La privacidad en el uso de los datos en la Ciencia de Datos

Aravena Nina, Dilcia Kelly and Tapia Quispe, Higuey Edson La privacidad en el uso de los datos en la Ciencia de Datos., 2022 Bachelor's Degree thesis, Universidad Peruana de Ciencias Aplicadas. [Thesis]

[thumbnail of La privacidad en el usos de los datos en la ciencia de datos.pdf]
Preview
Text
La privacidad en el usos de los datos en la ciencia de datos.pdf

Download (964kB) | Preview

English abstract

The purpose of the research is to contrast the authors' positions on who is responsible for data privacy in data science, given that it is not clear, since it allows identifying the responsible actors who must manage the use of data, valuing the right to privacy that people have. The study has a qualitative approach that seeks to analyze the arguments of the authors, whose academic scope of consulted references correspond to scientific articles indexed in journals of quartiles 1 and 2. As a result, it is identified that algorithms are increasingly used to analyze large complex data sets in order to generate knowledge from the data, such as: discovering behavior patterns, knowing if someone is hired or promoted, if someone accesses a loan or is provided with housing, etc. (Martin, 2019; Someh et al., 2019). The findings show that data science can affect the stakeholders, these are: the owners who contribute their data, the companies that use Big Data, the builders that develop the algorithms, the State institutions that regulate the use of data and the societies that have the responsibility to govern, control and shape this changing socio-technical phenomenon, among other actors. Likewise, the research establishes a shared responsibility between the aforementioned interest group and all those who may be affected by the analysis of their data in data science.

Spanish abstract

La investigación tiene como propósito contrastar las posturas de los autores sobre quién es el responsable de la privacidad de los datos en la ciencia de datos, dado que no está clara, ya que permite identificar a los actores responsables que deben gestionar el uso de los datos, valorando el derecho a la privacidad que tienen las personas. El estudio es de enfoque cualitativo que busca analizar los argumentos de los autores, cuyo alcance académico de referencias consultadas corresponden a artículos científicos indexados a revistas de cuartiles 1 y 2. Como resultado, se identifica que, cada vez más se usan los algoritmos para analizar grandes conjuntos de datos complejos con el fin de generar conocimientos a partir de los datos, como es: descubrir patrones de comportamientos, saber si alguien es contratado o promovido, si alguien accede a un préstamo o es provisto de vivienda, etc. (martín, 2019; Someh et al., 2019). Los hallazgos demuestran que la ciencia de datos puede afectar a las partes interesadas, estos son: los propietarios que contribuyen con sus datos, las empresas que usan Big Data, los constructores que desarrollan los algoritmos, las instituciones del Estado que regulan el uso de los datos y las sociedades que tienen la responsabilidad de gobernar, controlar y dar forma a este fenómeno sociotécnico cambiante, entre otros actores. Asimismo, la investigación establece una responsabilidad compartida entre el grupo de interés antes mencionado y todos aquellos que pueden verse afectado por el análisis de sus datos en la ciencia de datos.

Item type: Thesis (UNSPECIFIED)
Keywords: Data Analysis; Privacy; Big Data; Data Science
Subjects: B. Information use and sociology of information > BC. Information in society.
G. Industry, profession and education. > GB. Software industry.
H. Information sources, supports, channels. > HL. Databases and database Networking.
I. Information treatment for information services > IE. Data and metadata structures.
I. Information treatment for information services > IM. Open data
K. Housing technologies. > KG. Safety.
L. Information technology and library technology > LC. Internet, including WWW.
L. Information technology and library technology > LN. Data base management systems.
L. Information technology and library technology > LP. Intelligent agents.
Depositing user: Lic. Adriana Mora Natera
Date deposited: 12 Aug 2023 09:17
Last modified: 12 Aug 2023 09:17
URI: http://hdl.handle.net/10760/44268

References

Arriagada, G., Gilthorpe, M., & Müller, V. (2020). The ethical imperatives of the COVID-19 pandemic: An analysis from the ethics of data. Veritas, (46), pp. 13-35.

Arrojo, M. J. (2019). Valores éticos y cambio tecnológico en la comunicación audiovisual: De la ciencia a la tecnología. Palabra Clave, 22(1), 171-203.

Breidbach, C. F., & Maglio, P. (2020). Accountable algorithms? the ethical implications of data-driven business models. Journal of Service Management, 31(2), 163-185.

Chalcraft, C.A. (2018). Drawing ethical boundaries for data analytics. Information and Management, 52(1), 18-25.

Chen, W., & Quan-Haase Anabel. (2020). Big Data Ethics and Politics: Toward New Understandings. Social Science Computer Review, 38(1), 3-9.

Herschel, R., & Virginia, M. (2017). Ethics & Big Data. Technology in Society, 49, 31-36.

