Introduction dans les théories de la relativité

Sfetcu, Nicolae Introduction dans les théories de la relativité., 2019 [Preprint]

[thumbnail of Introduction_dans_les_theories_de_la_relativite-C.pdf]
Preview
Text
Introduction_dans_les_theories_de_la_relativite-C.pdf

Download (258kB) | Preview

English abstract

According to general relativity, the gravitational force is a manifestation of the geometry of local spacetime. RG is a metric theory of gravity. It is based on Einstein's equations, which describe the relationship between the geometry of a four-dimensional pseudo-Riemannian manifold, representing spacetime, and the energy-momentum contained within that spacetime. Gravity is changes in spatial and temporal properties, which in turn change the paths of objects. Curvature is caused by the energy-momentum of matter. According to John Archibald Wheeler, spacetime tells matter how to move, and matter tells spacetime how to bend.

French abstract

Selon la relativité générale, la force gravitationnelle est une manifestation de la géométrie de l'espace-temps local. RG est une théorie métrique de la gravité. Il est basé sur les équations d'Einstein, qui décrivent la relation entre la géométrie d'une variété pseudo-riemannienne à quatre dimensions, représentant l'espace-temps et l'énergie-impulsion contenu dans cet espace-temps. La gravité correspond aux modifications des propriétés spatiales et temporelles, qui à leur tour modifient les chemins des objets. La courbure est causée par l'énergie-impulsion de la matière. Selon John Archibald Wheeler, l'espace-temps indique à la matière comment se déplacer, et la matière indique à l'espace-temps comment se courber.

Item type: Preprint
Keywords: théories de la relativité, relativité générale, force gravitationnelle, espace-temps
Subjects: G. Industry, profession and education. > GZ. None of these, but in this section.
Depositing user: Nicolae Sfetcu
Date deposited: 21 Jun 2023 07:26
Last modified: 21 Jun 2023 07:26
URI: http://hdl.handle.net/10760/44511

References

Brans, C., and R. H. Dicke. 1961. “Mach’s Principle and a Relativistic Theory of Gravitation.” Physical Review 124 (3): 925-35. https://doi.org/10.1103/PhysRev.124.925

Chandrasekhar, Subrahmanyan. 1998. The Mathematical Theory of Black Holes. Clarendon Press.

Ehlers, Jürgen. 1973. “Survey of General Relativity Theory.” 1973. https://link.springer.com/chapter/10.1007/978-94-010-2639-0_1

Giulini, D. 2006. “Algebraic and Geometric Structures in Special Relativity.” In Special Relativity, 45-111. Lecture Notes in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34523-X_4

Havas, Peter. 1964. “Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity.” Reviews of Modern Physics 36 (4): 938-65.

https://doi.org/10.1103/RevModPhys.36.938

Hawking, S. W., and G. F. R. Ellis. 2008. The Large Scale Structure of Space-Time. 21. printing. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge Univ. Press.

Schutz, Bernard F., and Director Bernard F. Schutz. 1985. A First Course in General Relativity. Cambridge University Press.

Weinberg, Steven. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley.

Wheeler, John Archibald. 1990. A Journey Into Gravity and Spacetime. Scientific American Library.


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item