
Text
JKRS_Volume 1_Issue 2_Pages 102-117.pdf - Published version
Available under License Creative Commons Attribution.

Download (742kB) | Preview

English abstract

Purpose: The aim of the research is to compare the performance of Information Retrieval of semantic and keyword search engines based on phrase search (simple & complex). Methodology: The present applied and semi-experimental research community includes all active search engines on the web. Research samples were selected based on stratified random sampling and purposive sampling. The data collection tool of two researcher-made checklists includes ten simple and complex phrase queries. Findings: Bing and Cluuz (with similar precision of 53%), DuckDuckGo, and Yahoo were the most accurate in searching for simple phrases, respectively. Bing, DuckDuckGo, Yahoo, and Cluuz were the most accurate in their search for complex terms, respectively. In general, Bing, DuckDuckGo, Cluuz and Yahoo have the highest precision, respectively. Also, the average total precision of keyword search engines is more heightened than semantic search engines. Conclusion: The Bing keyword search engine performs better than the other three semantic search engines and other keywords. Semantic search engines claim to have more capabilities in retrieving relevant information than keyword search engines. But in this study, it was found that Cluuz and DuckDuckGo do not excel in search terms over keyword search engines. These tools did not perform as well as semantic web search engines, and it seems that they have a long way to go to become real semantic search engines. And to achieve this, it is necessary to use the facilities, tools, modules, and emerging technologies of the new age, such as machine learning, deep learning, combining these modules with pervasive techniques, data mining, etc. Value: So far, not been compared the phrase search performance in the sample semantic and keyword search engines. And in this regard, the researcher has tried to achieve an actual result with an exact Survey.

['eprint_fieldopt_linguabib_' not defined] abstract

هدف: هدف از انجام این پژوهش مقایسه عملکرد بازیابی اطلاعات موتورهای جستجوی معنایی و کلیدواژه بر اساس جستجوی عبارت (ساده و پیچیده) است. روش‌شناسی‌: جامعه پژوهش کاربردی و نیمه تجربی حاضر شامل تمام موتورهای جستجوی فعال در وب است. نمونه‌های پژوهش بر اساس نمونه‌گیری طبقه‌ای تصادفی و نمونه‌گیری هدفمند انتخاب شدند. ابزار گردآوری داده‌های دو چک‌لیست محقق ساخته شامل 10 پرس و جوی عبارتی ساده و پیچیده است. یافته‌ها: بینگ و کلاز (با میزان دقت مشابه 53% )، داک‌داک‌گو و یاهو به ترتیب بیشترین دقت را در جستجوی عبارات ساده داشتند. در جستجوی عبارات پیچیده نیز به ترتیب بینگ، داک‌داک‌گو، یاهو و کلاز بیشترین میزان دقت را داشتند. به‌طورکلی، بینگ، داک‌داک‌گو، کلاز و یاهو به ترتیب بیشترین میزان دقت را دارند. همچنین، میزان میانگین کل دقت موتورهای جستجوی کلیدواژه‌ای از موتورهای جستجوی معنایی بیشتر است. نتایج: موتور جستجوی کلیدواژه‌ای بینگ بهترین عملکرد را نسبت به سه موتور جستجوی معنایی و کلیدواژه‌ای دیگر دارد. موتورهای جستجوی معنایی بااینکه مدعی هستند توانایی‌های بیشتری در بازیابی اطلاعات مرتبط نسبت به موتورهای جستجوی کلیدواژه‌ای دارند اما در این بررسی مشخص شد کلاز و داک‌داک‌گو در جستجوی عبارتی نسبت به موتورهای جستجوی کلیدواژه‌ای برتری ندارند. این ابزارها به‌عنوان موتورهای جستجوی وب معنایی عملکرد قابل قبولی از خود نشان ندادند و به نظر می‌رسد باید مسیر طولانی را طی نمایند تا به موتورهای جستجوی معنایی واقعی تبدیل شوند و برای نیل به این مهم لازم است از امکانات، ابزارها، ماژول‌ها، و فناوری‌های نوظهور عصر جدید از قبیل یادگیری ماشین، یادگیری عمیق، تلفیق این ماژول‌ها با تکنیک‌های متن‌کاوی، داده‌کاوی، و... بهره گیرند. اصالت: تاکنون در موتورهای جستجوی معنایی و کلیدواژه‌ای نمونه، عملکرد جستجوی عبارتی مقایسه نشده است. و در این راستا، پژوهشگر تلاش کرده است تا با یک بررسی دقیق به یک نتیجه واقعی دست یابد تا موتور جستجوی قدرتمند در این نوع جستجو را به کاربران معرفی کند.

