Open data on Covid-19 in the Spanish autonomous communities: reutilization in spatial epidemiology studies

Salvador-Oliván, Jose-Antonio and Escolano-Utrilla, Severino Open data on Covid-19 in the Spanish autonomous communities: reutilization in spatial epidemiology studies. Profesional de la Información, 2022, vol. 31, n. 4. [Journal article (Unpaginated)]

[thumbnail of Covid_English_Salvador_Escolano.pdf]
Preview
Text
Covid_English_Salvador_Escolano.pdf - Published version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

English abstract

The Covid-19 pandemic has highlighted the need for governments and health administrations at all levels to have an open data registry that facilitates decision-making in the planning and management of health resources and provides informa-tion to citizens on the evolution of the epidemic. The concept of “open data” includes the possibility of reutilization by third parties. Space and time are basic dimensions used to structure and interpret the data of the variables that refer to the health status of the people themselves. Hence, the main objective of this study is to evaluate whether the autonomous communities’ data files regarding Covid-19 are reusable to analyze the evolution of the disease in basic spatial and tempo-ral analysis units at the regional and national levels. To this end, open data files containing the number of diagnosed cases of Covid-19 distributed in basic health or administrative spatial units and temporal units were selected from the portals of the Spanish autonomous communities. The presence of infection-related, demographic, and temporal variables, as well as the download format and metadata, were mainly evaluated. Whether the structure of the files was homogeneous and adequate for the application of spatial analysis techniques was also analyzed. The results reveal a lack of standardization in the collection of data in both spatial and temporal units and an absence of, or ambiguity in, the meaning of the variables owing to a lack of metadata. An inadequate structure was also found in the files of seven autonomous communities, which would require subsequent processing of the data to enable their reuse and the application of analysis and spatial modeling techniques, both when carrying out global analyses and when comparing patterns of evolution between different regions

Spanish abstract

La pandemia por Covid-19 ha puesto de manifiesto la necesidad de los gobiernos y de las administraciones sanitarias de todos los niveles de disponer de un registro de datos abiertos que facilite la toma de decisiones en la planificación y gestión de recursos sanitarios y proporcione información a la ciudadanía sobre la evolución de la epidemia. El concepto de «datos abiertos» comprende la posibilidad de reutilización por terceros. Por otro lado, el espacio y el tiempo son dimensiones básicas para estructurar e interpretar los datos de las variables referidas propiamente al estado de salud de las personas. De aquí que el objetivo principal de este estudio es evaluar si los ficheros de datos de las Comunidades Autónomas sobre Covid-19 son reutilizables para analizar la evolución de la enfermedad en unidades de análisis espaciales y temporales básicas a nivel autonómico y de nación. Para ello, de los portales de las Comunidades Autónomas se seleccionaron los ficheros de datos abiertos que contenían el número de casos diagnosticados de Covid-19 distribuidos en unidades espaciales básicas sanitarias o administrativas y en unidades temporales. Se evaluó principalmente la presencia de variables relacionadas con la infección, demográficas y temporales, así como el formato de descarga y metadatos. Se analizó también si la estructura de los ficheros era homogénea y adecuada para aplicar técnicas de análisis espacial. Los resultados revelan falta de normalización en la recogida de datos tanto en unidades espaciales como temporales y ausencia o ambigüedad en el significado de las variables motivada por la falta de metadatos. También se ha constatado una estructura no adecuada en ficheros de siete Comunidades Autónomas, lo que requeriría un proceso posterior de los datos para poder reutilizarlos y aplicar técnicas de análisis y modelado espacial, tanto a la hora de llevar a cabo un análisis global como al comparar patrones de evolución entre distintas regiones.

