Menaces persistantes avancées

Sfetcu, Nicolae . Menaces persistantes avancées., 2024 In: UNSPECIFIED, (ed.) Les menaces persistantes avancées en cybersécurité – La guerre cybernétique. MultiMedia Publishing, pp. 9-14. [Book chapter]

[thumbnail of Menaces_persistantes_avancees-Nicolae_Sfetcu-Apercu.pdf]
Preview
Text
Menaces_persistantes_avancees-Nicolae_Sfetcu-Apercu.pdf - Published version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
Alternative locations: https://doi.org/10.58679/MM35522

English abstract

This book aims to provide a comprehensive analysis of advanced persistent threats, including their characteristics, origins, methods, consequences and defense strategies, with emphasis on the detection of these threats. It explores the concept of advanced persistent threats in the context of cybersecurity and cyberwarfare. Advanced persistent threats represent one of the most insidious and complex forms of cyber threats, characterized by their sophistication, persistence and targeted nature. The book examines the origins, characteristics, and methods used by advanced persistent threat actors. It also explores the complexities associated with detecting advanced persistent threats, analyzing the evolution of tactics used by threat actors and corresponding advances in detection methodologies. It highlights the importance of a multidimensional approach integrating technological innovations with proactive defense strategies to effectively identify and mitigate advanced persistent threats.

French abstract

Ce livre vise à fournir une analyse complète des menaces persistantes avancées, y compris leurs caractéristiques, origines, méthodes, conséquences et stratégies de défense, en mettant l'accent sur la détection de ces menaces. Il explore le concept de menaces persistantes avancées dans le contexte de la cybersécurité et de la cyberguerre. Les menaces persistantes avancées représentent l’une des formes de cybermenaces les plus insidieuses et les plus complexes, caractérisée par leur sophistication, leur persistance et leur nature ciblée. Le livre examine les origines, les caractéristiques et les méthodes utilisées par les acteurs des menaces persistantes avancées. Il explore également les complexités associées à la détection des menaces persistantes avancées, en analysant l'évolution des tactiques utilisées par les acteurs de la menace et les avancées correspondantes dans les méthodologies de détection. Il souligne l’importance d’une approche multidimensionnelle intégrant les innovations technologiques à des stratégies de défense proactives pour identifier et atténuer efficacement les menaces persistantes avancées.

Item type: Book chapter
Keywords: menaces persistantes avancées, APT, cybersécurité, guerre cybernétique, détection des menaces, cyberattaque
Subjects: L. Information technology and library technology > LH. Computer and network security.
Depositing user: Nicolae Sfetcu
Date deposited: 19 Aug 2024 07:18
Last modified: 19 Aug 2024 07:18
URI: http://hdl.handle.net/10760/45959

References

Adams, Chris. 2018. Learning the lessons of WannaCry. Computer Fraud & Security 2018 (9): 6‑9. https://doi.org/10.1016/S1361-3723(18)30084-8

Adelaiye, Oluwasegun, Aminat Ajibola, et Faki Silas. 2019. Evaluating Advanced Persistent Threats Mitigation Effects: A Review, février.

Aleroud, Ahmed, et Lina Zhou. 2017. Phishing environments, techniques, and countermeasures: A survey. Computers & Security 68 (juillet):160‑96. https://doi.org/10.1016/j.cose.2017.04.006

Alperovitch, Dmitri. 2011. Revealed: Operation Shady RAT - McAfee. https://icscsi.org/library/Documents/Cyber_Events/McAfee%20-%20Operation%20Shady%20RAT.pdf

Al-Saraireh, Jaafer, et Ala’ Masarweh. 2022. A novel approach for detecting advanced persistent threats. Egyptian Informatics Journal 23 (4): 45‑55. https://doi.org/10.1016/j.eij.2022.06.005

Alshamrani, Adel, Sowmya Myneni, Ankur Chowdhary, et Dijiang Huang. 2019. A Survey on Advanced Persistent Threats: Techniques, Solutions, Challenges, and Research Opportunities. IEEE Communications Surveys & Tutorials 21 (2): 1851‑77. https://doi.org/10.1109/COMST.2019.2891891

Al-Yaseen, Wathiq Laftah, Zulaiha Ali Othman, et Mohd Zakree Ahmad Nazri. 2017. Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system. Expert Systems with Applications 67 (janvier):296‑303. https://doi.org/10.1016/j.eswa.2016.09.041

Amouri, Amar, Vishwa T. Alaparthy, et Salvatore D. Morgera. 2020. A Machine Learning Based Intrusion Detection System for Mobile Internet of Things. Sensors 20 (2): 461. https://doi.org/10.3390/s20020461

Apruzzese, Giovanni, Fabio Pierazzi, Michele Colajanni, et Mirco Marchetti. 2017. Detection and Threat Prioritization of Pivoting Attacks in Large Networks. IEEE Transactions on Emerging Topics in Computing PP (octobre):1‑1. https://doi.org/10.1109/TETC.2017.2764885


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item