Item type: Journal article (Paginated)
Keywords: Information Retrieval; Phrase Search; Performance; Keyword Search Engines; Semantic Search Engines
Subjects: L. Information technology and library technology > LZ. None of these, but in this section.
Depositing user: Rasoul Zavaraqi
Date deposited: 22 Sep 2022 20:03
Last modified: 22 Sep 2022 20:03
URI: http://hdl.handle.net/10760/43543

References

Khan, J.A., Sangroha, D., Ahmad, M., & Rahman, M.T. (2014). A performance evaluation of semantic based search engines and keyword based search engines. 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), 168-173.

Aldabbagh, M. S. M. (2012). An Approach for Evaluation of Semantic Performance of Search Engines: Google, Yahoo, Msn and Hakia. Journal of Education Science, 25,124-130.

Aliyu, F. M., & Yahaya, Y. I. (2021). An Investigation of the Accuracy of Knowledge Graph-base Search Engines: Google knowledge Graph, Bing Satori and Wolfram Alpha. International Journal of Scientific & Engineering Research, 12(1), 11-15.

Azizan, A., Abu Bakar, Z., Abd Rahman, N., Masrom, S. & Khairuddin, N. (2018). A Comparative Evaluation of Search Engines on Finding Specific Domain Information on the Web. International Journal of Engineering & Technology, 7 (4), 1-4.

Choudhury, N. (2014). World Wide Web and Its Journey from Web 1.0 toWeb 4.0. Nupur Choudhury/ (IJCSIT). International Journal of Computer Science and Information Technologies,5(6),8096-80100.

Davarpanah, M.R. (2011). Scientific Information Seeking in Printed and Electronic. Tehran: Dabizash.

Dorri, R. (2015). Comparison and Evaluation of Semantic Search Engines. Iranian Journal of Information processing and Management, 30 (2) ,467-490. [In Persian].

Dutta, M., & Bansal, K. L. (2016). A Review Paper on Various Search Engines (Google, Yahoo, Altavista, Ask and Bing). International Journal on Recent and Innovation Trends in Computing and Communication, 4 (8),190- 195.

Fatima, A., Luca, C., & Wilson, G. (2014). New Framework for Semantic Search Engine. International Conference on Computer Modelling and Simulation. UKSim-AMSS,445-450. DOI:10.1109/UKSim.2014.114

Gayar, M.M.E., Mekky N., & Atwan, A. (2015). Efficient Proposed Framework for Semantic Search Engine using New Semantic Ranking Algorithm. (IJACSA) International Journal of Advanced Computer Science and Applications, 6(8),136- 143.

Goutam, R. K., & Dwivedi, S. K. (2012). Performance Evaluation of search engines via user efforts Measures. International Journal of Computer Science Issues, 9(2),432- 437.

Guha, R., McCool, R. ,& Miller, E. (2003). Semantic Search. Retrieved 23 October, 2017 from: https://dl.acm.org/citation.cfm?id=775250

Signorini, A., & Imielinski, T. (2009). If You Ask Nicely, I will Answer: Semantic Search and Today's Search Engines. 2009 IEEE International Conference on Semantic Computing, 184-191.