Item type: Journal article (Unpaginated)
Keywords: Open data; Covid-19; Pandemics; Coronavirus; Reutilization of open data; Health information; Health data portals; Autonomous communities; Spain; Spatial epidemiology; Geolocation; Datos abiertos; Covid-19; Pandemias; Coronavirus; Reutilización de datos abiertos; Información de salud; Portales de datos de salud; Comunidades autónomas; España; Epidemiología espacial; Geolocalización
Subjects: B. Information use and sociology of information > BA. Use and impact of information.
B. Information use and sociology of information > BG. Information dissemination and diffusion.
I. Information treatment for information services > IM. Open data
Depositing user: Jose Antonio Salvador-Oliván
Date deposited: 11 Sep 2025 14:20
Last modified: 12 Sep 2025 09:42
URI: http://hdl.handle.net/10760/47128

References

Abella, Alberto; Ortiz-de-Urbina-Criado, Marta; De-Pablos-Heredero, Carmen (2022). “Criteria for the identification of ineffective open data portals: pretender open data portals”. Profesional de la Información, v. 31, n. 1, e3110111. https://doi.org/10.3145/epi.2022.ene.11

Abella, Alberto; Ortiz-de-Urbina-Criado, Marta; De-Pablos-Heredero, Carmen (2019). “Meloda 5: A metric to assess open data reusability”. Profesional de la Información, v. 28, n. 6, pp. 1–10. https://doi.org/10.3145/epi.2019.nov.20

Alamo, Teodoro; Reina, Daniel G.; Mammarella, Martina; Abella, Alberto (2020). “Covid-19: Open-Data Resources for Monitoring, Modeling, and Forecasting the Epidemic”. Electronics, v. 9, n. 5, pp. 827. https://doi.org/10.3390/electronics9050827

Ashofteh, Afshin; Bravo, Jorge M. (2020). “A study on the quality of novel coronavirus (COVID-19) official datasets”. Statistical Journal of the IAOS, v. 36, n. 2, pp. 291–301. https://doi.org/10.3233/SJI-200674

Ball, William P. (2020). “Open Data , Open Science and Transparency in the time of COVID 19”. Radical Statistics Newsletter, n. 127, pp. 4–9.

Barcellos, Raissa; Bernardini, Flavia; Viterbo, José (2022). “Towards defining data interpretability in open data portals: Challenges and research opportunities”. Information Systems, v. 106, 101961. https://doi.org/10.1016/j.is.2021.101961

Berners-Lee, Tim (2009). Linked Data. https://www.w3.org/DesignIssues/LinkedData.html

BOE (1986). “Ley 4/1986, de 25 de abril, General de Sanidad”. BOE, n. 102, 29 de abril. https://www.boe.es/eli/es/l/1986/04/25/14/con

Chignard, Simon (2013). A brief history of Open Data. Paris Innovation Review. http://parisinnovationreview.com/articles-en/a-brief-history-of-open-data

Dawes, Sharon S. (2010). “Stewardship and usefulness: Policy principles for information-based transparency”. Government Information Quarterly, v. 27, n. 4, pp. 377–383. https://doi.org/10.1016/j.giq.2010.07.001

Díez-Garrido, María; Melero Lázaro, Mónica (2022). “La transparencia como medicina. La comunicación de la pandemia a través de los portales de datos abiertos de las autonomías”. Estudios sobre el Mensaje Periodístico, v. 28, n. 1, pp. 65–80. https://doi.org/10.5209/esmp.77172

Diez-Roux, Ana V. (2001). “Investigating neighborhood and area effects on health”. American Journal of Public Health, v. 91, n. 11, pp. 1783–1789. https://doi.org/ 10.2105/AJPH.91.11.1783

Elliott, Paul; Wartenberg, Daniel (2004). “Spatial Epidemiology: Current Approaches and Future Challenges”. Environmental Health Perspectives, v. 112, n. 9, pp. 998–1006. https://doi.org/10.1289/ehp.6735

Escolano-Utrilla, Severino; Salvador-Oliván, José Antonio (2022). “Global regularity and local variability of the space-temporal patterns of COVID 19 in Aragón (Spain)”. Boletín de la Asociación de Geógrafos Españoles, n. 93.