Hesse, A., Glenna, L., Hinrichs, C., Chiles, R., & Sachs, C. (2019). Qualitative Research Ethics in the Big Data Era. American Behavioral Scientist, 63(5), 560–583.

Hernández, R., Fernández, C., y Baptista, P. (2014). Metodología de Investigación. México: Mc. Graw Hill.

Hirsch, D. (2019). Data Ethics: Risk management for the algorithmic age. Risk Management, 66(10), 24-29.

Forgó, N., Hänold, S., van den Hoven, J., Krügel, T., Lishchuk, I., Mahieu, R., Monreale, A., Pedreschi, D., Pratesi, F., & van Putten, D. (2020). An ethico-legal framework for social data science. International Journal of Data Science and Analytics, 11(4), 377-390.

Franzke, A. S., Iris, M., & Schäfer, M. T. (2021). Data Ethics Decision Aid (DEDA): a dialogical framework for ethical inquiry of AI and data projects in the Netherlands. Ethics and Information Technology, 23(3), 551-567.

Ibiricu, B., & Marja Leena van, d. M. (2020). Ethics by design: A code of ethics for the digital age. Records Management Journal, 30(3), 395-414.

Keren Naa, A. A., & Owen, R. (2019). A micro-ethnographic study of Big Data-based innovation in the financial services sector: Governance, ethics and organisational practices: JBE. Journal of Business Ethics, 160(2), 363-375.

Kitto, K., & Knight, S. (2019). Practical ethics for building learning analytics. British Journal of Educational Technology, 50(6), 2855-2870.

Lang, M., Lemieux, S., Hébert, J., Sauvageau, G., & Zawati, M. H. (2021). Legal and Ethical Considerations for the Design and Use of Web Portals for Researchers, Clinicians, and Patients: Scoping Literature Review. Journal of Medical Internet Research.

Legewie, N., & Nassauer, A. (2018). YouTube, google, facebook: 21st century online video research and research ethics. Forum Qualitative Sozialforschung, 19(3).

Markham, A. N., Katrin, T., & Herman, A. (2018). Ethics as Methods: Doing Ethics in the Era of Big Data Research—Introduction. Social Media + Society, 4(3).

Martin, K. (2019). Ethical Implications and Accountability of Algorithms: JBE. Journal of Business Ethics, 160(4), 835-850.

Mittelstadt, B. (2017). From Individual to Group Privacy in Big Data Analytics. Philosophy & Technology, 30(4), 475-494.

Monkman, G. G., Kaiser, M., & Hyder, K. (2018). The Ethics of Using Social Media in Fisheries Research. Reviews in Fisheries Science & Aquaculture, 26(2), 235-242.

Morán Reyes, Ariel A. (2022). Towards an ethical framework about Big Data era: metaethical, normative ethical and hermeneutical approaches. Heliyon, 8.

Mühlhoff Rainer. (2021). Predictive privacy: Towards an applied ethics of data analytics. Ethics and Information Technology, 23(4), 675-690.

Nnamdi, J. O., Yusuf, Y. Y., Dharma, K., & Mercangoz, B. A. (2022). Big Data supply chain analytics: ethical, privacy and security challenges posed to business, industries and society. Production Planning & Control, 33(2-3), 123-137.

Nersessian, D. (2018). The law and ethics of Big Data analytics: A new role for international human rights in the search for global standards. Business Horizons, 61(6), pp. 845- 854.

Parti, K., & Szigeti, A. (2021). The Future of Interdisciplinary Research in the Digital Era: Obstacles and Perspectives of Collaboration in Social and Data Sciences - An Empirical Study. Cogent Social Sciences, 7(1).

Rathinam, F., Khatua, S., Siddiqui, Z., Malik, M., Duggal, P., Watson, S., & Vollenweider, X. (2021). Using Big Data for evaluating development outcomes: A systematic map. Campbell Systematic Reviews, 17(3).

Ravn, S., Barnwell, A., & Barbara, B. N. (2020). What is “Publicly available data”? exploring blurred Public–Private boundaries and ethical practices through a case study on instagram. Journal of Empirical Research on Human Research Ethics, 15(1-2), 40-45.

Real Academia Española. (2022). Responsabilidad. RAE.

Saltz, J. S., & Dewar, N. (2019). Data science ethical considerations: A systematic literature review and proposed project framework. Ethics and Information Technology, 21(3), 197-208.

Someh, I., Davern, M., Breidbach, C. F., & Shanks, G. (2019). Ethical Issues in Big Data Analytics: A Stakeholder Perspective. Communications of the Association for Information Systems, 44, 34.

Utts, J. (2021). Enhancing data science ethics through statistical education and practice. International Statistical Review = Revue Internationale De Statistique, 89(1), 1-17.

Wiener, M., Saunders, C., & Marabelli, M. (2020). Big-data business models: A critical literature review and multiperspective research framework. Journal of Information Technology, 35(1), 66-91.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item