Kousha, K. (2001). Internet Tools: Principles Skills and Facilities for Searching on World Wide Web. Tehran: ketabdar.

Kumar, D., & Mishra, R. (2015). Deep Web Performance Enhance on Search Engine. 2015 International Conference on Soft Computing Techniques and Implementations- (ICSCTI), Hybrid Intelligence. 137- 140.

Lancaster, F. W. (2002). indexing and abstracting) A.Gilvari Trans.(. Tehran: chapar.

Mala, V., & Lobiyal, D. K. (2016). Semantic and keyword based web techniques in information retrieval. 2016 International Conference on Computing, Communication and Automation (ICCCA). https://doi.org/10.1109/ccaa.2016.7813724

Malve, A., & Chawan, P. M. (2015). A Comparative Study of Keyword and Semantic based Search Engine. International Journal of Innovative Research in Science,Engineering and Technology, 11(4),11156-11161.

Nadi Ravandi, S., & Hariri, N. (2016.). Information Retrieval Systems .Tehran: Ketabdar.

Nandy, D., Gohel, H., Kalyani, F., & Khakhariya, M. (2016). DuckDuckGo vs. Google search engine comparative analysis. International Journal of Science Research and Technology, 2(1), 37-41.

Negi, Y. S., & Kumar, S. (2014). A Comparative Analysis of Keyword-and Semantic-Based Search Engines. In Intelligent Computing, Networking, and Informatics(pp.727-736).

Nowruzi, M., & Taherian, M. (2012). Semantic web. Tehran: fors.

Ramachandran, A., & Sujatha, R. (2011). Semantic search engine: A survey. Int. J. Comp. Tech. Appl, 2 (6),1806-1811.

Rashid, J., & Wasif Nisar, M. (2016). A Study on Semantic Searching, Semantic Search Engines and Technologies Used for Semantic Search Engines. I.J. Information Technology and Computer Science, 10(10),82- 89.

Rathee, D., Atri, J., Rathee, J., & Nath, R. (2013). A Framework to Evaluate Search Engines. IJCSC, 4 (2), 184-190.

Sahu, S. K., Mahapatra,and, D.P., & Balabantaray, R.C. (2015).Comparative Study of Different Search Engines in Context of Features and Semantics, International Journal of All Research Education and Scientific Methods, 14(1), 15-26.

Sayed, A., & Al Muqrishi, A. (2017). IBRI-CASONTO: Ontology-based semantic search engine, Egyptian Informatics Journal,18 (3), 181- 192.

Sheela, A.C., & Jayakumar, C.T. (2019). Comparative Study of Syntactic Search Engine and Semantic Search Engine: A Survey. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1, 1-4.

Shiri, A. A. (1994). Evaluate recall and precision of information retrieval systems. Research on Information Science and Public Libraries, 4 (1,2), 38-45. [In Persian].

Singh, J., & Sharan, A. (2013). A Comparative Study between Keyword and Semantic Based Search Engines. International Conference on Cloud, Big Data and Trust 2013: 130- 134.

Solomou, G. & Koutsomitropoulos, D. (2015). Towards an evaluation of semantic searching in digital repositories: a DSpace case-study. Electronic library and information systems, 49 (1), 63-90.

Sudeepthi, G., Anuradha, G., Surendra, M.,& Babu, P. (2012). A Survey on Semantic Web Search Engine. IJCSI International Journal of Computer Science Issues, 9(2), 241-245.

Tümer, D., Shah, M.A., & Bi̇ti̇ri̇m, Y. (2009). An Empirical Evaluation on Semantic Search Performance of Keyword-Based and Semantic Search Engines: Google, Yahoo, Msn and Hakia. 2009 Fourth International Conference on Internet Monitoring and Protection, 51-55.

Yadav, A., & Maheshwari, S. (2017). Building of Intellectual Web Search Engines through Semantic Web. International Journal of Latest Trends in Engineering and Technology, 7 (3),384-391.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item