https://doi.org/10.21138/bage.3276

Fatima, Munazza; O’Keefe, Kara J.; Wei, Weinjia; Arshad, Sana; Gruebner, Oliver (2021). “Geospatial Analysis of COVID-19: A Scoping Review”. International Journal of Environmental Research and Public Health, v. 18, n. 5, 2336. https://doi.org/10.3390/ijerph18052336

Ferrer-Sapena, Antonia; Calabuig, José-Manuel; Peset, Fernanda; Sánchez-del-Toro, Isabel (2020). “Working with open data in times of pandemics: using covidDATA-19”. Profesional de la Información, v. 29, n. 4, e290421. https://doi.org/10.3145/epi.2020.jul.21

Franch‐Pardo, Ivan; Desjardins, Michael R.; Barea‐Navarro, Isabel; Cerdà, Artemi (2021). “A review of GIS methodologies to analyze the dynamics of COVID‐19 in the second half of 2020”. Transactions in GIS, v. 25, n. 5, pp. 2191–2239. https://doi.org/10.1111/tgis.12792

García-García, Jesús; Curto-Rodríguez, Ricardo (2018). “Disclosure of public information of Spanish regional governments (2013-2017): Open data portals, transparency portals and institutional website”. Profesional de la Información, v. 27, n. 5, pp. 1051-1060. https://doi.org/10.3145/epi.2018.sep.09

Gardner, Lauren; Ratcliff, Jeremy; Dong, Ensheng; Katz, Aaron (2021). “A need for open public data standards and sharing in light of COVID-19”. The Lancet Infectious Diseases, v. 21, n. 4, e80. https://doi.org/10.1016/S1473-3099(20)30635-6

Hu, Tao; Guan, Weihe Wendy; Zhu, Xinyan; Shao, Yuanzheng; Liu, Lingbo; Du, Jing; Liu, Hongqiang; Zhou, Huan; Wang, Jialei; She, Bing (2020). “Building an Open Resources Repository for COVID-19 Research”. Data and Information Management, v. 4, n. 3, pp. 130–147. https://doi.org/10.2478/dim-2020-0012

ISCIII Centro Nacional de Epidemiología. (2022). COVID-19 en España. https://cnecovid.isciii.es/

Kang, Dayun; Choi, Hyunho; Kim, Jong-Hun; Choi, Jungsoon (2020). “Spatial epidemic dynamics of the COVID-19 outbreak in China”. International Journal of Infectious Diseases, v. 94, pp. 96–102. https://doi.org/10.1016/j.ijid.2020.03.076

Kirby, Russell S.; Delemelle, Eric; Erberth, Jan M. (2017). “Advances in spatial epidemiology and geographic information systems”. Annals of Epidemiology, v. 27, pp. 1-9. https://doi.org/10.1016/j.annepidem.2016.12.001

Kobayashi, Shinji; Falcón, Luis; Fraser, Hamish; Braa, Jorn; Amarakoon, Pamod; Marcelo, Alvin; Paton, Chris (2021). “Using Open Source, Open Data, and Civic Technology to Address the COVID-19 Pandemic and Infodemic”. Yearbook of Medical Informatics, v. 30, n. 01, pp. 038–043.

https://doi.org/10.1055/s-0041-1726488

Kubler, Sylvain; Robert, Jeremy; Neumaier, Sebastian; Umbrich, Jürgen; Le Traon, Yves (2018). “Comparison of metadata quality in open data portals using the Analytic Hierarchy Process”. Government Information Quarterly, v. 35, n. 1, pp. 13–29. https://doi.org/10.1016/j.giq.2017.11.003

Lourenço, Rui Pedro (2015). “An analysis of open government portals: A perspective of transparency for accountability”. Government Information Quarterly, v. 32, n. 3, pp. 323–332. https://doi.org/10.1016/j.giq.2015.05.006

Martín-Fernández, Almudena; Alfaro Latorre, Mercedes; Sánchez-Eznarriaga, Belén Crespo; Fidalgo García, Luz (2021). ”Availability of open data related to COVID-19 in the web portals of the Spanish regions and the Ministry of Health”. Revista Española de Salud Pública, v. 95, e202112190.

Ministerio de Sanidad (2022). Estrategia de Vigilancia y Control frente a COVID-19 tras la fase aguda de la pandemia. https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Nueva_estrategia_vigilancia_y_control.pdf

Ministerio de Transportes, Movilidad y Agenda Urbana. Infraestructura de Datos Espaciales de España (IDEE). https://plataforma.idee.es/web/idee/inicio

Paez, Antonio (2021). “Reproducibility of Research During COVID‐19: Examining the Case of Population Density and the Basic Reproductive Rate from the Perspective of Spatial Analysis”. Geographical Analysis, pp. 1–21. https://doi.org/10.1111/gean.12307

Park, Sora; Gil-Garcia, J. Ramón (2022). “Open data innovation: Visualizations and process redesign as a way to bridge the transparency-accountability gap”. Government Information Quarterly, v. 39, n. 1, 101456. https://doi.org/10.1016/j.giq.2020.101456

Pecoraro, Fabrizio; Luzi, Daniela (2021). “Open Data Resources on COVID-19 in Six European Countries: Issues and Opportunities”. International Journal of Environmental Research and Public Health, v. 18, n. 19, 10496. https://doi.org/10.3390/ijerph181910496

Priyadarsini, S. Lakshmi; Suresh, M (2020). Factors influencing the epidemiological characteristics of pandemic COVID 19: A TISM approach. International Journal of Healthcare Management, v. 13, n. 2, pp. 89–98. https://doi.org/10.1080/20479700.2020.1755804

Publications Office of the European Union. (2020). Metadata Quality Assessment Methodology. How data.europa.eu measures the quality of all stored metadata. https://data.europa.eu/mqa/methodology?locale=en

Rothman, Kenneth J.; Greenland, Sander; Lash, Timothy L. (2011). Modern Epidemiology. Third edition.Philadelphia: Lippincott Williams & Wilkins. ISBN: 978 1 45115920 2.

Souris, Marc (2019). Epidémiologie et géographie: Principes, methods et outils de l’analyse spatiales. London; ISTE. ISBN: 978 1 784065 73 7

Sy, Karia Therese L.; White, Laura F.; Nichols, Brooke E. (2021). “Population density and basic reproductive number of COVID-19 across United States counties”. PLoS ONE, v. 16, n. 4, pp. 1–11. https://doi.org/10.1371/journal.pone.0249271

Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, Ijsbrand Jan; Appleton, Gabrielle; Axton, Myles; Baak, Arie; Blomberg, Niklas; Boiten, Jan-Willem; da Silva Santos, Luiz Bonino; Bourne, Philip E. (2016). “The FAIR Guiding Principles for scientific data management and stewardship”. Scientific Data, v. 3, n. 1, 160018. https://doi.org/10.1038/sdata.2016.18

World Health Organization (2022). Public Health Surveillance for COVID-19: interim guidance.

https://www.who.int/publications/i/item/who-2019-nCoV-surveillanceguidance-2022.1

Wu, Dan; Ma, Le; Zhang, Hui (2021). “Evaluation of open health data portals for COVID-19 from the perspective of the user experience”. The Electronic Library, v. 39, n. 2, pp. 296–317. https://doi.org/10.1108/EL-01-2021-0011

Xu, Bo; Kraemer, Moritz U. G. (2020). “Open access epidemiological data from the COVID-19 outbreak”. The Lancet Infectious Diseases, v. 20, n. 5, pp. 534. https://doi.org/10.1016/S1473-3099(20)30119-5


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item